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Abstract 9 

 Many classical ecological and evolutionary theoretical frameworks posit that competition 10 

between species is an important selective force. For example, in adaptive radiations, resource 11 

competition between evolving lineages plays a role in driving phenotypic diversification and 12 

exploration of novel ecological space. Nevertheless, current models of trait evolution fit to 13 

phylogenies and comparative datasets are not designed for incorporating the effect of 14 

competition. The most advanced models in this direction are diversity-dependent models where 15 

evolutionary rates depend on lineage diversity. However, these models still treat changes in traits 16 

in one branch as independent of the value of traits on other branches, thus ignoring the effect of 17 

species similarity on trait evolution. Here, we consider a model where the evolutionary dynamics 18 

of traits involved in interspecific interactions are influenced by species similarity in trait values 19 

and where we can specify which lineages are in sympatry. We develop a maximum-likelihood 20 

based approach to fit this model to combined phylogenetic and phenotypic data. Using 21 

simulations, we demonstrate that the approach accurately estimates the simulated parameter 22 

values across a broad range of parameter space. Additionally, we develop tools for specifying the 23 

biogeographic context in which trait evolution occurs. In order to compare models, we also apply 24 

these biogeographic methods to specify which lineages interact sympatrically for two diversity-25 

dependent models. Finally, we fit these various models to morphological data from a classical 26 

adaptive radiation (Greater Antillean Anolis lizards). We show that models that account for 27 

competition and geography perform better than other models. The matching competition model 28 

is an important new tool for studying the influence of interspecific interactions, in particular 29 

competition, on phenotypic evolution. More generally, it constitutes a step toward a better 30 

integration of interspecific interactions in many ecological and evolutionary processes.   31 
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 35 

 Interactions between species can be strong selective forces. Indeed, many classical 36 

evolutionary theories assume that interspecific competition has large impacts on fitness. 37 

Character displacement theory (Brown and Wilson 1956; Grant 1972; Pfennig and Pfennig 38 

2009), for example, posits that interactions between species, whether in ecological or social 39 

contexts, drive adaptive changes in phenotypes. Similarly, adaptive radiation theory (Schluter 40 

2000) has been a popular focus of investigators interested in explaining the rapid evolution of 41 

phenotypic disparity (Grant and Grant 2002; Losos 2009; Mahler et al. 2013; Weir and Mursleen 42 

2013), and competitive interactions between species in a diversifying clade are a fundamental 43 

component of adaptive radiations (Schluter 2000; Losos and Ricklefs 2009; Grant and Grant 44 

2011). 45 

 Additionally, social interactions between species, whether in reproductive (Gröning and 46 

Hochkirch 2008; Pfennig and Pfennig 2009) or agonistic (Grether et al. 2009, 2013) contexts, are 47 

important drivers of changes in signal traits used in social interactions. Several evolutionary 48 

hypotheses predict that geographical overlap with closely related taxa should drive divergence in 49 

traits used to distinguish between conspecifics and heterospecifics (e.g., traits involved in mate 50 

recognition; Wallace 1889; Fisher 1930; Dobzhansky 1940; Mayr 1963; Gröning and Hochkirch 51 

2008; Ord and Stamps 2009; Ord et al. 2011). Moreover, biologists interested in speciation have 52 

often argued that interspecific competitive interactions are important drivers of divergence 53 

between lineages that ultimately leads to reproductive isolation. Reinforcement, or selection 54 
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against hybridization (Dobzhansky 1937, 1940), for example, is often thought to be an important 55 

phase of speciation (Grant 1999; Coyne and Orr 2004; Rundle and Nosil 2005; Pfennig and 56 

Pfennig 2009). 57 

In addition to the importance of interspecific competition in driving phenotypic 58 

divergence between species, competitive interactions are also central to many theories of 59 

community assembly, which posit that species with similar ecologies exclude each other from 60 

the community (Elton 1946). In spite of the importance of interspecific competition to these key 61 

ecological and evolutionary theories, the role of competition in driving adaptive divergence and 62 

species exclusion from ecological communities has been historically difficult to measure (Losos 63 

2009), because both trait divergence and species exclusion resulting from competition between 64 

lineages during their evolutionary history has the effect of eliminating competition between those 65 

lineages at the present. Community phylogeneticists have aimed to solve part of this conundrum 66 

by analyzing the phylogenetic structure of local communities: assuming that phylogenetic 67 

similarity between two species is a good proxy for their ecological similarity, competitive 68 

interactions are considered to have been more important in shaping communities comprised of 69 

phylogenetically (and therefore ecologically) distant species (Webb et al. 2002; Cavender-Bares 70 

et al. 2009). However, there is an intrinsic contradiction in this reasoning, because using 71 

phylogenetic similarity as a proxy for ecological similarity implicitly (or explicitly) assumes that 72 

traits evolved under a Brownian model of trait evolution, meaning that species interactions had 73 

no effect on trait divergence (Kraft et al. 2007; Cavender-Bares et al. 2009; Mouquet et al. 2012; 74 

Pennell and Harmon 2013).  75 

 More generally, and despite the preponderance of classical evolutionary processes that 76 

assume that interspecific interactions have important fitness consequences, existing phylogenetic 77 
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models treat trait evolution within a lineage as independent from traits in other lineages. For 78 

example, in the commonly used Brownian motion and Ornstein-Uhlenbeck models of trait 79 

evolution (Cavalli-Sforza & Edwards 1967, Felsenstein 1988, Hansen and Martins 1996), once 80 

an ancestor splits into two daughter lineages, the trait values in those daughter lineages do not 81 

depend on the trait values of sister taxa. Some investigators have indirectly incorporated the 82 

influence of interspecific interactions by fitting models where evolutionary rates at a given time 83 

depend on the diversity of lineages at that time (e.g., the “diversity-dependent” models of Mahler 84 

et al. 2010, Weir and Mursleen 2013). While these models capture some parts of the interspecific 85 

processes of central importance to evolutionary theory, such as the influence of ecological 86 

opportunity, they do not explicitly account for trait-driven interactions between lineages, as trait 87 

values in one lineage do not vary directly as a function of trait values in other evolving lineages. 88 

