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Hubel and Wiesel discovered that some neurons in the visual cortex
(1) respond selectively to elongated visual stimuli of a particular ori-
entation, proposing an elegant feedforward model to account for this
selectivity. Since then, there has been much experimental support
for this model, however several unexpected results, from in vivo two
photon imaging of the dendrites of layer 2/3 pyramidal neurons in
visual (2) and somatosensory (3) cortex cast doubt on the basic form
of the model. Firstly, the dendrites may have different stimulus tun-
ing to that of the soma. Secondly, hyperpolarizing a cell can result
in it losing its stimulus selectivity, while the dendritic tuning remains
unaffected. These results demonstrate the importance of dendrites
in generating stimulus selectivity (4). Here, we implement stimulus
selectivity in a biophysical model based on the realistic morphology
of a layer 2/3 neuron, that can account for both of these experimental
observations, within the feedforward framework motivated by Hubel
and Wiesel. We show that this new model of stimulus selectivity is
robust to the loss of synapses or dendrites, with stimulus selectivity
maintained up to losses of 1/2 of the synapses, or 2/7 of the dendrites,
demonstrating that in addition to increasing the computational ca-
pacity of neurons (5–8), dendrites also increase the robustness of
neuronal computation. As well as explaining experimental results
not predicted by Hubel and Wiesel, our study shows that dendrites
enhance the resilience of cortical information processing, and prompts
the development of new neuromorphic chips incorporating dendritic
processing into their architecture.
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Over 50 years ago, Hubel and Wiesel discovered a canonical example of a
neural computation (1), the responsivity of single neurons in the striate cortex
to the orientation and direction of motion of a visual stimulus. The simple feed-
forward model that they proposed to account for this has, although not without
controversy, largely stood the test of time (see e.g. (9) for a review). Recently,
however, two experimental groups provided strong evidence for the involvement
of dendrites in processing orientation selectivity (2, 4). Using calcium imaging
combined with a whole cell patch clamp to simultaneously monitor both somatic
and dendritic activity, both groups found that activity in soma and dendrites
can be activated separately. Although the soma reaches its maximal activity for
a specific direction, they observed that some dendritic segments reach maximal
activity for a variety of orientations different from the soma. Moreover, Jia et
al. observed that hyperpolarization cancels somatic selectivity, while dendritic
selectivity remains unaffected.

Dendrites enhance the computational capacity of single neurons. This stems
from the local non-linear interaction of synaptic inputs in dendrites (10): the de-
polarization resulting from multiple synaptic inputs can be smaller (sublinear)
or larger (supralinear) than their arithmetic sum. These non-linearities endow
single neurons with greater computational capacity (6). We wanted to know
here if such dendritic non-linearities might also explain the apparently counter-
intuitive experimental observations described in the previous paragraph. For
this purpose, we studied a possible implementation of direction and orientation
selectivity, as a model of a more general canonical stimulus selectivity compu-
tation (3).

Synaptic integration depends on the rate and timing of presynaptic inputs.
There is substantial evidence for encoding of stimulus information in correla-
tions, beyond that present in firing rates (11, 12). Thus, we created input spike
trains for which the presence of a stimulus (at all) increases the firing rate of
all neurons, while the stimulus identity also increases correlation in a subset
of neurons. Fig. 1A shows the activity of 400 presynaptic inputs divided in 8
groups of 50 inputs, in this model. The background firing rate of 1Hz increases
to 10Hz during stimulus presentation for all neurons. In the subsets of 50 neu-
rons encoding the stimulus identity, we added 20 synchronous events in which
all neurons fire synchronously, raising the firing rate of this subset to 30 Hz.

