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Abstract (173 wor ds)

In proteomics, a large proportion of mass spectrometry (MS) data is ignored due
to the lack of, or insufficient statistical evidence for mappable peptides. In reality,
only a small fraction of features are expected to be differentially relevant
anyway. Mapping spectra to peptides and subsequently, proteins, produces
uncertainty at several levels. We propose it is better to analyze proteomic
profiling data directly at MS level, and then relate these features to
peptides/proteins. In a renal cancer data comprising 12 normal and 12 cancer
subjects, we demonstrate that a simple rule-based binning approach can give
rise to informative features. We note that the peptides associated with significant
spectral bins gave rise to better class separation than the corresponding
proteins, suggesting a loss of signal in the peptide-to-protein transition.
Additionally, the binning approach sharpens focus on relevant protein splice
forms rather than just canonical sequences. Taken together, the inverted raw
spectra analysis paradigm, which is realised by the MZ-Bin method described in
this article, provides new possibilities and insights, in how MS-data can be
interpreted.

Introduction

Mass Spectrometry (MS)-based proteomics is a critical technology in high-
throughput biological and, more recently, clinical research (1). Applications
include biomarker identification, drug-target identification, patient subtyping,
and biological genotyping (2-4).

The basic principle of MS-based proteomics lies in the concurrent measurement
of the mass-to-charge ratio (m/z) of large numbers of ionized peptides or
peptide fragments. These raw spectral data are then mapped to in silico libraries
of known peptides in order to make peptide identifications. Contemporary
proteomics setups normally generate two sets of spectral data, MS1 and MS2.
MS1 contains direct information (including the m/z) on ionized peptides. MS2
contains corresponding information on the peptide fragments, following
molecular dissociation.

In a typical MS experiment, only about 10-30% of spectra are mappable to
known peptides with sufficient statistical confidence (5). Of the remaining 70-
90%, aside from noise, these theoretically contain data from mappable peptides
that do not meet statistical thresholds, unknown peptides (which are not
represented in the library) and post-translational modifications (PTMS) (which
are difficult to reliably characterize).

Although it is a standard practice, mapping the experimental MS space to identify
and quantify known proteins, if only to compare differences between sample
classes (e.g- normal and cancer), is highly inefficient and error prone:
Assignment of spectra to associated peptides (peptide-spectral matching/PSMs)
usually requires a high level of statistical stringency due to the large number of
erroneous matches. If the reference library is large, the statistical stringency
threshold needs to be adjusted accordingly; this makes it harder to obtain
statistically significant matches, which in turn reduces proteome coverage. In the
event that PTMs and other modifications are considered, this increases the size
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of the search space (since both modified and unmodified peptide forms have to
be included), as well as the complexity and error rate (e.g. the modification sites
could include a wide range of amino acids with unknown probabilistic bias).
Aside from size, different reference libraries (6) and different search algorithms
(7) can give rise to different peptide/protein identification results.

Errors can arise in several situations. As mentioned, inclusion of PTMs, which
requires increasing the tolerance range for match inclusion, decreases the
reliability of matches. Another significant error source arises from stochastic
selection of different peptides in different samples. The top n peptides are
typically used to generate the final protein expression in a sample, but the
constituent peptides in each sample may be different; this may lead to inaccurate
quantitation (signal dilution) for the same protein amongst different samples.
Moreover, it is naive to consider canonical protein sequences wholesale (all
exons present) without consideration of the possibility of splice variants (some
exons are excluded).

Within a comparative experimental framework, we propose that only a minority
of spectral features are expected to be strongly differential between the classes
anyway (e.g. normal and cancer class). These spectral features alone may be
sufficient for class prediction without peptide/protein matching. Differential
spectral features are expected to be associated with biologically relevant
features (e.g. peptides/proteins). Thus, identifying these differential spectral
features first can theoretically reduce the spectral search space, thus leading to
more efficient, reliable and focused identification of only relevant biological
features (peptide and their corresponding proteins).

On the other hand, raw spectra is ridden with high redundancy rates and noise.
These issues make it difficult theoretically to directly identify useful spectral
features from raw spectra. Saeed et al have proposed a graph-theory based
approach of identifying informative low-signal spectra “clusters” which in turn
can be directed to library search algorithms (5). However, comparison of each
spectrum with every other spectrum makes the clustering problem
computationally costly. While this can be mitigated by parallelization, such a
high-quality computing set-up is not feasible for most proteomic investigators

(8).

The first aim of this work is to propose and demonstrate that inverting the
conventional proteomics analysis strategy can be efficiently achieved (i.e.,
instead of “raw spectra-> PSMs->proteins->feature identification”, we do “raw
spectra-> feature identification->PSMs + optimized de novo start sites”) via a
simple m/z binning strategy. We term this approach MZ-Bin.

Recent technological advancements in proteomics have led to a surge of Data-
Independent Acquisition (DIA) methods [19, 20]. These methods fragment
precursors and record fragmentions independent of their stoichiometry in the
sample, thereby offering more consistent protein quantification across samples.
The different DIA methods include MSE (9) and SWATH (10). While the data-
acquisition approach of these methods is conceptually similar, they differ in the
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way the data are analyzed. SWATH acquires data by repeatedly cycling through
precursor isolation windows, referred to as SWATH windows, within a
predefined m/z range covering the whole mass range of most MS-measurable
precursors (10). The SWATH strategy thus creates an exhaustive multi-
windowed SWATH map for every sample via a single injection. SWATH, as an
instance of next-generation high-throughput proteomics, is beginning to see
widespread usage both in clinical proteomics (11), dynamic pathway
characterization (12) and human proteome characterization (13). Thus, we
demonstrate MZ-Bin’s performance on large complex data generated by SWATH-
MS, as well as explore aspects of its idiosyncracies.

The second aim of this work is to demonstrate how MZ-Bin can produce
interesting insights on the peptide/protein conundrum. Protein quantification is
a key aspect of proteomic profiling yet this key goal is achieved via largely patchy
information on constituent peptides. Protein splice forms are largely ignored in
proteomic profiling. We wish to understand what is the cost, in terms of
analytical reliability, of this naive approach.

Materials and Methods
SWATH data

The SWATH dataset from (14) was used in this study. This dataset contains 24
SWATH runs from 6 pairs of non-tumorous and tumorous clear-cell renal
carcinoma (ccRCC) tissues, which have been swathed in duplicates (12 normal,
12 cancer).

A control dataset (normal class only) is used for false-positive analysis. This is
composed of 12 SWATH runs from a human kidney test tissue digested in
quadruplicates and each digest analyzed in triplicates using a tripleTOF 5600
mass spectrometer (AB Sciex).

SWATH data interpretation

All SWATH maps for the renal cancer dataset were analyzed using OpenSWATH
(13).

