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Abstract (173 words) 

In proteomics, a large proportion of mass spectrometry (MS) data is ignored due 

to the lack of, or insufficient statistical evidence for mappable peptides. In reality, 

only a small fraction of features are expected to be differentially relevant 

anyway. Mapping spectra to peptides and subsequently, proteins, produces 

uncertainty at several levels. We propose it is better to analyze proteomic 

profiling data directly at MS level, and then relate these features to 

peptides/proteins. In a renal cancer data comprising 12 normal and 12 cancer 

subjects, we demonstrate that a simple rule-based binning approach can give 

rise to informative features. We note that the peptides associated with significant 

spectral bins gave rise to better class separation than the corresponding 

proteins, suggesting a loss of signal in the peptide-to-protein transition. 

Additionally, the binning approach sharpens focus on relevant protein splice 

forms rather than just canonical sequences. Taken together, the inverted raw 

spectra analysis paradigm, which is realised by the MZ-Bin method described in 

this article, provides new possibilities and insights, in how MS-data can be 

interpreted. 

 

Introduction 

Mass Spectrometry (MS)-based proteomics is a critical technology in high-

throughput biological and, more recently, clinical research (1). Applications 

include biomarker identification, drug-target identification, patient subtyping, 

and biological genotyping (2-4).  

 

The basic principle of MS-based proteomics lies in the concurrent measurement 

of the mass-to-charge ratio (m/z) of large numbers of ionized peptides or 

peptide fragments. These raw spectral data are then mapped to in silico libraries 

of known peptides in order to make peptide identifications. Contemporary 

proteomics setups normally generate two sets of spectral data, MS1 and MS2. 

MS1 contains direct information (including the m/z) on ionized peptides. MS2 

contains corresponding information on the peptide fragments, following 

molecular dissociation. 

 

In a typical MS experiment, only about 10-30% of spectra are mappable to 

known peptides with sufficient statistical confidence (5). Of the remaining 70-

90%, aside from noise, these theoretically contain data from mappable peptides 

that do not meet statistical thresholds, unknown peptides (which are not 

represented in the library) and post-translational modifications (PTMS) (which 

are difficult to reliably characterize). 

 

Although it is a standard practice, mapping the experimental MS space to identify 

and quantify known proteins, if only to compare differences between sample 

classes (e.g. normal and cancer), is highly inefficient and error prone: 

Assignment of spectra to associated peptides (peptide-spectral matching/PSMs) 

usually requires a high level of statistical stringency due to the large number of 

erroneous matches. If the reference library is large, the statistical stringency 

threshold needs to be adjusted accordingly; this makes it harder to obtain 

statistically significant matches, which in turn reduces proteome coverage. In the 

event that PTMs and other modifications are considered, this increases the size 
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of the search space (since both modified and unmodified peptide forms have to 

be included), as well as the complexity and error rate (e.g. the modification sites 

could include a wide range of amino acids with unknown probabilistic bias). 

Aside from size, different reference libraries (6) and different search algorithms 

(7)  can give rise to different peptide/protein identification results.  

 

Errors can arise in several situations. As mentioned, inclusion of PTMs, which 

requires increasing the tolerance range for match inclusion, decreases the 

reliability of matches. Another significant error source arises from  stochastic 

selection of different peptides in different samples. The top n peptides are 

typically used to generate the final protein expression in a sample, but the 

constituent peptides in each sample may be different; this may lead to inaccurate 

quantitation (signal dilution) for the same protein amongst different samples. 

Moreover, it is naïve to consider canonical protein sequences wholesale (all 

exons present) without consideration of the possibility of splice variants (some 

exons are excluded).  

 

Within a comparative experimental framework, we propose that only a minority 

of spectral features are expected to be strongly differential between the classes 

anyway (e.g. normal and cancer class). These spectral features alone may be 

sufficient for class prediction without peptide/protein matching. Differential 

spectral features are expected to be associated with biologically relevant 

features (e.g. peptides/proteins). Thus, identifying these differential spectral 

features first can theoretically reduce the spectral search space, thus leading to 

more efficient, reliable and focused identification of only relevant biological 

features (peptide and their corresponding proteins).  

 

On the other hand, raw spectra is ridden with high redundancy rates and noise. 

These issues make it difficult theoretically to directly identify useful spectral 

features from raw spectra. Saeed et al have proposed a graph-theory based 

approach of identifying informative low-signal spectra “clusters” which in turn 

can be directed to library search algorithms (5). However,  comparison of each 

spectrum with every other spectrum makes the clustering problem 

computationally costly. While this can be mitigated by parallelization, such a  

high-quality computing set-up is not feasible for most proteomic investigators 

(8). 

 

The first aim of this work is to propose and demonstrate that inverting the 

conventional proteomics analysis strategy can be efficiently achieved (i.e., 

instead of “raw spectra-> PSMs->proteins->feature identification”, we do “raw 

spectra-> feature identification->PSMs + optimized de novo start sites”) via a 

simple m/z binning strategy. We term this approach MZ-Bin.  

 

Recent technological advancements in proteomics have led to a surge of Data-

Independent Acquisition (DIA) methods [19, 20]. These methods fragment 

precursors and record fragment ions independent of their stoichiometry in the 

sample, thereby offering more consistent protein quantification across samples. 

The different DIA methods include MSE  (9) and SWATH (10).  While the data-

acquisition approach of these methods is conceptually similar, they differ in the 
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way the data are analyzed. SWATH acquires data by repeatedly cycling through 

precursor isolation windows, referred to as SWATH windows, within a 

predefined m/z range covering the whole mass range of most MS-measurable 

precursors (10). The SWATH strategy thus creates an exhaustive multi-

windowed SWATH map for every sample via a single injection. SWATH, as an 

instance of next-generation high-throughput proteomics, is beginning to see 

widespread usage both in clinical proteomics (11), dynamic pathway 

characterization (12)  and human proteome characterization (13). Thus, we 

demonstrate MZ-Bin’s performance on large complex data generated by SWATH-

MS, as well as explore aspects of its idiosyncracies.  

 

The second aim of this work is to demonstrate how MZ-Bin can produce 

interesting insights on the peptide/protein conundrum. Protein quantification is 

a key aspect of proteomic profiling yet this key goal is achieved via largely patchy 

information on constituent peptides. Protein splice forms are largely ignored in 

proteomic profiling. We wish to understand what is the cost, in terms of 

analytical reliability, of this naïve approach. 
 