 Recently, Nuismer and Harmon (2015) proposed a model where the evolution of a 89 

species’ trait depends on other species’ traits. In particular, they consider a model, which they 90 

refer to as the model of phenotype matching, where the probability that an encounter between 91 

two individuals has fitness consequences declines as the phenotypes of the individuals become 92 

more dissimilar. The consequence of the encounter on fitness can be either negative if the 93 

interaction is competitive, resulting in character divergence (matching competition, e.g. resource 94 

competition), or positive if the interaction is mutualistic, resulting in character convergence 95 

(matching mutualism, e.g. Müllerian mimicry). Applying Lande’s formula (Lande 1976) and 96 

given a number of simplifying assumptions—importantly that all lineages evolve in sympatry 97 

and that competitive interactions are approximately equivalent across sympatric taxa—  this 98 

model yields a simple prediction for the evolution of a population’s mean phenotype.  99 
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 Here, we develop inference tools for fitting a simple version of the matching competition 100 

model (i.e., the phenotype matching model of Nuismer and Harmon incorporating competitive 101 

interactions between lineages) to combined phylogenetic and trait data. We begin by showing 102 

how to compute likelihoods associated with this model. Next, we use simulations to explore the 103 

statistical properties of maximum likelihood estimation of the matching competition model 104 

(parameter estimation as well as model identifiability). While the inclusion of interactions 105 

between lineages is an important contribution to quantitative models of trait evolution, applying 106 

the matching competition model to an entire clade relies on the assumption that all lineages in 107 

the clade are sympatric. However, this assumption will be violated in most empirical cases, so 108 

we also developed a method for incorporating data on the biogeographical overlap between 109 

species for this model and for the linear and exponential diversity-dependent trait models of Weir 110 

& Mursleen (2013), wherein the evolutionary rate at a given time in a tree varies as a function of 111 

the number of lineages in the reconstructed phylogeny at that time (see also Mahler et al. 2010). 112 

We then fit the model to data from a classical adaptive radiation: Greater Antillean Anolis 113 

lizards (Harmon et al. 2003; Losos 2009). Many lines of evidence support the hypothesis that 114 

resource competition is responsible for generating divergence between species in both habitat use 115 

(e.g., Pacala and Roughgarden 1982) and morphology (Schoener 1970; Williams 1972; see 116 

review in Losos 1994). Thus, we can make an a priori prediction that model comparison will 117 

uncover a signature of competition in morphological traits that vary with habitat and resource 118 

use. Given the well-resolved molecular phylogeny (Mahler et al. 2010, 2013) and the relatively 119 

simple geographical relationships between species (i.e., many species are restricted to single 120 

islands, Rabosky and Glor 2010; Mahler and Ingram 2014), the Greater Antillean Anolis lizards 121 
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provide a good test system for exploring the effect of competition on trait evolution using the 122 

matching competition model. 123 

 124 

METHODS 125 

Likelihood Estimation of the Matching Competition Model 126 

 We consider the evolution of a quantitative trait under the matching competition model of 127 

Nuismer & Harmon (2015) wherein trait divergence between lineages will be favored by 128 

selection. We make the assumption that the outcome of competitive interactions is similar 129 

between all members of an evolving clade rather than sensitive to pairwise phenotypic similarity 130 

(i.e., that α in Eq. 1 of Nuismer and Harmon 2015 is small). This assumption is crucial, as it 131 

ensures that the evolution of a population’s mean phenotype is given by a linear model (Eq. S38 132 

in Nuismer and Harmon 2015). Importantly, this implies that the expected distribution of trait 133 

values on a given phylogeny follows a multivariate normal distribution (Manceau et al., in prep), 134 

as is the case for classical models of quantitative trait evolution (Hansen and Martin 1996, 135 

Harmon et al. 2010, Weir and Mursleen 2013). In our current treatment of the model, we remove 136 

stabilizing selection to focus on the effect of competition (see Discussion). Under these two 137 

simplifying assumptions, the mean trait value for lineage i after an infinitesimally small time step 138 

!" is given by (Eq. S38 in Nuismer and Harmon 2015 with ! = 0):  139 

 140 

!! ! + !" =  !! ! + ! !(!)− !! ! !" +  !"!!     (Eq. 1) 141 

 142 

where !! !  is the mean trait value for lineage i at time t, ! !  is the mean trait value for the 143 

entire clade at time t, S measures the strength of interaction (more intense competitive 144 
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interactions are represented by larger negative values), and drift is incorporated as Brownian 145 

motion !"!!  with mean = 0 and variance = !!!", Note that when S = 0 or n = 1 (i.e., when a 146 

species is alone), this model reduces to Brownian motion. Under the model specified by Eq. 1, if 147 

a species trait value is greater (or smaller) than the trait value average across species in the clade, 148 

the species’ trait will evolve towards even larger (or smaller) trait values.  We discuss the 149 

strengths and limitations of this formulation of the matching competition in the Discussion.  150 

Given that the expected distribution of trait values on a phylogeny under the matching 151 

competition model specified in Eq. 1 follows a multivariate normal distribution, it is entirely 152 

described with its expected mean vector (made of terms each equal to the character value at the 153 

root of the tree) and variance-covariance matrix. Nuismer & Harmon (2015) provide the system 154 

of ordinary differential equations describing the evolution of the variance and covariance terms 155 

through time (their Eqs.10b and 10c). These differential equations can be integrated numerically 156 

from the root to the tips of phylogenies to compute expected variance-covariance matrices for a 157 

given set of parameter values and the associated likelihood values given by the multivariate 158 

normal distribution.  159 

Additionally, to relax the assumption that all of the lineages in a clade coexist 160 

sympatrically, we included a term to specify which lineages co-occur at any given time-point in 161 

the phylogeny, which can be inferred, e.g., by biogeographical reconstruction. We define 162 

piecewise constant coexistence matrices A, where Ai,j equals 1 at time t if i and j are sympatric at 163 

that time, and 0 otherwise (Fig. 1). The evolution of the trait value for lineage i is then given by: 164 

 165 

!! ! + !" =  !! ! + ! !
!!