A spectral reference library containing 49,959 reference spectra for 41,542
proteotypic peptides was generated from 4,624 reviewed SwissProt proteins
(14). The spectral library was compiled using DDA data of the kidney tissues in
the same mass spectrometer.

The peptides identified were aligned prior to protein inference using the
algorithm TRansition of Identification Confidence (TRIC) (version r238), which
is available from https://pypi.python.org/pypi/msproteomicstools and
https://code.google.com/p/msproteomicstools. The parameters used for the
feature_alignment.py program are: max_rt_diff=30, method=global_best_overall,
nr_high_conf _exp=2, target_fdr=0.001, use_score_filter=1.

As a standard practice in the SWATH pipeline, the signal intensity for the two
most abundant peptides per sample were used to quantify proteins. 3,123
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proteins were quantified across all samples with peptide and protein FDR below
1%.

MZ-Bin strategy

1/ Binning procedure

For each sample’s mz file, the individual m/z reads are binned and their
corresponding intensities summed. The binning process is performed in tiers
(level 1...level n).

Atlevel n, an m/z value x is mapped to the MZ-bin floor((10®-1)* x)+0.5)/10(-1),
E.g., atlevel 2, the values 10.1, 10.12, 10.123, ... are all mapped to the MZ-bin
10.1 and, atlevel 3, the values 10.12,10.123, 10.1234, ... are all mapped to the
MZ-bin 10.12.

Each MZ-bin contains information on the summed intensities for all m/z reads in
that MZ-bin.

2/ Feature selection

To improve the feature-selection process, a three-step rule-based feature-
selection procedure was designed. In the first step, if an MZ-bin has non-zero
intensity values in more than half of the tissues in class A and non-zero in more
than half of the tissues in class B, it is kept. Otherwise, the MZ-bin is discarded.

In the second step, for each class of tissues, the top 20% MZ-bins supported by at
least half of the tissues in that class are selected. That is, there is a subset of
tissues that constitute more than half of the tissues in that class and, for each
tissue in this subset, the MZ-bin’s summed intensity is among the top 20% of all
MZ-bins in that tissue.

Only when the first two criteria have been met are significant MZ-bins selected,
in the third step, based on the standard two-sample t-test (class A vs class B).

A t-statistic (Tp) is calculated for each MZ-bin by comparing the summed
intensity values between classes €1 and (2, with the assumption of unequal
variance between the two classes (15). T, can be expressed as:

X1 — X
Ty =—

s; | 83

ny Ny

where X; and s; are respectively the mean and standard deviation of the summed
intensities of a given MZ-bin at some level n, and n; is the sample size, in class (.

The Tpis compared against the nominal t-distribution to calculate the
corresponding p-value. A feature is deemed significant if p-value < 0.01 and thus
selected into the next round of bin expansion.
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The first filter ensures that only good-quality MZ-bins with few data holes are
admitted for feature testing. The second filter considers only the strongest
signals that are consistent across samples from the same class. Low-intensity
peaks have more uncertainly and therefore, more likely to generate false
positives. Moreover, since the data originates from clinical samples, inter-sample
heterogeneity is expected to be an issue.

To demonstrate that the MZ-Bin feature-selection approach is useful, we also
performed feature selection simply using the t-test alone (standalone t-test); i.e.,
without the first two rules.

3/Bin expansion

For the set of significant features selected at the (n-1)th level, we iteratively work
up to the n-th level, and reselect the critical features based on the t-test at 99%
significance level. For example, we can only select MZ-bin 10.123 provided we
have earlier selected MZ-bin 10.12, and we can only select MZ-bin 10.12
provided we have even earlier selected MZ-bin 10.1, and we can only select MZ-
bin 10.1 provided in the beginning we have selected MZ-bin 10.

Because the limit of resolution for m/z is up to four decimal places, the iterative
MZ-Bin expansion procedure can theoretically proceed up to 4 levels (e.g. 10,
10.1,10.12,10.123).

4/ Peptide inclusion

For each iteration of MZ-Bin (from Level 1 onwards), we can identify a set of
peptides from the reference library that overlap with each significant MZ-bin
based on their m/z.

Cross-Validation (CV) accuracy evaluation

In CV, we split the data equally into 2 sets (training and testing; n=12 each) and
performed feature selection using MZ-Bin. Each split was kept to the same
proportion of cancer and normal tissues as in the original unsplit data set. We
trained a Naive Bayes classifier on the significant features identified from
training set, and measured the accuracy of the trained classifier on the test set,
where

Number of correct class assignments

CV A =
ceuracy Size of test set

This was repeated 10 times on 10 different random splits of the data into
training and testing sets.

To determine if the CV accuracy is meaningful, we randomly picked an equal
number of features 1,000 times and retrained the Naive Bayes classifier to
produce a vector of null accuracy values. The CV Accuracy p-value is the number
of times null accuracy > significance threshold divided over total number of
simulations.

The CV accuracy and the CV p-value can be combined by taking the ratio of the
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average CV accuracy and CV p-value. A method with high accuracy and low p-
value thus generates a higher score.

Results and discussions

Implementation of the MZ-Bin strategy and theoretical underpinings

The principal concept underpinning MZ-Bin lies in the summarization of the
mass spectra along the m/z dimension to generate MZ-bins at various levels of
resolution (Level 1 to 4; see Materials and Methods) (Figure 1). Within each
MZ-bin, the intensities of the mass ions are summed to generate an overall
intensity for the MZ-bin. Differential MZ-bins are iteratively identified using
some statistical comparison approach (in this paper, we used two approaches: a
rule-based version and, for comparison, the standalone t-test followed by MZ-bin
expansion). (See Figure 2 and Materials and Methods).

The relevance of the MZ-bins can be evaluated by identifying the peptides
associated with the MZ-bins (mapping by m/z values). That is, we used the
spectral library map generated by DDA (see SWATH data interpretation) that
provides us with the expected m/z value and matched this with the significant
MZ-bins.

Binning helps to resolve stochastic variation issues between runs. Performing
feature selection without bins is difficult as there are many data holes due to
stochastic variation and/or misalignments (Supplementary Figure 1A).
Moreover, when the signals from each feature are not aligned properly, these
features become uninformative, leading to poor cross-validation accuracy
(Supplementary Figure 1B).

We hypothesize, based on the following assertions, that the intensity values
encapsulated by these MZ-bins are informative:

1/ The m/z for a given peptide might shift within a range depending on the
experimental, technical conditions, or due to stochastic variation. However, these
shifts are likely to fall within the same MZ-bin (in particular, higher-resolution
bins). Summing the m/z intensities in the bin can help recover from these
measurement imperfections.