Materials and Methods 
SWATH data 

The SWATH dataset from (14) was used in this study. This dataset contains 24 

SWATH runs from 6 pairs of non-tumorous and tumorous clear-cell renal 

carcinoma (ccRCC) tissues, which have been swathed in duplicates (12 normal, 

12 cancer).  

 

A control dataset (normal class only) is used for false-positive analysis. This is 

composed of 12 SWATH runs from a human kidney test tissue digested in 

quadruplicates and each digest analyzed in triplicates using a tripleTOF 5600 

mass spectrometer (AB Sciex). 

 
SWATH data interpretation 

All SWATH maps for the renal cancer dataset were analyzed using OpenSWATH 

(13). 

 

A spectral reference library containing 49,959 reference spectra for 41,542 

proteotypic peptides was generated from 4,624 reviewed SwissProt proteins 

(14). The spectral library was compiled using DDA data of the kidney tissues in 

the same mass spectrometer.  

 

The peptides identified were aligned prior to protein inference using the 

algorithm TRansition of Identification Confidence (TRIC) (version r238), which 

is available from https://pypi.python.org/pypi/msproteomicstools and 

https://code.google.com/p/msproteomicstools. The parameters used for the 

feature_alignment.py program are: max_rt_diff=30, method=global_best_overall, 

nr_high_conf_exp=2, target_fdr=0.001, use_score_filter=1.  

 

As a standard practice in the SWATH pipeline, the signal intensity for the two 

most abundant peptides per sample were used to quantify proteins. 3,123 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 31, 2015. ; https://doi.org/10.1101/023515doi: bioRxiv preprint 

https://doi.org/10.1101/023515


 5

proteins were quantified across all samples with peptide and protein FDR below 

1%. 

 
MZ-Bin strategy  

1/ Binning procedure 

For each sample’s mz file, the individual m/z reads are binned and their 

corresponding intensities summed. The binning process is performed in tiers 

(level 1….level n).  

 

At level n, an m/z value x is mapped to the MZ-bin  floor((10(n-1) * x)+0.5)/10(n-1).  

E.g., at level 2, the values 10.1, 10.12, 10.123, … are all mapped to the MZ-bin 

10.1 and, at level 3, the values 10.12, 10.123, 10.1234, … are all mapped to the 

MZ-bin 10.12. 

 

Each MZ-bin contains information on the summed intensities for all m/z reads in 

that MZ-bin.  

 

2/ Feature selection 

To improve the feature-selection process, a three-step rule-based feature-

selection procedure was designed. In the first step, if an MZ-bin has non-zero 

intensity values in more than half of the tissues in class A and non-zero in more 

than half of the tissues in class B, it is kept. Otherwise, the MZ-bin is discarded. 

 

In the second step, for each class of tissues, the top 20% MZ-bins supported by at 

least half of the tissues in that class are selected. That is, there is a subset of 

tissues that constitute more than half of the tissues in that class and, for each 

tissue in this subset, the MZ-bin’s summed intensity is among the top 20% of all 

MZ-bins in that tissue. 

 

Only when the first two criteria have been met are significant MZ-bins selected, 

in the third step, based on the standard two-sample t-test (class A vs class B).  

 

A t-statistic (Tp) is calculated for each MZ-bin by comparing the summed 

intensity values between classes C1 and C2, with the assumption of unequal 

variance between the two classes (15).  Tp can be expressed as: 

 

�� � ��� � ���
������ 	 �����

 

 

where ��� and sj are respectively the mean and standard deviation of the summed 

intensities of a given MZ-bin at some level n, and nj is the sample size, in class Cj.  

 

The Tp is compared against the nominal t-distribution to calculate the 

corresponding p-value. A feature is deemed significant if p-value ≤ 0.01 and thus 

selected into the next round of bin expansion. 
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The first filter ensures that only good-quality MZ-bins with few data holes are 

admitted for feature testing. The second filter considers only the strongest 

signals that are consistent across samples from the same class. Low-intensity 

peaks have more uncertainly and therefore, more likely to generate false 

positives. Moreover, since the data originates from clinical samples, inter-sample 

heterogeneity is expected to be an issue. 

 

To demonstrate that the MZ-Bin feature-selection approach is useful, we also 

performed feature selection simply using the t-test alone (standalone t-test); i.e., 

without the first two rules.  

 

3/Bin expansion 

For the set of significant features selected at the (n-l)th level, we iteratively work 

up to the n-th level, and reselect the critical features based on the t-test at 99% 

significance level. For example, we can only select MZ-bin 10.123 provided we 

have earlier selected MZ-bin 10.12, and we can only select MZ-bin 10.12 

provided we have even earlier selected MZ-bin 10.1, and we can only select MZ-

bin 10.1 provided in the beginning we have selected MZ-bin 10. 

 

Because the limit of resolution for m/z is up to four decimal places, the iterative 

MZ-Bin expansion procedure can theoretically proceed up to 4 levels (e.g. 10, 

10.1, 10.12, 10.123). 

 

4/ Peptide inclusion 

For each iteration of MZ-Bin (from Level 1 onwards), we can identify a set of 

peptides from the reference library that overlap with each significant MZ-bin 

based on their m/z.  

 
Cross-Validation (CV) accuracy evaluation  

In CV, we split the data equally into 2 sets (training and testing; n=12 each) and 

performed feature selection using MZ-Bin. Each split was kept to the same 

proportion of cancer and normal tissues as in the original unsplit data set. We 

trained a Naïve Bayes classifier on the significant features identified from 

training set, and measured the accuracy of the trained classifier on the test set, 
where 


� 
������� � ������ �� ������� ����� ��������������� �� ���� ���  

This was repeated 10 times on 10 different random splits of the data into 

training and testing sets.  

 

To determine if the CV accuracy is meaningful, we randomly picked an equal 

number of features 1,000 times and retrained the Naïve Bayes classifier to 

produce a vector of null accuracy values. The CV Accuracy p-value is the number 

of times null accuracy ≥ significance threshold divided over total number of 

simulations. 

 

The CV accuracy and the CV p-value can be combined by taking the ratio of the 
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average CV accuracy and CV p-value. A method with high accuracy and low p-

value thus generates a higher score. 

 

Results and discussions 

 
Implementation of the MZ-Bin strategy and theoretical underpinings 

The principal concept underpinning MZ-Bin lies in the summarization of the 

mass spectra along the m/z dimension to generate MZ-bins at various levels of 

resolution (Level 1 to 4; see Materials and Methods) (Figure 1). Within each 

MZ-bin, the intensities of the mass ions are summed to generate an overall 

intensity for the MZ-bin. Differential MZ-bins are iteratively identified using 

some statistical comparison approach (in this paper, we used two approaches:  a 

rule-based version and, for comparison, the standalone t-test followed by MZ-bin 

expansion). (See Figure 2 and Materials and Methods).  