!!,!!
!!! !! ! − !! ! !" +  !"!!     (Eq. 2) 166 

 167 
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where !! = !!"!
!!!  is the number of lineages interacting with lineage i at time t (equal to the 168 

number n of lineages in the reconstructed phylogeny at time t if all species are sympatric) such 169 

that trait evolution is only influenced by sympatric taxa.    170 

We show (Appendix S1) that the corresponding system of ordinary differential equations 171 

describing the evolution of the variance and covariance terms through time is:	172 

	173 

!!!,!
!" = − !! !!!!

!!
!!,! + !!

!!
!!,!!!,!! 

!!!
!!!

+ !!	 	 	 	 	 										(Eq. 3a)	 	174 

	175 

!!!,!
!" = −! !!!!

!!
+ !!!!

!!
!!,! + !

!!
!!,!!!,!!

!!!
!!!

+ !
!!

!!,!!!,!!
!!!
!!!

	 	 	 										(Eq. 3b)	176 

 177 

where !!,! is the variance for each species i at time t and !!,! is the covariance for each species 178 

pair i,j at time t. Using numerical integration, we solve this system of ordinary differential 179 

equations from the root of the tree to the tips in order to calculate the values of the variance-180 

covariance matrix expected under the model for a given phylogeny and set of parameter values. 181 

Specifically, Eq. 3a and 3b dictate the evolution of the variance and covariance values along the 182 

branches of the tree; at a given branching event, the variance and covariance values associated to 183 

the two daughter species are simply inherited from those of the ancestral species. With the 184 

expected variance-covariance matrix at present, we calculate the likelihood for the model using 185 

the likelihood function for a multivariate-normal distribution (e.g. Harmon et al. 2010). Then, 186 

using standard optimization algorithms, we identify the maximum likelihood values for the 187 

model parameters. The matching competition model has three free parameters: !!, S and the 188 

ancestral state !! at the root. As with other models of trait evolution, the maximum likelihood 189 
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estimate for the ancestral state is computed through GLS using the estimated variance-covariance 190 

matrix (Grafen 1989; Martins and Hansen 1997). 191 

We used the ode function in the R package deSolve (Soetaert et al. 2010) to perform the 192 

numerical integration of the differential equations using the “lsoda” solver, and the Nelder-Mead 193 

algorithm implemented in the optim function to perform the maximum likelihood optimization. 194 

Codes for these analyses are freely available on github (https://github.com/hmorlon/PANDA) 195 

and included the R package RPANDA (Morlon et al. MS). 196 

 197 

 198 

 199 
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Figure 1. Illustration of geography matrices (defined between each node and after each dispersal event 

inferred, e.g., by stochastic mapping) delineating which lineages interact in sympatry in an imagined 

phylogeny. These matrices were used to identify potentially interacting lineages for the matching 

competition and both diversity-dependent models of character evolution (see Eqs. 3-5 in the main text). 

Anolis outline courtesy of Sarah Werning, licensed under Creative Commons. 
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Incorporating Geography into Diversity-Dependent Models 200 

 Using the same geography matrix A described above for the matching competition model 201 

(Fig. 1), we modified the diversity-dependent linear and exponential models of Weir & Mursleen 202 

(2013) to incorporate biological realism into the models, because ecological opportunity is only 203 

relevant within rather than between biogeographical regions. The resulting variance-covariance 204 

matrices, V, of these models have the elements: 205 

 206 

!!" = (!!!!
!!! + !!!)(max !!" − !!!!, 0 −max !!" − !!, 0 )      (Eq. 4) 207 

 208 

for the diversity-dependent linear model, and 209 

 210 

!!" = (!!!!
!!! × !!!!)(max !!" − !!!!, 0 −max !!" − !!, 0 )      (Eq. 5) 211 

 212 

for the diversity-dependent exponential model, where !!! is the rate parameter at the root of the 213 

tree, b and r are the slopes in the linear and exponential models, respectively, sij is the shared 214 

path length of lineages i and j from the root of the phylogeny to their common ancestor, !! is the 215 

number of sympatric lineages (as above) between times  tm-1 and tm (where t1 is 0, the time at the 216 

root, and tM is the total length of the tree) (Weir & Mursleen 2013). When b or r = 0, these 217 

models reduce to Brownian motion. For the linear version of the model, we constrained the 218 

maximum likelihood search such that the term !!! + !!!  in Eq. 3 ≥ 0 to prevent the model 219 

from having negative evolutionary rates at any tm.  220 

 221 

Simulation-based Analysis of Statistical Properties of the Matching Competition Model 222 
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 To verify that the matching competition model can be reliably fit to empirical data, we 223 

simulated trait datasets to estimate its statistical properties (i.e., parameter estimation and 224 

identifiability using AICc). For all simulations, we began by first generating 100 pure-birth trees 225 

using TreeSim (Stadler 2014). To determine the influence of the number of tips in a tree, we ran 226 

simulations on trees of size n = 20, 50, 100, and 150. We then simulated continuous trait datasets 227 

by applying the matching competition model recursively from the root to the tip of each tree 228 