2/ We do not expect most proteins to be differentially expressed. Hence, even if
peptides from different proteins X and Y fall into the same bin, in a comparison
between classes A and B, it is often the case that only X is differentially expressed
(say up-regulated in cancer) but Y is not, making the bin dominated by the
peptide from X. Thus summing m/z intensities of X and Y helps wipe out the
irrelevant Y.

To make a case for assertion 1, we considered the effects of feature selection
without binning. Supplementary Figure 1A shows an example of the existence of
data holes in imperfectly aligned spectral features. Moreover, without binning,
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the features are uninformative, and lack predictive power (Supplementary Fig
1B).

To make a case for assertion 2, the distribution of signal intensities for each m/z
species within each level-1MZ-bin is shown in Supplementary Figure 1C. Here,
level-1 MZ-bins from 400 to 1,200 m/z are shown with their constituent
intensities sorted from highest to lowest. Intensities are z-normalized for cross-
comparison purpose between level-1MZ-bins. For each MZ-bin, the signal
intensity is overwhelmingly attributable to a very small number of m/z species,
possibly belonging to the same peptide. The violinplot in Supplementary Figure
1C further shows that signal dominance is controlled by a small number of
features --- e.g. on average, only 20 spectral features are needed to account for
25% of total intensity.

Thus, summing along the m/z dimension has the following benefits: 1/ Increase
of signal for a given spectra location, 2/ elimination of redundancy, 3/ reduction
of raw-spectra search space and consequently, computational power required
for inter-sample class comparisons.

Iterative bin expansion can only proceed up to level 3

Using the rule-based feature-selection approach, we monitored the number of
spectral features filtered using rule 1 to 3, where rule 1 eliminates features that
have data holes in more than half of the constituent samples of a class, rule 2
selects only the top 20% features supported by at least half in a class, and rule 3
is the two-sample t-test selection at p <= 0.01 (see Materials and Methods).

From level 1, we started with 1,200 MZ-bins. Rule 1 did not eliminate any
features. Rule 2 reduced the feature set to 255. And we were left with 127
features post t-test.

This is expanded to form 1,143 features in level 2. Again, there were no obvious
data holes, and rule 2 reduced the feature set to 414. From this, 183 features
were selected post t-test.

In level 3, we started with 1,639 features (expanded from 183 level-2 MZ-bins),
which were reduced to 414 features following rule 1 and 2. Interestingly, a large
proportion of these (337) were significant. This suggested that we were
increasing the enrichment for differential features as we worked downwards.

These 337 features can be expanded to 3,033 level-4 MZ-bins. Only at level 4 are
a large number of features lost due to a large proportion of features having data
holes exceeding more than half of a class. Only one MZ-bin passed the rule-1
check. This indicates that we hit the limit of resolution at level 3.

Rule-based feature selection selects significantly fewer features yet maintains CV
accuracy

To be more concise, we checked the effects on cross-validation accuracy for both
the rule-based selection and standalone t-test selection for levels 2 to 3 (Table
1). Note that in SWATH, there are 32 m/z windows. The “merged” in the data
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tables means that we consider the m/z’s across all windows concurrently.
Unsurprisingly, the number of features selected using rule-based selection is far
lower than t-test alone. On average, at level 2, the rule-based method is selecting
about less than half as many features selected using t-test alone. While in level 3,
itis about seven-to-eight times lower. However, between levels 2 and 3, the
accuracy of the resulting classifier is maintained, at about 80% for both rule-
based and standalone t-test feature selection.

MZ-Bin false-positive rate is low

Using the normal class alone, we performed 1,000 random splits of the data and
calculated the number of significant features identified at MZ-bin level 1 using
the standard two-sample t-test (using the 95% significance level for illustration).
These significant features are considered false positives since there is only one
true class.

In this experiment, we considered the 32 SWATH windows concurrently, and
included all m/z reads as long as they are within the m/z range for each MZ-bin.
There are approximately 800 level-1 MZ-bins between 400 to 1200 m/z. Given
these MZ-bins, the number of false positives is within expectation, with a median
of 1 and mean of 34. These are within the expected number of false positives
(expected value = 800 *0.05 =40). The standalone t-test is expected to be less
stringent than our rule-based feature-selection method. Applying the rule-based
feature-selection strategy reduced the number of false-positives further such
that the median is now reduced to 0, and the mean is 0.14.

The experiment above confirms that the MZ-Bin approach does not generate a
high number of false positives and that the rule-based strategy is highly
stringent with very low false-positive rates (Figure 3A).

The feature identified and cross-validation (CV) accuracy are mirrored closely for
MS1 and MS2

Although in this paper, we focus on MS1, the raw SWATH spectra contains both
MS1 and MS2 data. As a standard rule-of-thumb in proteomics analysis, MS1
contains direct data on peptide ions while MS2 the corresponding fragmentation
data, which is more complex and noisy. In addition, as an idiosyncrasy of
SWATH, both MS1 and MS2 can be splitinto 32 windows based on m/z.

We checked that MS1 and MS2 average CV prediction accuracies and numbers of
selected features by MZ-Bin across SWATH windows are mirrored closely
(Figure 3B and 3C respectively). This confirms that the MZ-Bin approach
generates consistent results irrespective of the SWATH window analyzed and
between MS1 and MS2.

Using the standalone t-test on level-1 MZ-bins, we also considered whether there
was substantial difference between the windows merged and unmerged (i.e,
considering the SWATH windows concurrently or separately) in the cross-
validation scenarios (Table 2). If the SWATH windows were perfectly discrete
(and therefore non-overlapping), the merged and unmerged features should be
similar. In practice, it is not so. Table 2 shows that across cross-validations, the
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merged windows generally select more features than unmerged while the cross-
validation accuracy is maintained. This suggests that the windows are not
discrete, and there are features that are only observable when the m/z’s are
summed across all windows.

To calculate a significance value for the observed cross-validation accuracy, we
randomly picked a similar number of selected features 1,000 times and
generated a null distribution of cross-validation accuracies. The p-value is thus
the number of times the observed accuracy is lower than accuracy generated
from randomly picked features divided over the number of simulations. We used
the 99% significance level for this test. In no scenario did the randomly picked
MZ-bins generate an accuracy greater than the observed (Supplementary Figure
2). Hence, the observed cross-validation accuracy is highly significant.