Synaptic integration also depends on post-synaptic characteristics such as
the neuronal morphology. We added AMPA/NMDA-type synapses at 7 distinct
locations either scattered on 7 distinct primary dendrites or clustered on a single
branch in a model neuron reconstructed from a layer 2/3 stellate cell (provided to
us by Jia et al.) (Fig. 1B). Synaptic activation results in somatic depolarizations,
the strength of which is independent of the distance of the synapse location to
the soma, as observed in (13). We enforce this “dendritic democracy” (14)
by scaling the synaptic conductance so that the resulting depolarization was
0.1 mV when measured at the soma (Fig. 1C). Interestingly, these synapses
interact non-linearly in two distinct ways. When a low number of synapses
activate simultaneously they can generate a depolarization larger than their
arithmetic sum at the soma because of the voltage-gated magnesium block of
the NMDA component (15)(Fig. 1C). In contrast, when more than 50 synapses
activate within a small region (typically 50 µm), they interact sub-linearly. In
this instance, the resulting voltage will be smaller than the expected arithmetic
sum due to a smaller driving force (16, 17) (Fig. 1C black trace). In summary,
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Figure 1: Pre and post-synaptic characteristics enabling orientation
selectivity A. Scatter plot demonstrating the activity of the 400 presynaptic
neurons during and outside a stimulation period (shaded area between 1 and
2s). When a stimulus is on the spiking probability goes from 0.01 to 0.1 in a
10ms window. The identity of the stimuli is encoded by multiple synchronous
events (20 events) involving a particular group of neurons. B A reconstructed
layer 2/3 neuron from (2). We base our passive biophysical model on this re-
construction. Dots are the 7 input sites in two situations (red:scattered/ black:
clustered) C Somatic voltage trace when we stimulate a single input site (from
0 to 800ms) and when the seven input sites are stimulated simultaneously (800
to 1000ms). There are two traces, one where each site generate a 0.1mV at
the soma (light) the other where we multiply the maximum conductance by
five (dark). We do that for the two conditions (red:scattered/black:clustered)
D. The expected/measured plot using the two stimulation protocols. The ex-
pected depolarization is the arithmetic sum of the individual depolarization.
The measured depolarization is what is actually recorded in the model.
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Figure 2: Creating stimulus selectivity in silico A The somatic voltage
traces in response to two different stimuli (0/45 degrees). Top: model prediction
; bottom: experimental data). Both: horizontal line indicates resting potential
(-64mV), and the gray shaded area indicates stimulus presentation. B. Polar
plots describing the tuning of the soma (red) and of a dendrite (gray) which is
the normalized spike count for soma or integral of the local membrane voltage.
(top: model, bottom: experiment). C. As for B, but in which the neuron
is hyperpolarized. Experimentally, hyperpolarization was induced by injecting
100pA to lower the threshold. From this, we calculated the tuning as the integral
of the voltage. Similarly, we injected 100pA. Experimental data replotted from
(2) (Reproduce with permission of MacMillan publisher). (2).

all individual synapses create the same depolarization at the soma, respecting
the so-called “synaptic democracy” (15), while multiple synapses can interact
non-linearly depending on their location relative to each other.

This non-linear interaction between synapses makes the neuron sensitive to
the spatial distribution of synaptic activity. To demonstrate this effect, we ran-
domly selected two sets of 7 input sites located more than 60 µm from the soma,
that were either clustered on a single dendrite or scattered on 7 different primary
dendrites. The non-linear interaction between synapses depends on this distri-
bution and on the input strength: for strong inputs, clustered synapses interact
sub-linearly whereas scattered synapses interact almost linearly (Fig. 1D). This
demonstrates that synaptic integration in a realistic reconstruction of a layer
2/3 spiny stellate cell is highly sensitive to the spatial distribution of active
synapses, and even a small number of synapses can effectively depolarize the
cell when active synapses are spatially dispersed throughout the dendrites.

We exploited this sensitivity to the spatial distribution of synapses to gen-
erate stimulus selectivity. In our implementation of stimuli selectivity, only the
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neuronal population coding for the preferred stimulus synapse onto the 7 differ-
ent primary dendritic branches, whereas the inputs coding for a non-preferred
stimulus synapse onto a single dendritic branch. In this case, a single NMDA
spike is generated and is, in most cases. insufficient to make the neuron spike.
Conversely, for the preferred stimulus the neuron fires because multiple NMDA
spikes are generated in parallel , as observed in vivo (18) (see Fig. 2.A). Both
scenarios are clearly illustrated when viewed in real time (see movie S1 and S2).