(Paradis 2012), following Eq. 1, assuming that all lineages evolved in sympatry. For these 229 

simulations, we set !!  = 0.05 and systematically varied S  (-1.5, -1, -0.5, -0.1, or 0). Finally, we 230 

fit the matching competition model to these datasets using the ML optimization described above. 231 

 To determine the ability of the approach to accurately estimate simulated parameter 232 

values, we first compared estimated parameters to the known parameters used to simulate 233 

datasets under the matching competition model (S and !!). We also quantified the robustness of 234 

these estimates in the presence of extinction by estimating parameters for datasets simulated on 235 

birth-death trees; in addition, we compared the robustness of the matching competition model to 236 

extinction to that of the diversity-dependent models. These two latter sets of analyses are 237 

described in detail in the Supplementary Appendix 2. 238 

To assess the ability to correctly identify the matching competition model when it is the 239 

generating model, we compared the fit (measured by AICc, Burnham and Anderson 2002) of this 240 

model to other commonly used trait models on the same data (i.e. data simulated under the 241 

matching competition model). Specifically, we compared the matching competition model to (1) 242 

Brownian motion (BM), (2) Ornstein-Uhlenbeck/single-stationary peak model (OU, Hansen & 243 

Martin 1996), (3) exponential time-dependent (TDexp, i.e., the early burst model, or the ACDC 244 

model with the rate parameter set to be negative, Blomberg et al. 2003; Harmon et al. 2010), (4) 245 
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linear time-dependent evolutionary rate (TDlin, Weir and Mursleen 2013), (5) linear rate 246 

diversity-dependent (DDlin, Mahler et al. 2010; Weir and Mursleen 2013), and (6) exponential 247 

rate diversity-dependent (DDexp, Weir and Mursleen 2013). These models were fitted using 248 

geiger (Harmon et al. 2008) when available there (BM, OU, TDexp, TDlin), or using our own 249 

codes, available in RPANDA (Morlon et al. MS) when they were not available in geiger (DDlin, 250 

DDexp). With the exception of TDexp, which we restricted to have decreasing rates through time 251 

since it has recently been shown that the accelerating rates version of the model is unidentifiable 252 

from OU (Uyeda et al. 2015), we did not restrict the ML search for the parameters in TDlin or DD 253 

models. 254 

We assessed the identifiability of other trait models against the matching competition 255 

model by calculating the fit of this model to datasets simulated under the same trait models 256 

mentioned above. For BM and OU models, we generated datasets from simulations using 257 

parameter values from the appendix of Harmon et al. 2010 scaled to a tree of length 400 (BM, !!  258 

= 0.03; OU, !!  = 0.3, α = 0.06). For both the linear and exponential versions of the time- and 259 

diversity-dependent models, we simulated datasets with starting rates of !!  = 0.6 and ending 260 

rates of !!  = 0.01, declining with a slope determined by the model and tree (e.g., for time-261 

dependent models, the slope is a function of the total height of the tree; for the TDexp model, 262 

these parameters result in a total of 5.9 half-lives elapsing from the root to the tip of the tree, 263 

Slater and Pennell 2014). In another set of simulations, we fixed the tree size at 100 tips and 264 

varied parameter values to determine the effect of parameter values on identifiability (see 265 

Results). As above, we calculated the AICc for all models for each simulated dataset. 266 

 267 
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Finally, to understand how removing stabilizing selection from the likelihood of the 268 

matching competition model affects our inference in the presence of stabilizing selection, we 269 

simulated datasets with both matching competition and stabilizing selection on 100 tip trees, 270 

across a range of parameter space (S = -1, -0.5, and 0, α = 0.05, 0.5, and 5, holding !! at 0.05). 271 

We fit BM, OU, and matching competition models to these simulated datasets. All simulations 272 

were performed using our own codes, available in RPANDA (Morlon 2014).  273 

 274 

Fitting the Matching Competition Model of Trait Evolution to Caribbean Anolis Lizards 275 

To determine whether the matching competition model is favored over models that ignore 276 

interspecific interactions in an empirical system where competition likely influenced character 277 

evolution, we fit the matching competition model to a morphological dataset of adult males from 278 

100 species of Greater Antillean Anolis lizards and the time calibrated, maximum clade 279 

credibility tree calculated from a Bayesian sample of molecular phylogenies (Mahler et al. 2010, 280 

2013; Mahler and Ingram 2014). We included the first four size-corrected phylogenetic principal 281 

components from a set of 11 morphological measurements, collectively accounting for 93% of 282 

the cumulative variance explained  (see details in Mahler et al. 2013). Each of these axes is 283 

readily interpretable as a suite of specific morphological characters (see Discussion), and 284 

together, the shape axes quantified by these principal components describe the morphological 285 

variation associated with differences between classical ecomorphs in Caribbean anoles (Williams 286 

1972). In addition to the matching competition model, we fit the six previously mentioned 287 

models (BM, OU, TDexp, TDlin, DDexp, and DDlin) separately to each phylogenetic PC axis in the 288 

Anolis dataset. 289 
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For the matching competition model and diversity-dependent models, to determine the 290 

influence of uncertainty in designating clades as sympatric and allopatric, we fit the model for 291 

each trait using 101 sets of geography matrices (i.e., A in Eq. 1b, 2, & 3, see Fig. 1): one where 292 

all lineages were set as sympatric, and the remaining 100 with biogeographical reconstructions 293 

from the output of the make.simmap function in phytools (Revell 2012). To simplify the ML 294 

optimization, we restricted S to take negative values while fitting the matching competition 295 

model including the biogeographical relationships among taxa. 296 

 297 
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Figure 2. Parameter estimation under the matching competition model. As tree size increases and/or the 

magnitude of competition increases (i.e., the S parameter in the matching competition model becomes 

more negative), so does the accuracy of ML parameter estimates of (A) S (n = 100 for each tree size and 