For comparison, a more conventional analysis of z-normalized protein
expression using the two-sample standard t-test (Single Proteins, SP) was also
performed. This conventional analysis generated many apparent false positives.
On the full dataset, 53% of the 3,123 proteins were reported as significant by SP
at the 99% significance level. For each of the cross-validations, a large number of
protein features were also generated (Table 2). Although it seemed that the
protein features generated very high cross-validation accuracy, almost any
random subset of proteins (containing 5, 20 or 100 randomly picked proteins)
generated strong CV accuracy when, in fact, these features were picked randomly
and thus should be irrelevant to the classes. Generation of the null distributions
for SP confirmed this (Supplementary Figure 2). In contrast, using MS1 merged
level-1 MZ-Bins as illustration (where merged means we considered all SWATH
windows concurrently), random selection of features did not generate null
distributions with a strong left skew (i.e., very few randomly picked sets of MZ-
bins generated null CV accuracies of 0.95 and above); cf. Supplementary Figure 2.

As a further control, we considered the effects of merged and unmerged
windows in MS2 spectra (Supplementary Table 1). Since the MS2 m/z’s are
generated from fragmented MS1 peptides, we expect much more redundancy. At
the 99% significance level, the MS2 unmerged features averaged about 14,000
while merging reduced this to only about 600. But because these MS2 features
are not easily mappable to any particular peptide (and highly redundant), they
can only be used for pure profiling but not biological characterization. For this
purpose, we used MS1-generated MZ-bins.

High-intensity SWATH windows are the source of the non-discrete signals

Although MS1 and MS2 results are mirrored closely, some MS1 and MS2
windows have lower CV accuracies. We hypothesized that those windows with
lower CV accuracies are associated with overall higher intensities. A plausible
explanation for this disparity is that these windows may be enriched for MZ-bins
that contain signal from more than one important contributing peptide, e.g. one
peptide thatis upregulated in disease, and the other in normal, which breaks
assertion 2 (see above). Another possibility is that of spillage across MZ-bins,
which is described below.

10
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Figure 3D demonstrates that although average CV prediction accuracy is
maintained across a wide range of average spectral intensities. The CV prediction
accuracy becomes inconsistent and unreliable when average spectral intensity of
the MZ-bins in a window is high. This is consistent for both MS1 and MS2.

Theoretically, SWATH captures m/z reads in discrete windows from the range of
400 to 1200 m/z. Therefore, if there are no signal overlaps between SWATH
windows, then the number of significant features selected from merging all MS1
windows (MS1 merged), and maintaining the discrete windows (MS1 unmerged)
should be similar.

However, in the earlier section we found that this is not so. Incorporation of all
SWATH windows (including the high-intensity SWATH windows) generates
different results in MS1 merged and MS1 unmerged, confirming signal overlaps
between SWATH windows (Table 2).

As an arbitrary threshold, MS1 SWATH windows with average log10 spectral
intensities above 10.35 and average CV prediction accuracies below 0.65 were
removed (Figure 3D). Removal of these high-intensity but low CV accuracy
windows allows MS1 merged and MS1 unmerged results to perfectly agree
(Supplementary Table 2). This suggests that the lower intensity SWATH
windows are perfectly discrete, with no signal spillage. Perhaps, as an
idiosyncracy of the SWATH platform, to clean the SWATH windows in a less
arbitrary manner, avoid losing whole windows (and their associated features),
and double counting stray m/z intensities, we recommend clipping off all m/z
values reported in any SWATH window that is outside its associated range.

MZ-Bin associated peptides have stronger signal than their corresponding proteins
Across the 3 MZ-bin levels, we counted the number of associated peptide groups
and corresponding proteins based on the reference DDA map (Figure 4A). In
accordance with expectation, as the MZ-bin resolution increases from level 1 to
level 3, the number of significant bins also increases. On the other hand, this
leads to a concomitant decrease in the number of peptide groups, and
corresponding proteins. This is not surprising because a lower-resolution MZ-bin
(e.g., the level-1 MZ-bin 10) corresponds to a set of higher-resolution bins (e.g.,
the level-3 MZ-bins 9.50, ..., 10.49). When MZ-bin 10 is significant, it might be
due to several of the corresponding level-3 MZ-bins being significant, but not
necessarily all of its corresponding level-3 MZ-bins. Thus while peptides whose
m/z values are in MZ-bin 10 would be declared significant when the analysis was
performed at level 1, they might not be declared significant when analysed at
level 3 if their m/z values were not in any of the corresponding level-3 MZ-bins
that are significant. In our experiment, the set of MZ-bins selected at level 3
mapped to 1,044 peptide groups and 688 corresponding proteins. This is much
more specific than if the t-test were applied directly on the identified protein
abundance levels where 1,649 out of 3,123 proteins were reported significant.

To investigate whether these peptides, and their associated proteins are

informative, we performed hierarchical clustering on the samples. For peptides,
the abundance information was based on the SWATH intensity values while for

11


https://doi.org/10.1101/023515

bioRxiv preprint doi: https://doi.org/10.1101/023515; this version posted July 31, 2015. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

proteins, it was the top two most abundant peptides per sample. We find that for
peptides, the separation between sample classes was well-defined. In particular,
patients 2 and 8, who suffered from a severe form of renal cancer were grouped
together (Figure 4B left). This confirmed that the peptide features associated
with the MZ-bins are informative, and can pin-point relevant peptide features.

Interestingly, the class segregation effects are less pronounced for the protein-
based clustering. One possibility is that the protein abundance levels for these
were not determined based on the significant peptides. If they are based on other
peptides and those peptides are insignificant, there are some possibilities: 1/
these other peptides are more likely to have data holes. That is, not consistently
measureable across samples. Or 2/, these other peptides are not differentially
expressed (so the significant peptides may suggest interesting splice variants).

Critically, the MZ-Bin strategy highlights a problem in proteomics analysis --- In
the peptide/protein conundrum, it is expected that without complete protein
coverage, it is naive to quantify proteins based on a limited set of peptide
information. Yet, for simplicity of analysis, peptide expression is often ignored in
favor of the likely inaccurate protein expression approximations. Here, we
showed that the peptide-to-protein transition itself can be a source of
quantitation error that can confound analysis.

Peptide-focused analysis reveals powerful insights into splice variants --- novel
splice forms of MAPT associated with good and poor renal cancer outcomes

In the previous section, we found that MZ-Bin associated peptides have stronger
signal and thus able to recover the underlying sample classes better. In SWATH,
proteins are quantified by the top two peptides with highest intensity in each
tissue. However, in different tissues, the top two peptides might not be the same.
If they are not the same, perhaps, novel splice forms in each tissue may confound
protein quantification.

To identify novel splice variants, we isolated all SWATH-identified peptides that
can be unambiguously mapped to the 688 level-3 proteins. For any of these
proteins, if all constituent peptides are similarly up or down-regulated, then the
abundance of the entire protein is likely to be regulated at the transcriptional
level. However, if the constituent peptides are inconsistently expressed, this may
be indicative of alternative splice events.