 

The relevance of the MZ-bins can be evaluated by identifying the peptides 

associated with the MZ-bins (mapping by m/z values). That is, we used the 

spectral library map generated by DDA (see SWATH data interpretation) that 

provides us with the expected m/z value and matched this with the significant 

MZ-bins. 

 

Binning helps to resolve stochastic variation issues between runs. Performing 

feature selection without bins is difficult as there are many data holes due to 

stochastic variation and/or misalignments (Supplementary Figure 1A). 

Moreover, when the signals from each feature are not aligned properly, these 

features become uninformative, leading to poor cross-validation accuracy 

(Supplementary Figure 1B). 

 

We hypothesize, based on the following assertions, that the intensity values 

encapsulated by these MZ-bins are informative: 

 

1/ The m/z for a given peptide might shift within a range depending on the 

experimental, technical conditions, or due to stochastic variation. However, these 

shifts are likely to fall within the same MZ-bin (in particular, higher-resolution 

bins). Summing the m/z intensities in the bin can help recover from these 

measurement imperfections. 

 

2/ We do not expect most proteins to be differentially expressed. Hence, even if 

peptides from different proteins X and Y fall into the same bin, in a comparison 

between classes A and B, it is often the case that only X is differentially expressed 

(say up-regulated in cancer) but Y is not, making the bin dominated by the 

peptide from X. Thus summing m/z intensities of X and Y helps wipe out the 

irrelevant Y. 

 

To make a case for assertion 1, we considered the effects of feature selection 

without binning. Supplementary Figure 1A shows an example of the existence of 

data holes in imperfectly aligned spectral features. Moreover, without binning, 
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the features are uninformative, and lack predictive power (Supplementary Fig 

1B).  

  

To make a case for assertion 2, the distribution of signal intensities for each m/z 

species within each level-1MZ-bin is shown in Supplementary Figure 1C. Here,  

level-1 MZ-bins from 400 to 1,200 m/z are shown with their constituent 

intensities sorted from highest to lowest. Intensities are z-normalized for cross-

comparison purpose between level-1MZ-bins. For each MZ-bin, the signal 

intensity is overwhelmingly attributable to a very small number of m/z species, 

possibly belonging to the same peptide. The violinplot in Supplementary Figure 

1C further shows that signal dominance is controlled by a small number of 

features --- e.g. on average, only 20 spectral features are needed to account for 

25% of total intensity. 

 

Thus, summing along the m/z dimension has the following benefits: 1/ Increase 

of signal for a given spectra location, 2/ elimination of redundancy, 3/ reduction 

of raw-spectra search space and consequently, computational power required 

for inter-sample class comparisons. 

 
Iterative bin expansion can only proceed up to level 3 

Using the rule-based feature-selection approach, we monitored the number of 

spectral features filtered using rule 1 to 3, where rule 1 eliminates features that 

have data holes in more than half of the constituent samples of a class, rule 2 

selects only the top 20% features supported by at least half in a class, and rule 3 

is the two-sample t-test selection at p <= 0.01  (see Materials and Methods). 

 

From level 1, we started with 1,200 MZ-bins. Rule 1 did not eliminate any 

features. Rule 2 reduced the feature set to 255. And we were left with 127 

features post t-test.  

 

This is expanded to form 1,143 features in level 2. Again, there were no obvious 

data holes, and rule 2 reduced the feature set to 414. From this, 183 features 

were selected post t-test. 

 

In level 3, we started with 1,639 features (expanded from 183 level-2 MZ-bins), 

which were reduced to 414 features following rule 1 and 2. Interestingly, a large 

proportion of these (337) were significant.  This suggested that we were 

increasing the enrichment for differential features as we worked downwards.  

 

These 337 features can be expanded to 3,033 level-4 MZ-bins. Only at level 4 are 

a large number of features lost due to a large proportion of features having data 

holes exceeding more than half of a class. Only one MZ-bin passed the rule-1 

check. This indicates that we hit the limit of resolution at level 3.  

 
Rule-based feature selection selects significantly fewer features yet maintains CV 

accuracy 

To be more concise, we checked the effects on cross-validation accuracy for both 

the rule-based selection and standalone t-test selection for levels 2 to 3 (Table 

1). Note that in SWATH, there are 32 m/z windows. The “merged” in the data 
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tables means that we consider the m/z’s  across all windows concurrently. 

Unsurprisingly, the number of features selected using rule-based selection is far 

lower than t-test alone. On average, at level 2, the rule-based method is selecting 

about less than half as many features selected using t-test alone. While in level 3, 

it is about seven-to-eight times lower. However, between levels 2 and 3, the 

accuracy of the resulting classifier is maintained, at about 80% for both rule-

based and standalone t-test feature selection.  

 
MZ-Bin false-positive rate is low 

Using the normal class alone, we performed 1,000 random splits of the data and 

calculated the number of significant features identified at MZ-bin level 1 using 

the standard two-sample t-test (using the 95% significance level for illustration). 

These significant features are considered false positives since there is only one 

true class.  

 

In this experiment, we considered the 32 SWATH windows concurrently, and 

included all m/z reads as long as they are within the m/z range for each MZ-bin. 

There are approximately 800 level-1 MZ-bins between 400 to 1200 m/z. Given 

these MZ-bins, the number of false positives is within expectation, with a median 

of 1 and mean of 34. These are within the expected number of false positives 

(expected value = 800 *0.05 =40). The standalone t-test is expected to be less 

stringent than our rule-based feature-selection method. Applying the rule-based 

feature-selection strategy reduced the number of false-positives further such 

that the median is now reduced to 0, and the mean is 0.14. 

 

The experiment above confirms that the MZ-Bin approach does not generate a 

high number of false positives  and that the rule-based strategy is highly 

stringent with very low false-positive rates (Figure 3A). 

 
The feature identified and cross-validation (CV) accuracy are mirrored closely for 

MS1 and MS2 

Although in this paper, we focus on MS1, the raw SWATH spectra contains both 

MS1 and MS2 data. As a standard rule-of-thumb in proteomics analysis, MS1 

contains direct data on peptide ions while MS2 the corresponding fragmentation 

data, which is more complex and noisy. In addition, as an idiosyncrasy of 

SWATH, both MS1 and MS2 can be split into 32 windows based on m/z.  