S value combination; red horizontal lines indicate the simulated S value) and (B) !! (n = 500 for each 

tree size; red horizontal lines indicate the simulated value). In a small number of cases (7/2000), the ML 

estimate for !! was unusually large ( > 0.25), and we removed these rare cases for plotting. The numbers 

below the violin plots in (B) show the number of outliers removed for each tree size. 
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RESULTS 299 

Statistical Properties of the Matching Competition Model 300 

 Across a range of S values, maximum likelihood optimization returns reliable estimates 301 

of parameter values for the matching competition model (Fig. 2). As the number of tips 302 

increases, so does the reliability of maximum likelihood parameter values (Fig. 2). Parameter 303 

estimates remain reliable in the presence of extinction, unless the extinction fraction is very large 304 

(i.e., ≥ 0.6; Supplementary Appendix 2). When datasets are simulated under the matching 305 

competition model, model selection using AICc generally picks the matching competition model 306 

as the best model (Figs. 3, S1); the strength of this discrimination depends on both the S value 307 

used to simulate the data and the size of the tree (Figs. 3, S1). 308 
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Figure 3. AICc support for datasets 

simulated under the matching 

competition (MC) model increases 

with tree size and with increasing 

levels of competition (i.e., 

increasingly negative S values). The 

dotted line denotes 10%. 
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 Simulating datasets under BM, OU, DDexp, and DDlin generating models, we found that in 312 

most scenarios, and in most parameter space, these models are distinguishable from the matching 313 

competition model (Fig. 4a,b,e,f, Fig. S2). As with the matching competition model, the ability 314 

to distinguish between models using AICc generally increases with increasing tree sizes (Fig. 4) 315 

and with increasing magnitude of parameter values (Fig. S2). When character data were 316 

simulated under a TDlin model of evolution, the matching competition and/or the diversity-317 

dependent models tended to have lower AICc values than the TDlin model, especially among 318 

smaller trees (Figure 4d). For data generated under a TDexp model, model selection always 319 

favored the matching competition model over the TDexp model (Fig. 4c). 320 

 As the strength of stabilizing selection increases relative to the strength of competition 321 

(i.e., α as increases relative to S) AICc model selection shifts from favoring the matching 322 

competition model (under large S, small α scenarios) to favoring the OU model (under small S, 323 

large α scenarios) (Fig. S3). Likewise, maximum likelihood increasingly underestimates the 324 

value of S as the value of α increases (Fig. S4). 325 

 326 

Competition in Greater Antillean Anolis Lizards 327 

 For the first four phylogenetic principal components describing variation in Anolis 328 

morphology, we found that models that incorporate species interactions fit the data better than 329 

models that ignore them (Table 1). PC1, which describes variation in hindlimb/hindtoe length 330 

(Mahler et al. 2013), is fit best by the matching competition model. PC2, which describes 331 

variation in body size (snout vent length) is fit best by the linear diversity-dependent model. 332 

PC3, which describes variation in forelimb/foretoe length, and PC4, which describes variation in 333 
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lamellae number are fit with mixed support across the models included, but with models 334 

incorporating species interactions providing the best overall fits. 335 
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Figure 4. Identifiability simulation results for the matching competition (MC) model. When the 

generating model is either (A) BM, (B) OU, (E) DDexp (for larger trees) or (F) DDlin, the generating 

model is largely favored by model selection. However, both (C) TDexp and (D) TDlin (for smaller 

trees) are erroneously rejected as the generating model. The dotted lines denote 10%. 
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Additionally, for every PC axis, the best-fit models were ones that incorporated the geographic 337 

relationships among species in the tree, and these conclusions were robust to uncertainty in 338 

ancestral reconstructions of sympatry (Table 1). 339 

 340 

 341 
 342 
  343 

Table 1. Comparison of model fits for the first four phylogenetic principal components of a 

morphological dataset of Greater Antillean anoles. Models run incorporating geography matrices 

are indicated by “+ GEO”, and models with the lowest AICc for each trait are shaded and written in 

bold text. Parameter values presented follow the nomenclature of Eqs. 2-4 in the main text, and k 

represents the number of parameters estimated for each model. Note that TDexp is the ACDC model 

(or the early-burst model when r < 0). OU model weights were excluded because the ML estimates 

of α equaled 0 for all PC axes, and thus the OU model was equivalent to BM. Median (standard 

error) of parameter estimates, ΔAICc values, and Akaike weights are presented for fits across 100 

sampled stochastic maps of Anolis biogeography (standard errors are omitted for Akaike weights < 

0.05). 
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DISCUSSION 344 

 The inference methods we present here represent an important new addition to the 345 

comparative trait analysis toolkit. Whereas previous models had not accounted for the influence 346 

of trait values in other lineages on character evolution, the matching competition model takes 347 

these into account. Furthermore, extending both the matching competition model and two 348 

diversity-dependent trait evolution models to incorporate geographic networks of sympatry 349 

further extends the utility and biological realism of these models. 350 

 We found that the matching competition model has increasing AICc support and 351 

accuracy of parameter estimation with increasing tree sizes and competition strength. We also 352 

found that, for most of the generating models we tested, AICc-based model selection does not 353 

tend to erroneously select the matching competition model (i.e., these models are identifiable 354 

from the matching competition model). As with all other models, the statistical properties of the 355 

matching competition model will depend on the size and shape of a particular phylogeny as well 356 

as specific model parameter values. Future investigators can employ other approaches, such as 357 

phylogenetic Monte Carlo and posterior predictive simulations directly on their empirical trees 358 