For each peptide, a ratio is calculated based on the division of the median
intensity values of the cancer class against the median of the normal class. NAs
are substituted by a value of 0.0000001. Each protein is then represented by a
series of ratios corresponding to constituent peptide expressions. If the majority
of values in either class are dominated by NAs (at least 7/12 in either class), then
the median for either class will be extremely small (0.0000001). Thus,
generating cancer/normal ratios that will be either extremely large or small. A
protein that is characterized by ratios that have extreme values throughout its
constituent peptides is unlikely to be reliably quantified, and thus, can be
removed from analysis easily. On the other hand, if we simply omitted the NAs
during median calculation, it is easy to bias the quantitation on the strength of
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few observations. We counted the number of NAs for each peptide location and
found that the majority of peptides do not have high NA counts; cf.
Supplementary Figure 3A. Therefore, for most peptides, we do not expect that
excluding NAs will have any strong effects.

It is interesting to note that most of the 688 proteins do not have consistent
constituent peptide abundance (Supplementary Data 1). While these proteins are
expect to have at least one differential MZ-Bin associated peptide, many of the
other constituent peptides are in fact non-differential. To refine the search for
relevant alternatively spliced proteins, we introduced the following rules:

1/ there must be atleast 10 constituent peptides (to ensure reasonable
coverage);

2/ the peptides must be unambiguously mappable to the corresponding protein;
3/ atleast 30% constituent peptides are over-expressed, i.e. > 1.25; and

4/ at least 30% constituent peptides are repressed, i.e., < 0.8.

Four proteins met this rule set. These are microtubule-associated protein tau
(MAPT, P10636), Heat shock 70 kDa protein 4L (HSPA4L, 095757), Vesicle-
fusing ATPase (NSF, P46459) and T-complex protein 1 subunit eta (CCT7,
Q99832).

To first understand how the constituent peptides might differentially distinguish
normal and cancer classes, we extracted the constituent peptide expression and
clustered the patients according to these using Hierarchical clustering; Ward’s
linkage and Euclidean distance (Supplementary Figure 3B). However, with the
exception of MAPT, the discriminatory power of these peptides for the
underlying classes are not particularly strong.

Figure 5A shows that for MAPT, there is differential enrichment of different
peptides for severe cancer (C2 and C8 --- highlighted in red) and less severe
forms (highlighted in orange). MAPT promotes microtubule assembly and
stability, and might be involved in the establishment and maintenance of
neuronal polarity. It is commonly associated with neurological diseases such as
dementia but its alternative splice forms are already well-described (16).
However, despite the relative scarcity of association of MAPT with renal cancer,
MAPT has been described as part of a gene signature for predicting severe clear
cell renal carcinoma, which is exactly the same renal cancer type our samples
were derived from (17). Kosari et al reported MAPT to be down-regulated in
aggressive ccRCC (renal cancer). This is consistent with our observation.

The peptides that are discriminative for severe and less severe forms of renal
cancer are evenly distributed along the MAPT protein sequence (Supplementary
Figure 4). Hence, we want to know if these discriminative peptides are localized
within the splice junctions. To do this, we used genewise to map the MAPT
protein sequence against the Mapt unspliced DNA sequence (Supplementary
Data 2) where we predicted 13 exons (Figure 5B) (18). For the most part,
peptides discriminative for severe and less severe peptides respectively are
located on different exons with the exception of exon 5 and exon 9. This may
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suggest that splicing mechanisms may also be disrupted during tumorigenic
progression, or point to the existence of mutations that may generate a novel
splice site in some patients within these exons. Certainly, now that we know the
peptides that are disrupted, the search space for severe-cancer associated SNPs
will be greatly reduced.

We mentioned earlier that MAPT is known to have alternate splice forms. To see
if our differential peptides might correspond to any of these splice forms, we
picked the two strongest peptides from “severe” and “less severe” groups based
on Figure 5 (ASPAQDGRPPQTAAR and KLDLSNVQSK for the less severe group
and ESPLQTPTEDGSEEPGSETSDAK and IGSTENLK to represent the severe
group). We compared these sequences to eight known splice forms of MAPT
(derived from UniprotKb, Supplementary Data 3) using T-coffee multiple
sequence aligner (default parameters) (19).

For the peptides associated with severe cancer, ESPLQTPTEDGSEEPGSETSDAK is
found on splice forms 4, 5, 7, 8 and 9,while IGSTENLK is found across all splice
forms. For the peptides associated with less severe cancer, ASPAQDGRPPQTAAR
is found across all splice forms while KLDLSNVQS is found only in splice forms
6,7,8 and 9. While forms 7, 8 and 9 are common to both peptide groups. Forms 4
and 5 are unique to severe cancer associated peptides while form 6 is unique to
less severe cancer. Perhaps it is these splice forms themselves that are
differentially expressed.

We discuss first ASPAQDGRPPQTAAR (less severe) and IGSTENLK (severe),
which are found in all splice forms. These two peptides make perfect biomarkers
for the following reasons: 1/ they can be detected in everyone. 2/ their
abundance is completely distinct between less severe, severe and normal tissue.

Using Interpro (20, 21) to predict domain information, ASPAQDGRPPQTAAR
(less severe) is found on exon 5 (Figure 5B), and corresponds to the Microtubule
associated protein MAP2/MAP4/Tau (IPR027324). This domain has a net
negative charge and exerts a long-range repulsive force. This provides a
mechanism that can regulate microtubule spacing which might facilitate efficient
organelle transport (22). IGSTENLK (severe) is found on exon 9 (Figure 5B) and
corresponds to several domains --- [IPR027324 (as seen earlier), Microtubule-
associated protein Tau (IPR002955) which is involved in microtubule binding,
and Microtubule associated protein, tubulin-binding repeat (IPR001084) which
is implicated in tubulin binding and which seem to have a stiffening effect on
microtubules.

Exon 5 has a propensity for peptides associated with less severe cancer (3),
which implies its over-expression is associated with less severe cancer.
Disrupting this, as detected with VSTEIPASEPDGPSVGR, could potentially
reverse this either by mutating part of the exon, or by overall down-regulation of
this region.

Exon 9 on the other hand, has a propensity for peptides associated with severe
cancer (3 as well), which implies its repression is needed for severe cancer to
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progress. Similarly, a single peptide, TAPVPMPDLK is found to be overexpressed
and associated with less severe phenotype. The repeat domain (IPR001084,
Microtubule associated protein, tubulin-binding repeat) is usually located on the
C-terminus, repeated in tandem about 3 to 4 times, and is implicated in tubulin
binding and seem to have a stiffening effect on microtubules. Perhaps, over-
expression of [IPR001084 stabilizes the microtubules, and makes it harder for the
cancer to undergo metastasis.