 

We checked that MS1 and MS2 average CV prediction accuracies and numbers of 

selected features by MZ-Bin across SWATH windows are mirrored closely 

(Figure 3B and 3C respectively).  This confirms that the MZ-Bin approach 

generates consistent results irrespective of the SWATH window analyzed and 

between MS1 and MS2.  

 

Using the standalone t-test on level-1 MZ-bins, we also considered whether there 

was substantial difference between the windows merged and unmerged (i.e., 

considering the SWATH windows concurrently or separately) in the cross-

validation scenarios (Table 2). If the SWATH windows were perfectly discrete 

(and therefore non-overlapping), the merged and unmerged features should be 

similar. In practice, it is not so. Table 2 shows that across cross-validations, the 
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merged windows generally select more features than unmerged while the cross-

validation accuracy is maintained. This suggests that the windows are not 

discrete, and there are features that are only observable when the m/z’s are 

summed across all windows.  

 

To calculate a significance value for the observed cross-validation accuracy, we 

randomly picked a similar number  of selected features 1,000 times and 

generated a null distribution of cross-validation accuracies. The p-value is thus 

the number of times the observed accuracy is lower than accuracy generated 

from randomly picked features divided over the number of simulations. We used 

the 99% significance level for this test. In no scenario did the randomly picked 

MZ-bins generate an accuracy greater than the observed (Supplementary Figure 

2). Hence, the observed cross-validation accuracy is highly significant. 

 

For comparison, a more conventional analysis of z-normalized protein 

expression using the two-sample standard t-test (Single Proteins, SP) was also 

performed.  This conventional analysis generated many apparent false positives. 

On the full dataset,  53% of the 3,123 proteins were reported as significant by SP 

at the 99% significance level. For each of the cross-validations, a large number of 

protein features were also generated (Table 2). Although it seemed that the 

protein features generated very high cross-validation accuracy, almost any 

random subset of proteins (containing 5, 20 or 100 randomly picked proteins) 

generated strong CV accuracy when, in fact, these features were picked randomly 

and thus should be irrelevant to the classes. Generation of the null distributions 

for SP confirmed this (Supplementary Figure 2). In contrast,  using MS1 merged 

level-1 MZ-Bins as illustration (where merged means we considered all SWATH 

windows concurrently), random selection of features did not generate null 

distributions with a strong left skew (i.e., very few randomly picked sets of MZ-

bins generated null CV accuracies of 0.95 and above); cf. Supplementary Figure 2. 

 

As a further control, we considered the effects of merged and unmerged 

windows in MS2 spectra (Supplementary Table 1). Since the MS2 m/z’s are 

generated from fragmented MS1 peptides, we expect much more redundancy. At 

the 99% significance level, the MS2 unmerged features averaged about 14,000 

while merging reduced this to only about 600. But because these MS2 features 

are not easily mappable to any particular peptide (and highly redundant), they 

can only be used for pure profiling but not biological characterization. For this 

purpose, we used MS1-generated MZ-bins.  

 
High-intensity SWATH windows are the source of the non-discrete signals 

Although MS1 and MS2 results are mirrored closely, some MS1 and MS2 

windows have lower CV accuracies. We hypothesized that those windows with 

lower CV accuracies are associated with overall higher intensities. A plausible 

explanation for this disparity is that these windows may be enriched for MZ-bins 

that contain signal from more than one important contributing peptide, e.g. one 

peptide that is upregulated in disease, and the other in normal, which breaks 

assertion 2 (see above). Another possibility is that of spillage across MZ-bins, 

which is described below. 
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Figure 3D demonstrates that although average CV prediction accuracy is 

maintained across a wide range of average spectral intensities. The CV prediction 

accuracy becomes inconsistent and unreliable when average spectral intensity of 

the MZ-bins in a window is high. This is consistent for both MS1 and MS2. 

 

Theoretically, SWATH captures m/z reads in discrete windows from the range of 

400 to 1200 m/z. Therefore, if there are no signal overlaps between SWATH 

windows, then the number of significant features selected from merging all MS1 

windows (MS1 merged), and maintaining the discrete windows (MS1 unmerged) 

should be similar.  

 

However, in the earlier section we found that this is not so. Incorporation of all 

SWATH windows (including the high-intensity SWATH windows) generates 

different results in MS1 merged and MS1 unmerged, confirming signal overlaps 

between SWATH windows (Table 2).  

 

As an arbitrary threshold, MS1 SWATH windows with average log10 spectral 

intensities above 10.35 and average CV prediction accuracies below 0.65 were 

removed (Figure 3D). Removal of these high-intensity but low CV accuracy 

windows allows MS1 merged and MS1 unmerged results to perfectly agree 

(Supplementary Table 2). This suggests that the lower intensity SWATH 

windows are perfectly discrete, with no signal spillage.  Perhaps, as an 

idiosyncracy of the SWATH platform, to clean the SWATH windows in a less 

arbitrary manner, avoid losing whole windows (and their associated features), 

and double counting stray m/z intensities, we recommend clipping off all m/z 

values reported in any SWATH window that is outside its associated range.  

 
MZ-Bin associated peptides have stronger signal than their corresponding proteins 

Across the 3 MZ-bin levels, we counted the number of associated peptide groups 

and corresponding proteins based on the reference DDA map (Figure 4A).  In 

accordance with expectation, as the MZ-bin resolution increases from level 1 to 

level 3, the number of significant bins also increases. On the other hand, this 

leads to a concomitant decrease in the number of peptide groups, and 

corresponding proteins. This is not surprising because a lower-resolution MZ-bin 

(e.g., the level-1 MZ-bin 10) corresponds to a set of higher-resolution bins (e.g., 

the level-3 MZ-bins 9.50, …, 10.49). When MZ-bin 10 is significant, it might be 

due to several of the corresponding level-3 MZ-bins being significant, but not 

necessarily all of its corresponding level-3 MZ-bins. Thus while peptides whose 

m/z values are in MZ-bin 10 would be declared significant when the analysis was 

performed at level 1, they might not be declared significant when analysed at 

level 3 if their m/z values were not in any of the corresponding level-3 MZ-bins 

that are significant. In our experiment, the set of MZ-bins selected at level 3 

mapped to 1,044 peptide groups and 688 corresponding proteins. This is much 

more specific than if the t-test were applied directly on the identified protein 

abundance levels where 1,649 out of 3,123 proteins were reported significant. 