Our implementation can reproduce the two counter-intuitive experimental
observations: (i) that inputs from presynaptic neurons coding for the cell’s
preferred orientation do not clearly dominate (2, 4) (Fig. 2B), and (ii) that hy-
perpolarization disrupts the somatic but not the dendritic tuning (2) (Fig. 2C).
As it linearizes integration in dendrites, hyperpolarization disturbs the selectiv-
ity of our in silico implementation. Conversely, dendritic selectivities become
sharper because hyperpolarization increases the driving force at the input sites.
In this implementation, the preferred stimulus activates the same number of
synapses as the other stimuli. Thus, dendritic and somatic selectivity can dif-
fer. Jia et al. use the integral of the calcium concentration at distinct dendritic
locations (“calcium hotspots”) that were used as a proxy for the local voltage.
With our model, we could directly measure the integral of the voltage signal at
the input sites. In both cases, it is clear that activity in the soma and at one
dendritic inputs site can be different (Fig. 3B).

Our implementation, reproducing the experimental data, is possible only if
integration is locally non-linear and impossible if integration is linear. In both
case, the transformation from input to output defines a set of inequalities. In
the case of a stimuli selective neuron, the depolarization generated by the pre-
ferred stimuli should be higher than the action potential threshold, whereas the
depolarization generated by a non-preferred stimulus should be lower than this
threshold. If integration is linear it necessarily means that the preferred stimu-
lus makes the highest number of synaptic contact. Conversely, if integration is
locally non-linear the preferred stimulus can make a lower number of distributed
contacts than the non-preferred stimuli. We formally demonstrate this result in
the method section. It means that in our implementation the preferred stimulus
can make the highest number of synapses but it is not a necessary condition
anymore contrary to the case where integration is linear.

Next, we wanted to know if relaxing this necessity could add more robust-
ness to our implementation. For that, we use an elementary model of synaptic
integration to compute how the depolarization generated by a preferred or a
non-preferred stimulus is distributed (Fig. 4). We scaled up our implementa-
tion to include 4900 synapses. There are 8 groups of presynaptic neurons and
each group codes for a different stimulus. The group for preferred stimulus
makes 700 synapses and the groups for the non-preferred stimuli each makes
650 synapses. Moreover, the group coding for the preferred stimulus targets all
the dendrites randomly whereas the groups coding for the non-preferred stimuli
have a tendency to cluster 30% of their synapses each on a different dendrite
and the remaining synapses are distributed randomly. This slight bias in the
spatial distribution of synapses is sufficient to clearly separate preferred from
non-preferred inputs (Fig. 4A). To quantify the robustness of this model, we
examined the effect of synapses or dendrites removal. We either randomly re-
moved 2000 synapses or 2 dendritic subunits and compare at the effect on the
ability to successfully discriminate whether the preferred or non-preferred stim-
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Figure 3: Using the spatial distribution of synapses to implement
stimulus selectivity. Each horizontal line represents an axon coming from
a presynaptic neuron. Red lines correspond to the population activated for the
preferred stimulus. Each vertical line represents different dendrites or input
sites. There are 8 groups of either 700 or 650 presynaptic neurons each making
synapses (black circles) on one of the 7 dendritic subunits. The preferred stimu-
lus makes 700 synapses randomly distributed. A non-preferred stimulus makes
650 and has a tendency to make contact on one input site (30% of synapses
on this input site) distinct for each stimulus. A dendrite saturates when 100
synapses are active, in other words, the result of a dendritic filter cannot ex-
ceed 100. The somatic depolarization is the arithmetic sum of all the dendritic
output.
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Figure 4: Implementing stimulus selectivity robustly A. We present 8
input patterns to 1000 random instances of our model and record the resulting
somatic depolarization after the dendritic filtering for either a preferred (red) or
the non-preferred (gray) input patterns. We count and normalize (Norm #) the
number of input patterns generating a given somatic depolarization. It yields
the distribution presented here for 8000 filtered input patterns. We present in A
the case with non-linear dendrites that saturate at 100. If integration is linear
you have two peaks one a 700 (preferred) and one at 650 (non-preferred). The
vertical dotted line is a threshold that separates preferred from non-preferred
inputs. B. We remove 50% if the synapses randomly and observe that the pre-
ferred and non-preferred stimuli are still easily separable (non-linear dendrites).
C. We can even remove 20 % of dendrites and the neuron can still be selective
after a recovery period (change in the somatic threshold). D In contrast, if we
remove 50% of synapses in a linear model the two groups of pattern might be
impossible to distinguish.
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uli was presented (Fig. 4B and C). We observe that despite the loss of synapses,
the two types of stimulus still generate clearly distinct soma depolarizations.
This is similarly true when we removed 2 dendrites, and suggests that a neu-
ron suffering synaptic or dendritic loss can sufficiently still be stimuli selective,
to the degree that it should be possible to restore its spike threshold during a
recovery period. If the preferred stimulus is not anymore the one with the high-
est number of synaptic contact then it becomes impossible for a model where
integration is linear to be selective for this stimulus (Fig. 4D). It demonstrates
that exploiting the spatial distribution of synapses enhances the robustness of
the implementation to the loss of synapse or dendrites.