To discover if there are any more interesting domain-specific information
associated with the alternative splice forms, we aligned the sequences of splice
forms 4, 5 (severe) and 6 (less severe) using t-coffee. We then extracted two
representative domain sequences ---
ESPLQTPTEDGSEEPGSETSDAKSTPTAEDVTAPLVDEGAPGKQAAAQPHTEIPEGTT
for severe (severe domain) and QIINKKLDLSNVQSKCGSKDNIKHVPGGGSV for
less severe (less severe domain). As before, we checked if these corresponded to
any known protein domains or annotated functional sequences using Interpro
(20, 21).

The severe domain is found on exon 2 and corresponded to IPR027324 while the
less severe domain is found on exon 10 and maps to both IPR027324 and
IPR001084. As before, the repression of exon 2 suggests this region is potentially
impaired in severe cancer. In a similar vein, overexpression of exon 10 may
increase microtubule stability, making it difficult for cells to effect metastasis.

In the literature, upregulated MAPT is a good-prognosis indicator in renal cancer
while its down-regulation might mean the opposite (23). The altered regulation
is in fact not consistent across its entire length. Moreover, specific peptide
regions are over-expressed for less severe renal cancer while other non-
overlapping regions are repressed for severe renal cancer. Consideration of
these specific peptide regions is more useful as prognostic markers than using
the entire protein length, which may dilute the signal.

Differential MZ-Bin associated proteins are more likely to be true features

We’ve shown earlier that MZ-Bin associated peptides have stronger class-
differential power, and that these peptides can be used for identifying useful
splice forms of the corresponding proteins. On the other hand, corresponding
proteins have weaker signal (688 proteins), possibly due to the naive belief that
constituent peptides are a good approximation for total protein expression.

Earlier, we also noted that deploying simple t-test (SP) on the proteins alone
yielded an unusually large number of significant features (1,649 out of 3,123
proteins). About 1,247 proteins are SP-unique, and not found in the set of MZ-Bin
associated proteins.

In earlier work, we’ve shown that networks are useful for removing unreliable
proteins since proteins that do work together tends to belong to the same
subnetworks (24-28). We’ve also shown that real biological complexes are far
superior to predicted subnetworks (29).
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Using 1,363 protein complexes derived from CORUM (30), a vector of
intersections was generated for both the SP-unique and MZ-Bin lists. These
intersection vectors were summed and divided over the complexes in which an
intersection of at least 1 was observed (The less complexes the proteins are
distributed over, the greater the value). This is then normalized by the number of
proteins in the SP-unique and MZ-Bin lists respectively to generate Sum_hit-
ratesp.unique and Sum_hit-ratemz-gin respectively. The ratio of Sum_hit-ratemz-gin
over Sum_hit-ratesp.unique Wwas 1.4%, indicating that there is stronger enrichment
for same complexes in MZ-Bin proteins over those unique to the protein-based
feature selection. Since proteins tend to work together in groups, this suggests
that the proteins identified by MZ-Bin are higher quality.

Conclusions and future work

MZ-Bin is a practical approach towards feature selection in proteomic
experiments. Significant MZ-bins are informative, and can be tracked to
peptides/proteins relevant to the phenotype.

We’ve also demonstrated that peptides have stronger signals than their
respective proteins, and revealed some potential flaws in the standard peptide-
to-protein quantitation approach.

The MZ-Bin approach allows the identification of relevant proteins. Checking the
expression values of the constituent peptides allows determination of potential
splice variants. We demonstrate the checking for splice variants is rewarding,
and uncovered for the first time, how splice variants are implicated in severe and
less severe renal cancer.

MZ-Bin is still in its infancy. We believe that the inverted approach towards
proteomics analysis has yet to achieve its full potential. In future work, the
following advances are needed:

1/ Develop more powerful feature-identification algorithms with high statistical
power and sensitivity to ensure all bins containing useful signal are retained, and
not lost. And develop a means of checking the reproducibility of the identified
feature sets at each bin level.

2/ Develop more complete libraries for comprehensive mapping of spectral
features.

3/ Consider how MS2 spectra can be co-deployed in this analysis strategy.

4/ Consider how PTM analysis can be incorporated into this framework.

5/ Consider how to incorporate de novo sequencing techniques using the
unannotated MZ-bins as “seed points”.
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Figure 1. Proposed strategy for MZ-Bin A: Core Hypothesis. The MS profile
can be compressed along the m/z dimension to generate informative MZ- bins
that can discriminate between the sample classes (normal and cancer in this
instance). These MZ-bins can be iteratively expanded to identify the relevant
spectral features. B: Naives Bayes Cross-Validation (CV) comparison
between protein-based and spectral-based (MZ-Bins) feature selection. To
determine that the MZ-Bin strategy identifies relevant features, we compare this
to conventional protein-identification strategy using CV accuracies generated
across 10 random splits of the original dataset into training and testing sets.
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Figure 2. Iterative MZ-Bin expansion coupled to peptide matching. In our
proposed strategy, the raw spectra are compressed along the m/z dimension,
and the intensities summed per sample to generate the level-1 MZ-bins (integer).
Significant MZ-bins are selected, and expanded into level-2 MZ-bins (15t decimal),
followed by recalculation of significant level-2 MZ-bins. This is repeated until
level 4 (where we achieve an m/z range resolution of 3 decimal places). The
iterative MZ-Bin expansion procedure should theoretically allow us to zoom into
spectra corresponding to relevant peptides/proteins. To confirm this, we
condensed the SWATH spectral library along the MZ dimension, and calculated
the set of corresponding peptides/proteins corresponding to each set of
significant MZ-bins (from level 1 to 4).
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derived from normal tissue only, we randomly split these into two groups, and
tested the level-1 MZ-bins 1,000 times using standalone t-test and rule-based
feature selection. Note that the “merged” MZ-bins refers to concurrent analysis of
the 32 SWATH windows. The number of false-positives is within expectation,
with a median =1 and mean =34 (expected value = 800 *0.05 =40), confirming
that the MZ-Bin approach does not generate overly high noise levels. However,
the rule-based feature-selection strategy is even more stringent, with lower false
positive rate. B and C: Cross-validation and number of predicted features
across 32 individual SWATH windows for both MS1 and MS2 level-1 MZ-
bins. MS1 are m/z values derived from unfragmented peptide species while MS2
are m/z values derived from fragmented peptides. We compared the MS1 and
MS2 spectra over 32 SWATH windows and found that the patterns of cross-
validation (CV) accuracy and number of predicted features are fairly similar
demonstrating the consistency of the MZ-Bin strategy. D: High-intensity
SWATH windows have higher CV accuracy dispersal. It is particularly
interesting that SWATH windows with extremely high spectral intensities have
wide CV accuracy range. This suggests that these SWATH windows are noisy and
should be cleaned prior to feature selection.