 

To investigate whether these peptides, and their associated proteins are 

informative, we performed hierarchical clustering on the samples. For peptides, 

the abundance information was based on the SWATH intensity values while for 
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proteins, it was the top two most abundant peptides per sample. We find that for 

peptides, the separation between sample classes was well-defined. In particular, 

patients 2 and 8, who suffered from a severe form of renal cancer were grouped 

together (Figure 4B left). This confirmed that the peptide features associated 

with the MZ-bins are informative, and can pin-point relevant peptide features.  

 

Interestingly, the class segregation effects are less pronounced for the protein-

based clustering. One possibility is that the protein abundance levels for these 

were not determined based on the significant peptides. If they are based on other 

peptides and those peptides are insignificant, there are some possibilities: 1/ 

these other peptides are more likely to have data holes. That is, not consistently 

measureable across samples. Or 2/, these other peptides are not differentially 

expressed (so the significant peptides may suggest interesting splice variants). 

 

Critically, the MZ-Bin strategy highlights a problem in proteomics analysis --- In 

the peptide/protein conundrum, it is expected that without complete protein 

coverage, it is naïve to quantify proteins based on a limited set of peptide 

information. Yet, for simplicity of analysis, peptide expression is often ignored in 

favor of the likely inaccurate protein expression approximations. Here, we 

showed that the peptide-to-protein transition itself can be a source of 

quantitation error that can confound analysis. 

 
Peptide-focused analysis reveals powerful insights into splice variants --- novel 

splice forms of MAPT associated with good and poor renal cancer outcomes 

In the previous section, we found that MZ-Bin associated peptides have stronger 

signal and thus able to recover the underlying sample classes better. In SWATH, 

proteins are quantified by the top two peptides with highest intensity in each 

tissue. However, in different tissues, the top two peptides might not be the same. 

If they are not the same, perhaps, novel splice forms in each tissue may confound 

protein quantification. 

 

To identify novel splice variants, we isolated all SWATH-identified peptides that 

can be unambiguously mapped to the 688 level-3 proteins. For any of these 

proteins, if all constituent peptides are similarly up or down-regulated, then the 

abundance of the entire protein is likely to be regulated at the transcriptional 

level. However, if the constituent peptides are inconsistently expressed, this may 

be indicative of alternative splice events.  

 

For each peptide, a ratio is calculated based on the division of the median 

intensity values of the cancer class against the median of the normal class. NAs 

are substituted by a value of 0.0000001. Each protein is then represented by a 

series of ratios corresponding to constituent peptide expressions. If the majority 

of values in either class are dominated by NAs (at least 7/12 in either class), then 

the median for either class will be extremely small (0.0000001).  Thus, 

generating cancer/normal ratios that will be either extremely large or small. A 

protein that is characterized by ratios that have extreme values throughout its 

constituent peptides is unlikely to be reliably quantified, and thus, can be 

removed from analysis easily. On the other hand, if we simply omitted the NAs 

during median calculation, it is easy to bias the quantitation on the strength of 
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few observations. We counted the number of NAs for each peptide location and 

found that the majority of peptides do not have high NA counts; cf.  

Supplementary Figure 3A.  Therefore, for most peptides, we do not expect that 

excluding NAs will have any strong effects.  

 

It is interesting to note that most of the 688 proteins do not have consistent 

constituent peptide abundance (Supplementary Data 1). While these proteins are 

expect to have at least one differential MZ-Bin associated peptide, many of the 

other constituent peptides are in fact non-differential. To refine the search for 

relevant alternatively spliced proteins, we introduced the following rules: 

 

1/ there must be at least 10 constituent peptides (to ensure reasonable 

coverage); 

2/ the peptides must be unambiguously mappable to the corresponding protein; 

3/ at least 30% constituent peptides are over-expressed, i.e. > 1.25; and  

4/ at least 30% constituent peptides are repressed, i.e., < 0.8.  

 

Four proteins met this rule set. These are microtubule-associated protein tau 

(MAPT, P10636), Heat shock 70 kDa protein 4L (HSPA4L, O95757), Vesicle-

fusing ATPase (NSF, P46459) and T-complex protein 1 subunit eta (CCT7, 

Q99832). 

 

To first understand how the constituent peptides might differentially distinguish 

normal and cancer classes, we extracted the constituent peptide expression and 

clustered the patients according to these using Hierarchical clustering; Ward’s 

linkage and Euclidean distance (Supplementary Figure 3B). However, with the 

exception of MAPT, the discriminatory power of these peptides for the 

underlying classes are not particularly strong.  

 

Figure 5A shows that for MAPT, there is differential enrichment of different 

peptides for severe cancer (C2 and C8 --- highlighted in red) and less severe 

forms (highlighted in orange). MAPT promotes microtubule assembly and 

stability, and might be involved in the establishment and maintenance of 

neuronal polarity. It is commonly associated with neurological diseases such as  

dementia but its alternative splice forms are already well-described (16). 

However, despite the relative scarcity of association of MAPT with renal cancer, 

MAPT has been described as part of a gene signature for predicting severe clear 

cell renal carcinoma, which is exactly the same renal cancer type our samples 

were derived from (17). Kosari et al reported MAPT to be down-regulated in 

aggressive ccRCC (renal cancer). This is consistent with our observation.  

 

The peptides that are discriminative for severe and less severe forms of renal 

cancer are evenly distributed along the MAPT protein sequence (Supplementary 

Figure 4). Hence, we want to know if these discriminative peptides are localized 

within the splice junctions. To do this, we used genewise to map the MAPT 

protein sequence against the Mapt unspliced DNA sequence (Supplementary 

Data 2) where we predicted 13 exons (Figure 5B) (18). For the most part, 

peptides discriminative for severe and less severe peptides respectively are 

located on different exons with the exception of exon 5 and exon 9. This may 
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suggest that splicing mechanisms may also be disrupted during tumorigenic 

progression, or point to the existence of mutations that may generate a novel 

splice site in some patients within these exons. Certainly, now that we know the 

peptides that are disrupted, the search space for severe-cancer associated SNPs 

will be greatly reduced.  

 

We mentioned earlier that MAPT is known to have alternate splice forms. To see 

if our differential peptides might correspond to any of these splice forms, we 

picked the two strongest peptides from “severe” and “less severe” groups based 

on Figure 5 (ASPAQDGRPPQTAAR and KLDLSNVQSK for the less severe group 

and ESPLQTPTEDGSEEPGSETSDAK and IGSTENLK to represent the severe 

group). We compared these sequences to eight known splice forms of MAPT 

(derived from UniprotKb, Supplementary Data 3) using T-coffee multiple 

sequence aligner (default parameters) (19). 