(Boettiger et al. 2012, Slater & Pennell 2014), to assess the confidence they can have in their 359 

results.  360 

We did, however, find that data generated under time-dependent models were often fit 361 

better by models that incorporate interspecific interactions (i.e., density-dependent and matching 362 

competition models) (Fig. 4c,d). This was especially true for the TDexp model, often referred to 363 

as the early-burst model—the matching competition model nearly always fit data generated 364 

under the TDexp model better than the TDexp model (Fig. 4c). We do not view this as a major 365 

limitation of the model for two reasons. First, the TDexp model is known to be statistically 366 
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difficult to estimate on neontological data alone (Harmon et al. 2010; Slater et al. 2012a; Slater 367 

and Pennell 2014). Secondly, and more importantly, time-dependent models are not process-368 

based models, but rather incorporate time since the root of a tree as a proxy for ecological 369 

opportunity or available niche space (Harmon et al. 2010; Mahler et al. 2010; Slater 2015). The 370 

matching competition and density-dependent models explicitly account for the interspecific 371 

competitive interactions that time-dependent models purport to model, thus we argue that these 372 

process-based models are more biologically meaningful than time-dependent models (Moen and 373 

Morlon 2014).  374 

We did not incorporate stabilizing selection in our model. Preliminary analyses suggested 375 

that S and ! are not identifiable, as competition and stabilizing selection operate in opposite 376 

directions. As a result, when trait data are simulated with simultaneous stabilizing selection and 377 

matching competition, the strength of competition is underestimated. In addition, which model is 378 

chosen by model selection depends on the ratio of the strength of attraction toward an optimum 379 

to the strength of competition, with Brownian model being selected at equal strengths (Figs. S3, 380 

S4). Given that many traits involved in competitive interactions are also likely to have been 381 

subject to stabilizing selection (i.e., extreme trait values eventually become targeted by negative 382 

selection), statistical inference under the matching competition model without stabilizing 383 

selection is likely to underestimate the true effect of competition on trait evolution. Future work 384 

aimed at directly incorporating stabilizing selection in the inference tool could provide a more 385 

accurate quantification of the effect of competition, although dealing with the non-identifiability 386 

issue may require incorporating additional data such as fossils.  387 

Because the matching competition model depends on the mean trait values in an evolving 388 

clade, maximum likelihood estimation is robust to extinction, whereas the diversity-dependent 389 
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models are less so (Appendix S2, Figs. S5-S8). Nevertheless, given the failure of maximum 390 

likelihood to recover accurate parameter estimates of the matching competition model at high 391 

levels of extinction (!: ! ≥ 0.6), we suggest that these models should not be used in clades where 392 

the extinction rate is known to be particularly high. In such cases, it would be preferable to 393 

modify the inference framework presented here to include data from fossil lineages (Slater et al. 394 

2012a) by adapting the ordinary differential equations described in Eq. 3a and 3b for non-395 

ultrametric trees. 396 

 For all of the traits we analyzed, we found that models incorporating both the influence of 397 

other lineages and the specific geographical relationships among lineages were the most strongly 398 

supported models (though less strikingly for PC3 and PC4). Incorporating uncertainty in 399 

biogeographical reconstruction, which we encourage future investigators to do in general, 400 

demonstrated that these conclusions were robust to variation in the designation of allopatry and 401 

sympatry throughout the clade. The matching competition model is favored in the phylogenetic 402 

principal component axis describing variation in relative hindlimb size. Previous research 403 

demonstrates that limb morphology explains between-ecomorph variation in locomotive 404 

capabilities and perch characteristics (Losos 1990, 2009; Irschick et al. 1997), and our results 405 

suggest that the evolutionary dynamics of these traits have been influenced by the evolution of 406 

limb morphology in other sympatric lineages. These results support the assumption that 407 

interspecific interactions resulting from similarity in trait values are important components of 408 

adaptive radiations (Losos 1994, Schluter 2000), a prediction that has been historically difficult 409 

to test (Losos 2009, but see Mahler et al. 2010). In combination with previous research 410 

demonstrating a set of convergent adaptive peaks in morphospace to which lineages are attracted 411 

(Mahler et al. 2013), our results suggest that competition likely played an important role in 412 
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driving lineages toward these distinct peaks. Because we expect the presence of selection toward 413 

optima to lead to underestimation of the S parameter in the matching competition model (Figs. 414 

S3, S4), we would have likely detected an even stronger effect of competition in Anolis dataset if 415 

we had included stabilizing selection. Recently, Uyeda and colleagues (2015) demonstrated that 416 

the use of principal components can bias inferences of trait evolution. We used BM-based 417 

phylogenetic PC axes here, which should reduce this potential bias (Revell 2009). We recognize 418 

that there is some circularity in assuming BM in order to compute phylogenetic PC axes before 419 

fitting other trait models to these axes; a general solution to address this circularity problem 420 

remains to be found (Uyeda et al. 2015). Uyeda & colleagues suggested that using phylogenetic 421 

PC axes sorts the traits according to specific models. In the Greater Antillean Anolis lizards, the 422 

first axes are easily interpretable as specific suite of traits relevant to competitive interactions, 423 

and our results suggest that competition played an important role in shaping the evolution of 424 

these traits. 425 

 The linear version of Nuismer & Harmon’s (2015) model (Eq. 1) results from making the 426 

simplifying assumption that competitive interactions are approximately equivalent across all 427 

sympatric taxa. We used this version here, since currently available likelihood tools for trait 428 

evolution rely on the multivariate normal distribution, which is to be expected only for this linear 429 

form of the model. The current formulation (Eq. 1) corresponds to a scenario in which the rate of 430 

phenotypic evolution in a lineage gets higher as the lineage deviates from the mean phenotype, 431 

although character displacement theory, for example, posits that selection for divergence should 432 

be the strongest when species are most ecologically similar (Brown and Wilson 1956). 433 