A Level Sig_bins |pep_groups| proteins
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Figure 4. Peptide/protein features associated with MZ-Bin levels. A:
Numbers of associated peptides/proteins. With each MZ-Bin iteration, the
number of significant features generally increases, with a concomitant decrease
in the number of associated peptides/proteins. B: Class segregation for
peptides and proteins. Hierarchical Clustering (Euclidean distance; Ward'’s
Linkage) shows that the significant peptides selected based on level-3 MZ-bins
can clearly separate the sample classes (Notation: N7_CC_2 refers to normal
sample 7, clear-cell renal carcinoma, replicate 2). It is particularly interesting

21


https://doi.org/10.1101/023515

bioRxiv preprint doi: https://doi.org/10.1101/023515; this version posted July 31, 2015. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

that patients C2 and C8, who suffered from a severe form of the disease, are
grouped together. In contrast, the proteins corresponding to these peptides seem
to have poorer discrimination, since patients N6, N7 and N8 seem to have been
misclassified in the cancer branch. This suggests there is some loss of
information in the peptide-to-protein transition.
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Figure 5. Peptide features associated with MAPT. A: Hierarchical clustering
using MAPT peptides. MAPT peptides are differential between severe (red) and
less severe cancers (orange). This suggests that these peptides may be useful as
markers for prognosis. B: Localization of MAPT differential peptides within
exon junction. For the most part, severe and less severe peptides are located
within different exons, except for exons 5 and 9. This suggests that there may be
patients with mutations within these regions that may generate novel splice sites
within these exons.

Tables

Table 1. Cross-Validation (CV) accuracies oflevel-2 and level-3 MZ-bins with
and without rule-based feature selection. The rule-based MZ-bin selection
process expectedly generally predicts lower number of features than non-rule
based (standalone t-test), while maintaining similar CV accuracy. This
observation is consistent, as shown for levels 2 and 3.
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) Ttest only selection
A M::I:;::?:: If::(:l'.‘;e sele:w“:; merged level 3 B MS1 merged level 2 MS1 merged level 3
No. No.
No. No. A I
significant significant significant significant
features cv features cv features v features v
Group (0.01) Accuracy (0.01) Accuracy Group (0.01) Accuracy (0.01) Accuracy

1 130 0.83 171 0.75 1 55 0.83 o0 083
2 202 0.75 238 0.75 2 372 0.75 1290 0.75
3 22 0.83 37 0.83 3 198 0.83 887 0.75
4 261 083 274 0.75 4 694 0.75 1854 0.75
5 389 0.83 608 0.75 5 746 0.75 2717 0.75
6 141 0.83 299 0.83 6 608 0.83 2279 0.75
7 140 0.75 270 0.83 7 190 0.92 1354 0.92
8 153 0.75 265 0.92 8 370 0.83 1784 0.83
9 184 0.83 354 0.83 9 1199 0.83 3471 0.75
10 30 0.92 53 0.92 10 189 0.83 399 0.92

mean 185.20 0.82 281.90 0.82 mean 463.10 0.82 1648.60 0.80

s.d. 130.42 0.05 163.08 0.07 s.d. 348.22 0.05 983.85 0.07

cov 0.70 0.06 0.58 0.08 cov 0.75 0.06 0.60 0.09

Table 2. Cross-Validation (CV) accuracies of unmerged, unmerged SWATH
windows, and protein-based expression (Single Proteins, SP). MS1 merged
and unmerged level-1 MZ-Bins do not agree on the number of significant
features, suggesting signal spillover between SWATH windows. Although the CV
accuracy is high in SP, any random selection of random proteins yields equally
high CV accuracy (cf. Supplementary Fig 2). On the other hand, although CV
accuracy of MZ-Bin is lower, the results are statistically more meaningful.

MS1 unmerged level 1 spectra MS1 merged level 1 spectra Single Protein
No. No. No.
significant significant significant
features cv features cv features cv
Group (0.05) Accuracy | CV p-value (0.05) Accuracy | CV p-value (0.05) Accuracy | CV p-value
1 95 0.83 0.00 103 0.83 0.00 901 1.00 0.92
2 178 0.83 0.00 228 0.83 0.00 1213 1.00 0.911
3 326 0.75 0.00 397 0.75 0.00 908 1.00 0.919
4 567 0.75 0.00 757 0.75 0.00 1210 1.00 0.905
5 302 0.75 0.00 376 0.75 0.00 800 1.00 0.915
6 203 0.83 0.00 237 0.83 0.00 1825 0.75 0.892
7 120 0.92 0.00 137 0.92 0.00 1017 1.00 0.902
8 208 0.83 0.00 248 0.83 0.00 1284 1.00 0.925
9 532 0.75 0.00 654 0.75 0.00 1251 1.00 0.917
10 245 0.83 0.00 321 0.83 0.00 834 1.00 0.92
mean 277.60 0.81 0.00 345.80 0.81 0.00 1124.30 0.98 0.91
s.d. 160.20 0.06 0.00 212.41 0.06 0.00 306.48 0.08 0.01
cov 0.58 0.07 0.00 0.61 0.07 0.00 0.27 0.08 0.01

Supplementary figures
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Supplementary Figure 1. A: Raw spectra has high data holes. Due to stochastic
effects and misalignments, many of the m/z values have high presence of data
holes (0s). B: Unbinned features are poorly predictive. Without binning, many
of the features are misaligned, generating many data holes and therefore poorly
predictive. The cross-validation accuracy as shown here is about 0.6. This is low.
C: Contribution of signal intensities. The heatmap on the left shows that the
majority of signal per MZ-Bin is contributed by a small number of features. The
violinplot on the right shows the distribution of spectral features required to
exceed 25%, 50% and 75% of each MZ-bin’s total intensity. This confirms that a
small number of features dominates the signal in each MZ-bin.
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Supplementary Figure 2. Null models for cross-validation prediction
accuracy. In SP, any random selection of at least 5 proteins can build a model
with very high cross-validation accuracy, i.e., any random selection of proteins
are highly class-predictive. In contrast, most MZ-bins (MS1-merged level 1 is
shown here) are not correlated with the classes and, thus, randomization
generates more evenly distributed null CV values.
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Supplementary Figure 3 A: NA counts for each peptide group. Most peptides
are well-quantitiated across samples. Hence we do not expect that excluding NAs
from median calculations will have a strong effect. B. Hierarchical clustering
for 4 altnerative splice candidates. Although these 4 proteins met our filtering
criteria for differentially expressed constituent peptides, only the first (P10636)
can discriminate between normal, severe and less severe cancer classes.
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MAEPRQEFEVMEDHAGTYGLGDRKDQGGYTMHQDQEGDTDAGLKESPLQTPTEDGS
EEPGSETSDAKSTPTAEDVTAPLVDEGAPGKQAAAQPHTEIPEGTTAEEAGIGDTPSLE
DEAAGHVTQEPESGKVVQEGFLREPGPPGLSHQLMSGMPGAPLLPEGPREATRQPSG
TGPEDTEGGRHAPELLKHQLLGDLHQEGPPLKGAGGKERPGSKEEVDEDRDVDESSP
QDSPPSK EATSIPGFPAEGAIPLPVDFLSKVSTEIPASEPDGPSV
GRAKGQDAPLEFTFHVEITPNVQKEQAHSEEHLGR GPSLGEDTK