 

For the peptides associated with severe cancer, ESPLQTPTEDGSEEPGSETSDAK is 

found on splice forms 4, 5, 7, 8 and 9,while IGSTENLK is found across all splice 

forms. For the peptides associated with less severe cancer, ASPAQDGRPPQTAAR 

is found across all splice forms while KLDLSNVQS is found only in splice forms 

6,7,8 and 9. While forms 7, 8 and 9 are common to both peptide groups. Forms 4 

and 5 are unique to severe cancer associated peptides while form 6 is unique to 

less severe cancer. Perhaps it is these splice forms themselves that are 

differentially expressed. 

 

We discuss first ASPAQDGRPPQTAAR (less severe) and IGSTENLK (severe), 

which are found in all splice forms. These two peptides make perfect biomarkers 

for the following reasons: 1/ they can be detected in everyone. 2/ their 

abundance is completely distinct between less severe, severe and normal tissue. 

 

Using Interpro (20, 21) to predict domain information, ASPAQDGRPPQTAAR 

(less severe) is found on exon 5 (Figure 5B), and corresponds to the Microtubule 

associated protein MAP2/MAP4/Tau (IPR027324). This domain has a net 

negative charge and exerts a long-range repulsive force. This provides a 

mechanism that can regulate microtubule spacing which might facilitate efficient 

organelle transport (22).  IGSTENLK (severe) is found on exon 9 (Figure 5B) and 

corresponds to several domains --- IPR027324 (as seen earlier), Microtubule-

associated protein Tau (IPR002955) which is involved in microtubule binding, 

and Microtubule associated protein, tubulin-binding repeat (IPR001084) which 

is implicated in tubulin binding and which seem to have a stiffening effect on 

microtubules.  

 

Exon 5 has a propensity for  peptides associated with less severe cancer (3), 

which implies its over-expression is associated with less severe cancer. 

Disrupting this, as detected with VSTEIPASEPDGPSVGR, could potentially 

reverse this either by mutating part of the exon, or by overall down-regulation of 

this region. 

 

Exon 9 on the other hand, has a propensity for peptides associated with severe 

cancer (3 as well), which implies its repression is needed for severe cancer to 
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progress. Similarly, a single peptide, TAPVPMPDLK is found to be overexpressed 

and associated with less severe phenotype. The repeat domain (IPR001084, 

Microtubule associated protein, tubulin-binding repeat) is usually located on the 

C-terminus, repeated in tandem about 3 to 4 times, and is implicated in tubulin 

binding and seem to have a stiffening effect on microtubules. Perhaps, over-

expression of IPR001084 stabilizes the microtubules, and makes it harder for the 

cancer to undergo metastasis. 

 

To discover if there are any more interesting domain-specific information 

associated with the alternative splice forms, we aligned the sequences of splice 

forms 4, 5 (severe) and 6 (less severe) using t-coffee. We then extracted two 

representative domain sequences --- 

ESPLQTPTEDGSEEPGSETSDAKSTPTAEDVTAPLVDEGAPGKQAAAQPHTEIPEGTT 

for severe (severe domain) and QIINKKLDLSNVQSKCGSKDNIKHVPGGGSV for 

less severe (less severe domain). As before, we checked if these corresponded to 

any known protein domains or annotated functional sequences using Interpro 

(20, 21).  

 

The severe domain is found on exon 2 and corresponded to IPR027324 while the 

less severe domain is found on exon 10 and maps to both IPR027324 and 

IPR001084. As before, the repression of exon 2 suggests this region is potentially 

impaired in severe cancer. In a similar vein, overexpression of exon 10 may 

increase microtubule stability, making it difficult for cells to effect metastasis. 

 

In the literature, upregulated MAPT is a good-prognosis indicator in renal cancer 

while its down-regulation might mean the opposite (23). The altered regulation 

is in fact not consistent across its entire length. Moreover, specific peptide 

regions are over-expressed for less severe renal cancer while other non-

overlapping regions are repressed for severe renal cancer. Consideration of 

these specific peptide regions is more useful as prognostic markers than using 

the entire protein length, which may dilute the signal. 

 
Differential MZ-Bin associated proteins are more likely to be true features 

We’ve shown earlier that MZ-Bin associated peptides have stronger class-

differential power, and that these peptides can be used for identifying useful 

splice forms of the corresponding proteins. On the other hand, corresponding 

proteins have weaker signal (688 proteins), possibly due to the naïve belief that 

constituent peptides are a good approximation for total protein expression.  

 

Earlier, we also noted that deploying simple t-test (SP) on the proteins alone 

yielded an unusually large number of significant features (1,649 out of 3,123 

proteins). About 1,247 proteins are SP-unique, and not found in the set of MZ-Bin 

associated proteins. 

 

In earlier work, we’ve shown that networks are useful for removing unreliable 

proteins since proteins that do work together tends to belong to the same 

subnetworks (24-28). We’ve also shown that real biological complexes are far 

superior to predicted subnetworks (29). 
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Using 1,363 protein complexes derived from CORUM (30), a vector of 

intersections was generated for both the SP-unique and MZ-Bin lists. These 

intersection vectors were summed and divided over the complexes in which an 

intersection of at least 1 was observed (The less complexes the proteins are 

distributed over, the greater the value). This is then normalized by the number of 

proteins in the SP-unique and MZ-Bin lists respectively to generate Sum_hit-

rateSP-unique and Sum_hit-rateMZ-Bin respectively. The ratio  of Sum_hit-rateMZ-Bin 

over Sum_hit-rateSP-unique was 1.4x, indicating that there is stronger enrichment 

for same complexes in MZ-Bin proteins over those unique to the protein-based 

feature selection. Since proteins tend to work together in groups, this suggests 

that the proteins identified by MZ-Bin are higher quality. 

 

Conclusions and future work 

MZ-Bin is a practical approach towards feature selection in proteomic 

experiments. Significant MZ-bins are informative, and can be tracked to 

peptides/proteins relevant to the phenotype.  

 

We’ve also demonstrated that peptides have stronger signals than their 

respective proteins, and revealed some potential flaws in the standard peptide-

to-protein quantitation approach. 

 

The MZ-Bin approach allows the identification of relevant proteins. Checking the 

expression values of the constituent peptides allows determination of potential 

splice variants. We demonstrate the checking for splice variants is rewarding, 

and uncovered for the first time, how splice variants are implicated in severe and 

less severe renal cancer. 