In summary, we demonstrated that non-linear summation enables neurons
to implement robust stimuli selectivity. Our implementation explains how the
neuron deals with the input coding for all the stimuli as observed by Jia et
al. and Smith et al. (2, 4). It explains why hyperpolarizing the neuron could
affect neuronal tuning as observed in (2, 3, 19). This implementation is also
compatible with a bias in synaptic connectivity, where the strongest input comes
from the preferred stimulus, as observed experimentally (20), further increasing
the robustness. Finally, it predicts that a neuron can recover its tuning after
losing a large fraction of either its synapses or dendrites.

Our results have strong follow-on implications for the design of neuromorphic
chips, as they suggest that the implementation of dendritic compartments would
not only increase the computational power of each unit, but also increase their
resilience, addressing a crucial issue in the design of scalable and fault-tolerant
neurocomputer architectures. While we have demonstrated these capabilities in
the context of a neuron’s selectivity to the orientation of a visual stimulus, the
model we have proposed is general, and may reflect a canonical computational
principle for stimulus selectivity.

Method

Biophysical model

The cable equations (21) are used to model how a depolarization propagates
along the dendrites. The model was implemented using NEURON with Python
to solve these equations (22). The axial resistance in all section is Ra = 35.4Ω.
This model contains only passive mechanism which correspond to constant cur-
rent i equal to il = gl × (v(t) − et) with gl = 0.001Ω−1, v(t) the membrane
voltage at time t in mV and el = −65mV .

The neuron model is spiking because of a hard threshold. When the somatic
voltage reaches −45mV we set the voltage of this section at 20mv at the next
time step and then −65mV as a reset potential.

Conductance based NMDA-type synapses

The current generated by a synapse is = g(t)gmg(v) × (v(t) − es) with g(t)
a time dependent conductance depending on the presynaptic activity with an
alpha function shape. It has two time constants for rise time τ1 = 0.1ms and
decay τ2 = 10ms, this time constant is lower than the real glutamate binding
on NMDA channels time constant to account for the presence of voltage-gated

8

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 24, 2015. ; https://doi.org/10.1101/023200doi: bioRxiv preprint 

https://doi.org/10.1101/023200


calcium dependent potassium channels in the membrane. The conductance
gmg(v) depends on the voltage of the membrane and varies between 0.22 for
−65mV and 2 for −8mV . v(t) is the current membrane voltage at time t and
es = 0mV is the reversal potential for the channel. (see .mod file used to see a
complete list of the used references).

An abstract compartmental model

We used a model made using Python to compute synaptic integration. Each
synapse i makes a contact on the dendritic subunit j so wi,j = 1 or wi,j = 0 it
results in a local integration in the subunit j equals to dj =

∑
i wi,j . This sum

is then sub-linearly filtered: it cannot excess θ = 100 to account for dendritic
saturation. To obtain synaptic integration we sum all the di.

Implementing our method in a linear model is impossible

Let us take the simplest situation with two presynaptic neurons each making a
synaptic contact on a postsynaptic neuron. One of the presynaptic neuron code
for the preferred direction and the other for a non-preferred direction. We write
Wpref the amplitude of the depolarization generated by the first neuron and
Wnonpref the one generated by the other neuron. A linear neuron implement
direction selectivity only if Wpref ≥ Θ and Wnonpref < Θ which is equivalent to
Wpref > Θ > Wnonpref . Therefore, direction selectivity necessary implies that
the preferred direction has the highest weight. Note that this condition can be
generalized to any number of presynaptic neurons, in this case the weights W
are the arithmetic sum of the individual depolarizations.

Code availability

At the time of publication, the code used to generate the simulation and movies
will be available on pip at neurhon15CaJaSc and also on Romain Cazé git
repository: rcaze.
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