Nevertheless, the developments presented here provide an important new set of tools for 434 

investigating the impact of interspecific interactions on trait evolution, and researchers can 435 
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perform posterior simulations to assess the realism of the resulting inference. Future 436 

development of likelihood-free methods, such as Approximate Bayesian Computation (Slater et 437 

al. 2012b; Kutsukake and Innan 2013), may be possible for fitting the version of the model in 438 

which the outcome of competitive interactions depend on distance in trait space.   439 

We imagine that the matching competition model and biogeographical implementations 440 

of diversity-dependent models will play a substantial role in the study of interspecific 441 

competition. For example, by comparing the fits of the matching competition model with other 442 

models that do not include competitive interactions between lineages, biologists can directly test 443 

hypotheses that make predictions about the role of interspecific interactions in driving trait 444 

evolution. In other words, while the effect of competition has been historically difficult to detect 445 

(Losos 2009), it may be detectable in the contemporary distribution of trait values and their 446 

covariance structure (Hansen and Martins 1996; Nuismer and Harmon 2015). The ability to 447 

consider trait distributions among species that arise from a model explicitly accounting for the 448 

effect of species interactions on trait divergence is also an important step toward a more coherent 449 

integration of macroevolutionary models of phenotypic evolution in community ecology.  450 

There are many possible extensions of the tools developed in this paper. In the future, 451 

empirical applications of the model can be implemented with more complex geography matrices 452 

that are more realistic for mainland taxa (e.g., using ancestral biogeographical reconstruction, 453 

Ronquist and Sanmartín 2011; Landis et al. 2013), and can also specify degrees of sympatric 454 

overlap (i.e., syntopy). Additionally, the current version of the model is rather computationally 455 

expensive with larger trees (with 100 or more tips). Further work developing an analytical 456 

solution to the model may greatly speed up the likelihood calculation and permit the inclusion of 457 

stabilizing selection.  458 
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The current form of the model assumes that the degree of competition is equal for all 459 

interacting lineages. Future modifications of the model, such as applications of stepwise AICc 460 

algorithms (Alfaro et al. 2009; Thomas and Freckleton 2012; Mahler et al. 2013) or reversible-461 

jump Markov Chain Monte Carlo (Pagel and Meade 2006; Eastman et al. 2011; Rabosky 2014; 462 

Uyeda and Harmon 2014), may be useful to either identify more intensely competing lineages or 463 

test specific hypotheses about the strength of competition between specific taxa. Improvements 464 

could also be made on the formulation itself of the evolution of a species’ trait as a response to 465 

the phenotypic landscape in which the species occurs. Moreover, a great array of extensions will 466 

come from modeling species interactions not only within clades, but also among interacting 467 

clades, as in the case of coevolution in bipartite mutualistic or antagonistic networks, such as 468 

plant-pollinator or plant-herbivore systems. 469 

 470 
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1 Supplementary Appendix 1

Considering that n lineages are interacting at time t, each trait i evolves following the equation :

dzi(t) = zi(t+ dt)� zi(t) = S

  
1

ni

nX

l=1

Ai,lzl(t)

!
� zi(t)

!
dt+ �dBi(t)

Where Ai,l is equal to 1 if lineages i and l are sympatric, and to 0 otherwise, ni =
Pn

l=1Ai,l is the total
number of lineages in sympatry with lineage i, and Bi(t) represents standard Brownian motion.

Here, we present the derivation of Equations 3a and 3b from the main text. To make the derivation
easier to follow, we drop the dependence on time t, replacing zi(t) with zi and Bi(t) with Bi.

First, applying the Itô formula to these stochastic processes gives us :

d (zizj) = zidzj + zjdzi + d < zi, zj >

= S

  
1

nj

nX

l=1

Aj,lzlzi

!
� zjzi

!
dt+ �zidBj

+ S

  
1

ni

nX

k=1

Ai,kzkzj

!
� zjzi

!
dt+ �zjdBi

+ �21i=jdt

where 1i=j equals one if i = j and zero otherwise.
Taking this expectation, it follows that :

d

dt
E (zizj) = S

  
1

nj

nX

l=1

Aj,lE(zlzi)
!

� E(zjzi)
!
dt

+ S

  
1

ni

nX

k=1

Ai,kE(zkzj)
!

� E(zjzi)
!
dt

+ �21i=jdt

Moreover, we get :

d

dt
E(zi) = S

  
1

ni

nX

l=1

Ai,lE(zl)
!

� E(zi)
!
dt

which leads to :
d

dt
(E(zi)E(zj)) = E(zj)

d

dt
E(zi) + E(zi)

d

dt
E(zj)

= S

  
1

ni

nX

k=1

Ai,kE(zk)E(zj)
!

� E(zi)E(zj)
!
dt

+ S

  
1

nj

nX

l=1

Aj,lE(zl)E(zi)
!

� E(zj)E(zi)
!
dt

Taking together these different parts gives us the ODE satisfied by all covariances (denoted vi,j =
Cov(zi, zj)) :

d

dt
vi,j =

d

dt
(E (zizj)� E(zi)E(zj))

= �2Svi,j +
S

ni

nX

k=1

Ai,kvk,j +
S

nj

nX

l=1

Aj,lvl,i + �21i=j (1)
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Using these derivations, the variance terms (i = j) are calculated using:

d

dt
vi,i = �2S(ni � 1)

ni
vi,i +

2S

ni

nX

l=1
l 6=i

Ai,lvl,i + �2 (2)

The covariance terms (i 6= j) are calculated using:

d

dt
vi,j = �S

✓
ni � 1

ni
+

nj � 1

nj

◆
vi,j +

S

ni

nX

k=1
k 6=i

Ai,kvk,j +
S

nj

nX

l=1
l 6=j

Aj,lvl,i (3)

In the case where lineages i and j are in sympatry, this formula simplifies to:

d

dt
vi,j = �2S(ni � 1)

ni
vi,j +

S

ni

0

BB@
nX

k=1
k 6=i

Ai,kvk,j +
nX

l=1
l 6=j

Aj,lvl,i

1

CCA (4)

To solve the ODEs for the variance and covariance terms from the root to the tip, we begin by fixing
the variance v0 for the process at the root to 0. At each speciation event, the starting value for both
the variance of each of the new lineages and the covariance between the two new lineages is the variance
of the immediate ancestor at the time of the speciation event, and the starting value for the covariance
between the new lineages and any other persisting lineage is set to the value of the covariance between
the persisting lineage and the ancestor of the new lineages at the time of speciation.