 

MZ-Bin is still in its infancy.  We believe that the inverted approach towards 

proteomics analysis has yet to achieve its full potential. In future work, the 

following advances are needed: 

1/ Develop more powerful feature-identification algorithms with high statistical 

power and sensitivity to ensure all bins containing useful signal are retained, and 

not lost. And develop a means of checking the reproducibility of the identified 

feature sets at each bin level. 

2/ Develop more complete libraries for comprehensive mapping of spectral 

features. 

3/ Consider how MS2 spectra can be co-deployed in this analysis strategy. 

4/ Consider how PTM analysis can be incorporated into this framework. 

5/ Consider how to incorporate de novo sequencing techniques using the 

unannotated MZ-bins as “seed points”. 

 

Acknowledgements 

WWBG is funded by a Professorship of Bioinformatics, School of Pharmaceutical 

Science and Technology, Tianjin University, China. LW is funded in part by a 

Singapore Ministry of Education tier-2 grant, MOE2012-T2-1-061.  

 

Author contributions 

WWBG co-designed and implemented the MZ-Bin pipeline, performed analysis, 

and wrote the manuscript. LW co-designed MZ-Bin, co-wrote the manuscript.  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 31, 2015. ; https://doi.org/10.1101/023515doi: bioRxiv preprint 

https://doi.org/10.1101/023515


 17

 

References 

1. Sajic, T.; Liu, Y.; Aebersold, R., Using data-independent, high-resolution 

mass spectrometry in protein biomarker research: perspectives and clinical 

applications. Proteomics Clin Appl 2015, 9, (3-4), 307-21. 

2. Goh, W. W.; Wong, L., Networks in proteomics analysis of cancer. Curr 

Opin Biotechnol 2013, 24, (6), 1122-8. 

3. Goh, W. W.; Wong, L., Computational proteomics: designing a 

comprehensive analytical strategy. Drug Discov Today 2014, 19, (3), 266-74. 

4. Goh, W. W.; Wong, L.; Sng, J. C., Contemporary network proteomics and its 

requirements. Biology (Basel) 2013, 3, (1), 22-38. 

5. Saeed, F.; Hoffert, J. D.; Knepper, M. A., CAMS-RS: Clustering Algorithm for 

Large-Scale Mass Spectrometry Data using Restricted Search Space and 

Intelligent Random Sampling. IEEE/ACM Trans Comput Biol Bioinform 2013. 

6. Sirota, F. L.; Batagov, A.; Schneider, G.; Eisenhaber, B.; Eisenhaber, F.; 

Maurer-Stroh, S., Beware of moving targets: reference proteome content 

fluctuates substantially over the years. J Bioinform Comput Biol 2012, 10, (6), 

1250020. 

7. Nesvizhskii, A. I.; Vitek, O.; Aebersold, R., Analysis and validation of 

proteomic data generated by tandem mass spectrometry. Nat Methods 2007, 4, 

(10), 787-97. 

8. Saeed, F.; Hoffert, J. D.; Pisitkun, T.; Knepper, M. A., Exploiting Thread-

Level and Instruction-Level Parallelism to Cluster Mass Spectrometry Data using 

Multicore Architectures. Netw Model Anal Health Inform Bioinform 2014, 3, 54. 

9. Plumb, R. S.; Johnson, K. A.; Rainville, P.; Smith, B. W.; Wilson, I. D.; Castro-

Perez, J. M.; Nicholson, J. K., UPLC/MS(E); a new approach for generating 

molecular fragment information for biomarker structure elucidation. Rapid 

Commun Mass Spectrom 2006, 20, (13), 1989-94. 

10. Gillet, L. C.; Navarro, P.; Tate, S.; Rost, H.; Selevsek, N.; Reiter, L.; Bonner, 

R.; Aebersold, R., Targeted data extraction of the MS/MS spectra generated by 

data-independent acquisition: a new concept for consistent and accurate 

proteome analysis. Mol Cell Proteomics 2012, 11, (6), O111 016717. 

11. Guo, T.; Kouvonen, P.; Koh, C. C.; Gillet, L. C.; Wolski, W. E.; Rost, H. L.; 

Rosenberger, G.; Collins, B. C.; Blum, L. C.; Gillessen, S.; Joerger, M.; Jochum, W.; 

Aebersold, R., Rapid mass spectrometric conversion of tissue biopsy samples into 

permanent quantitative digital proteome maps. Nat Med 2015. 

12. Collins, B. C.; Gillet, L. C.; Rosenberger, G.; Rost, H. L.; Vichalkovski, A.; 

Gstaiger, M.; Aebersold, R., Quantifying protein interaction dynamics by SWATH 

mass spectrometry: application to the 14-3-3 system. Nat Methods 2013, 10, 

(12), 1246-53. 

13. Rost, H. L.; Rosenberger, G.; Navarro, P.; Gillet, L.; Miladinovic, S. M.; 

Schubert, O. T.; Wolski, W.; Collins, B. C.; Malmstrom, J.; Malmstrom, L.; 

Aebersold, R., OpenSWATH enables automated, targeted analysis of data-

independent acquisition MS data. Nat Biotechnol 2014, 32, (3), 219-23. 

14. Guo, T.; Kouvonen, P.; Koh, C. C.; Gillet, L. C.; Wolski, W. E.; Rost, H. L.; 

Rosenberger, G.; Collins, B. C.; Blum, L. C.; Gillessen, S.; Joerger, M.; Jochum, W.; 

Aebersold, R., Rapid mass spectrometric conversion of tissue biopsy samples into 

permanent quantitative digital proteome maps. Nat Med 2015, 21, (4), 407-13. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 31, 2015. ; https://doi.org/10.1101/023515doi: bioRxiv preprint 

https://doi.org/10.1101/023515


 18

15. Raju, T. N., William Sealy Gosset and William A. Silverman: two "students" 

of science. Pediatrics 2005, 116, (3), 732-5. 

16. Garcia-Blanco, M. A.; Baraniak, A. P.; Lasda, E. L., Alternative splicing in 

disease and therapy. Nat Biotechnol 2004, 22, (5), 535-46. 

17. Kosari, F.; Parker, A. S.; Kube, D. M.; Lohse, C. M.; Leibovich, B. C.; Blute, M. 

L.; Cheville, J. C.; Vasmatzis, G., Clear cell renal cell carcinoma: gene expression 

analyses identify a potential signature for tumor aggressiveness. Clin Cancer Res 

2005, 11, (14), 5128-39. 