QPAAAPRGKPVSRVPQLKARMVSKSKDGTGSDDKKAKTSTRSSAKTL
KNRPCLSPKHPTPGSSDPLIQPSSPAVCPEPPSSPKYVSSVTSRTGSSGAKEMKLKGAD
GKTKIATPRGAAPPGQKGQANATRIPAKTPPAPKTPPSSGEPPKSGDRSGYSSPGSPGT
PGSRSRTPSLPTPPTREPKKVAVVRTPPKSPSSAKSR NVKSKIGSTE
NLKHQPGGGKVQIINK CGSKDNIKHVPGGGSVQIVYKPVDLSKVTSKCG
SLGNIHHKPGGGQVEVKSEKLDFKDRVQSKIGSLDNITHVPGGGNKKIETHKLTFREN
AKAKTDHGAEIVYKSPVVSGDTSPRHLSNVSSTGSIDMVDSPQLATLADEVSASLAKQ
GL4

Supplementary Figure 4. Protein sequence for MAPT. The distribution of
severe and less severe peptides (highlighted in red and green respectively) are
quite well spaced. We hypothesize that these peptides are interspersed within
different splice sites (exons).

Supplementary tables

Supplementary Table 1. Combined tables for both level-1 MS1 and MS2,
merged and unmerged at 95% and 99% significance levels.

MS1 merged level 1 spectra MS1 merged level 1 spectra MS2 merged level 1 spectra MS2 merged level 1 spectra
No. significant No. significant No. significant No. significant
features self_validatio |cross_validati |features self_validatio |cross_validati |features self_validatio |cross_validati |features self_validatio |cross_validati
Group (0.05) n on (0.01) n on (0.05) n on (0.01) n on
1 103 0.92 0.83 20 0.92 0.83 167 1.00 0.83 83.00 1.00 0.83
2 228 1.00 0.83 57 1.00 0.75 177 1.00 0.83 59.00 1.00 0.83
3 397 0.92 0.75 62 0.92 0.83 1328 0.92 0.83 581.00 1.00 0.83
4 757 1.00 0.75 400 1.00 0.75 1428 0.92 0.83 755.00 1.00 0.83
5 376 1.00 0.75 198 1.00 0.75 336 1.00 0.83 119.00 1.00 0.83
6 237 1.00 0.83 132 1.00 0.75 100 1.00 0.83 51.00 1.00 0.83
7 137 0.92 0.92 38 0.92 0.92 68 0.92 0.83 26.00 0.92 0.83
8 248 1.00 0.83 79 1.00 0.83 121 0.92 0.83 36.00 0.92 0.83
9 654 1.00 0.75 451 1.00 0.75 1354 1.00 0.83 961.00 1.00 0.83
10 321 1.00 0.83 71 1.00 0.83 855 1.00 0.83 295.00 1.00 0.83
mean 345.80 0.81 150.80 0.80 593.40 0.83 296.60 0.83
s.d. 212.41 153.78 581.88 344.40
cov 0.61 1.02 0.98 1.16
|
MS1 unmerged level 1 spectra MS1 unmerged level 1 spectra MS2 unmerged level 1 spectra MS2 unmerged level 1 spectra
No. significant No. significant No. significant No. significant
features self_validatio |cross_validati |features self_validatio |cross_validati |features self_validatio |cross_validati |features self_validatio |cross_validati
Group (0.05) n on (0.01) n on (0.05) n on (0.01) on
1 95 0.92 0.83 20 0.92 0.83 4667 0.92 0.92 955 0.92 0.83
2 178 1.00 0.83 50 1.00 0.75 11605 1.00 0.83 4743 1.00 0.83
3 326 0.92 0.75 57 0.92 0.83 17501 0.83 0.75 3155 0.92 0.83
4 567 1.00 0.75 310 1.00 0.75 30378 1.00 0.75 14539 1.00 0.75
5 302 1.00 0.75 118 1.00 0.75 15036 1.00 0.75 7678 1.00 0.75
6 203.00 1.00 0.83 132 1.00 0.75 6595 1.00 0.83 2953 1.00 0.75
7 120 0.92 0.92 36 0.92 0.92 3806 1.00 0.92 1356 1.00 0.92
8 208 1.00 0.83 74 1.00 0.83 5690 1.00 0.83 1861 1.00 0.83
9 532 1.00 0.75 381 1.00 0.75 29052 1.00 0.67 15366 1.00 0.67
10 245 1.00 0.83 51 1.00 0.83 13458 1.00 0.92 3664 1.00 0.83
mean 277.6 0.81 122.9 0.80  13778.80 0.82 5627.00 0.80
s.d. 160.202095 123.417494 9595.05 5277.06
cov 0.57709688 1.00421069 0.70 0.94

26


https://doi.org/10.1101/023515

bioRxiv preprint doi: https://doi.org/10.1101/023515; this version posted July 31, 2015. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Supplementary Table 2. Comparison of level-1 MZ-bins following removal of
low-quality SWATH windows in MS1 space. Following the removal of low-
quality SWATH windows (cf. Figure 3), the numbers of selected features for both
SWATH window-merged and un-merged level-1 MZ-bins now match exactly.

MS1 filtered unmerged level 1 spectra MS1 filtered merged level 1 spectra
No. significant
features cv cv cv
Group (0.05) Accuracy | CV p-value | Accuracy Accuracy | CV p-value
1 82.00 0.83 0.00 82.00 0.83 0.00
2 130.00 0.75 0.00 130.00 0.75 0.00
3 179.00 0.75 0.00 179.00 0.75 0.00
4 234.00 0.75 0.00 234.00 0.75 0.00
5 220.00 0.75 0.00 220.00 0.75 0.00
6 158.00 0.75 0.00 158.00 0.75 0.00
7 96.00 0.92 0.00 96.00 0.92 0.00
8 166.00 0.83 0.00 166.00 0.83 0.00
9 230.00 0.75 0.00 230.00 0.75 0.00
10 98.00 0.92 0.00 98.00 0.92 0.00
mean 159.30 0.80 0.00 159.30 0.80 0.00
s.d. 167.89 0.80 0.00 167.89 0.80 0.00
cov 171.14 0.80 0.00 171.14 0.80 0.00
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