2
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Supplementary Appendix 2: Estimating the effect of extinction on parameter estimation for 636 

the matching competition and density-dependent models. 637 

 638 

 Given that the matching competition and diversity-dependent models take into account 639 

the number of interacting lineages, extinction may affect our ability to recover true parameter 640 

values. To estimate the impact of extinction, we simulated 100 trees with 100 extant species, 641 

varying the extinction fraction (!: ! = 0.2, 0.4, 0.6, and 0.8). As above, we recursively simulated 642 

traits using the matching competition model with !! = 0.05 and S = -1.5, -1, -0.5, -0.1, or 0, and 643 

the linear and exponential diversity-dependent models with starting rates of !! = 0.6 and ending 644 

rates of !! = 0.01. We then estimated the maximum likelihood parameter estimates for the 645 

generating models by fitting the models to the trait values for extant species and the tree with 646 

extinct lineages removed. In the case of the matching competition model, because many 647 

simulated birth-death trees with high extinction rates have substantially older root ages, the 648 

simulated trait datasets for some trees had very large variances. For these biologically unrealistic 649 

trait datasets (i.e., variance in trait values ≥ 1x108 ), ML does not yield reliable parameter 650 

estimates, so we removed them from further analyses (the sample size of included simulations is 651 

reported in Fig. S5, S6). 652 

 Parameter estimates are quite robust to extinction under the matching competition model 653 

(Fig. S5, S6), and much more so than under both diversity-dependent models (Fig. S7, S8). 654 

Under the matching competition model, the maximum likelihood optimization returns reliable 655 

estimates of S and !! values used to simulate datasets on trees with extinct lineages (Fig. S5, 656 

S6), although the estimates become much less reliable with larger extinction fractions, likely 657 

because simulations under the matching competition model were unbounded, resulting in trait 658 
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datasets with biologically unrealistic variances. Under both diversity-dependent models, the 659 

magnitude of both the slope and !! parameter values are increasingly underestimated with 660 

increasing extinction fractions (Fig. S7, S8). 661 

 662 
 663 
  664 
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Supplementary Figure 1. As tree size and/or the degree of competition (S) increases, model 665 

selection becomes more reliable. Comparison of Akaike weights (median & 90% CIs) for NH, 666 

BM, OU, and EB models when simulated under various levels of competition (S = -1.5, -1, -0.5, 667 

-0.1, and 0) for trees with 20, 50, 100, and 150 tips. 668 

 669 
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Supplementary Figure 2. Identifiability simulation results for the matching competition model as 673 

a function of varying parameter values of the generating models. Parameter values are (A) !!for 674 

BM, (B) ! for OU (!! was fixed at 0.3), and the !! value at the root for (C) TDexp, (D) TDlin, (E) 675 

DDexp, and (F) DDlin (for C-F, !! at the present was fixed at 0.01).  676 
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Supplementary Figure 3. The effect of incorporating stabilizing selection into trait evolution on 678 

model selection. For datasets generated under the matching competition model with stabilizing 679 

selection included, as the ratio of the strength competition (S) to the strength of selection toward 680 

an optimum (!) varies, so does the model preferred by model selection. 681 
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Supplementary Figure 4. The effect of incorporating stabilizing selection into trait evolution on 684 

parameter estimation. As the strength of stabilizing selection increases (i.e., as ! increases), 685 

maximum likelihood under the matching competition model underestimates the true S value used 686 

to simulate datasets. Positive S values represent selection toward, rather than away, from the 687 

clade mean and are thus expected when the ratio of ! to S is large. The horizontal red line 688 

represents the simulated S value, and the dashed horizontal line represents S = 0. 689 
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Supplementary Figure 5. Simulation results showing the effect of varying the extinction fraction 691 

on estimation of the S parameter for the matching competition model. Red horizontal lines 692 

indicate the simulated S values, and numbers above sets of simulations indicate the sample size 693 

of included simulations under those scenarios (see main text for more details). 694 
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Supplementary Figure 6. Simulation results showing the effect of varying the extinction fraction 698 

on estimation of the !! parameter for the matching competition model. Red horizontal lines 699 

indicate the simulated !! value (0.05), the numbers below sets of simulations indicate the sample 700 

size of included simulations under those scenarios (see main text for more details), and the 701 

number in parentheses indicate sample size after !! values > 0.25 were removed. 702 
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Supplementary Figure 7. Simulation results showing the effect of varying the extinction fraction 706 

on slope (top) and !!  (bottom) parameters for the exponential diversity-dependent model. 707 

Increasing extinction levels result in increasingly underestimated slope values and !! parameters. 708 

Red horizontal lines indicate the simulated parameter values. 709 
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Supplementary Figure 8. Simulation results showing the effect of varying the extinction fraction 712 

on slope (top) and sigma-squared (bottom) parameters for the linear diversity-dependent model. 713 

Increasing extinction levels result in increasingly underestimated slope values and !! parameters. 714 

Red horizontal lines indicate the simulated parameter values. 715 
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