18. Birney, E.; Clamp, M.; Durbin, R., GeneWise and Genomewise. Genome Res 

2004, 14, (5), 988-95. 

19. Notredame, C.; Higgins, D. G.; Heringa, J., T-Coffee: A novel method for fast 

and accurate multiple sequence alignment. J Mol Biol 2000, 302, (1), 205-17. 

20. Mitchell, A.; Chang, H. Y.; Daugherty, L.; Fraser, M.; Hunter, S.; Lopez, R.; 

McAnulla, C.; McMenamin, C.; Nuka, G.; Pesseat, S.; Sangrador-Vegas, A.; 

Scheremetjew, M.; Rato, C.; Yong, S. Y.; Bateman, A.; Punta, M.; Attwood, T. K.; 

Sigrist, C. J.; Redaschi, N.; Rivoire, C.; Xenarios, I.; Kahn, D.; Guyot, D.; Bork, P.; 

Letunic, I.; Gough, J.; Oates, M.; Haft, D.; Huang, H.; Natale, D. A.; Wu, C. H.; Orengo, 

C.; Sillitoe, I.; Mi, H.; Thomas, P. D.; Finn, R. D., The InterPro protein families 

database: the classification resource after 15 years. Nucleic Acids Res 2015, 43, 

(Database issue), D213-21. 

21. Apweiler, R.; Attwood, T. K.; Bairoch, A.; Bateman, A.; Birney, E.; Biswas, 

M.; Bucher, P.; Cerutti, L.; Corpet, F.; Croning, M. D.; Durbin, R.; Falquet, L.; 

Fleischmann, W.; Gouzy, J.; Hermjakob, H.; Hulo, N.; Jonassen, I.; Kahn, D.; 

Kanapin, A.; Karavidopoulou, Y.; Lopez, R.; Marx, B.; Mulder, N. J.; Oinn, T. M.; 

Pagni, M.; Servant, F.; Sigrist, C. J.; Zdobnov, E. M., The InterPro database, an 

integrated documentation resource for protein families, domains and functional 

sites. Nucleic Acids Res 2001, 29, (1), 37-40. 

22. Mukhopadhyay, R.; Hoh, J. H., AFM force measurements on microtubule-

associated proteins: the projection domain exerts a long-range repulsive force. 

FEBS Lett 2001, 505, (3), 374-8. 

23. Brooks, S. A.; Brannon, A. R.; Parker, J. S.; Fisher, J. C.; Sen, O.; Kattan, M. 

W.; Hakimi, A. A.; Hsieh, J. J.; Choueiri, T. K.; Tamboli, P.; Maranchie, J. K.; Hinds, 

P.; Miller, C. R.; Nielsen, M. E.; Rathmell, W. K., ClearCode34: A prognostic risk 

predictor for localized clear cell renal cell carcinoma. Eur Urol 2014, 66, (1), 77-

84. 

24. Goh, W. W.; Lee, Y. H.; Zubaidah, R. M.; Jin, J.; Dong, D.; Lin, Q.; Chung, M. C.; 

Wong, L., Network-based pipeline for analyzing MS data: an application toward 

liver cancer. J Proteome Res 2011, 10, (5), 2261-72. 

25. Goh, W. W.; Lee, Y. H.; Ramdzan, Z. M.; Sergot, M. J.; Chung, M.; Wong, L., 

Proteomics signature profiling (PSP): a novel contextualization approach for 

cancer proteomics. J Proteome Res 2012, 11, (3), 1571-81. 

26. Goh, W. W.; Lee, Y. H.; Ramdzan, Z. M.; Chung, M. C.; Wong, L.; Sergot, M. J., 

A network-based maximum link approach towards MS identifies potentially 

important roles for undetected ARRB1/2 and ACTB in liver cancer progression. 

Int J Bioinform Res Appl 2012, 8, (3), 155-70. 

27. Goh, W. W.; Lee, Y. H.; Chung, M.; Wong, L., How advancement in biological 

network analysis methods empowers proteomics. Proteomics 2012, 12, (4-5), 

550-63. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 31, 2015. ; https://doi.org/10.1101/023515doi: bioRxiv preprint 

https://doi.org/10.1101/023515


 19

28. Goh, W. W.; Fan, M.; Low, H. S.; Sergot, M.; Wong, L., Enhancing the utility 

of Proteomics Signature Profiling (PSP) with Pathway Derived Subnets (PDSs), 

performance analysis and specialised ontologies. BMC Genomics 2013, 14, 35. 

29. Goh, W. W.; Sergot, M. J.; Sng, J. C.; Wong, L., Comparative network-based 

recovery analysis and proteomic profiling of neurological changes in valproic 

Acid-treated mice. J Proteome Res 2013, 12, (5), 2116-27. 

30. Ruepp, A.; Waegele, B.; Lechner, M.; Brauner, B.; Dunger-Kaltenbach, I.; 

Fobo, G.; Frishman, G.; Montrone, C.; Mewes, H. W., CORUM: the comprehensive 

resource of mammalian protein complexes--2009. Nucleic Acids Res 2010, 38, 

(Database issue), D497-501. 

 

 

Figures 

 

 

 
 

 

Figure 1. Proposed strategy for MZ-Bin A: Core Hypothesis. The MS profile 

can be compressed along the m/z dimension to generate informative MZ- bins 

that can discriminate between the sample classes (normal and cancer in this 

instance). These MZ-bins can be iteratively expanded to identify the relevant 

spectral features. B: Naives Bayes Cross-Validation (CV) comparison 

between protein-based and spectral-based (MZ-Bins) feature selection. To 

determine that the MZ-Bin strategy identifies relevant features, we compare this 

to conventional protein-identification strategy using CV accuracies generated 

across 10 random splits of the original dataset into training and testing sets. 
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Figure 2. Iterative MZ-Bin expansion coupled to peptide matching. In our 

proposed strategy, the raw spectra are compressed along the m/z dimension, 

and the intensities summed per sample to generate the level-1 MZ-bins (integer). 

Significant MZ-bins are selected, and expanded into level-2 MZ-bins (1st decimal), 

followed by recalculation of significant level-2 MZ-bins. This is repeated until 

level 4 (where we achieve an m/z range resolution of 3 decimal places). The 

iterative MZ-Bin expansion procedure should theoretically allow us to zoom into 

spectra corresponding to relevant peptides/proteins. To confirm this, we 

condensed the SWATH spectral library along the MZ dimension, and calculated 

the set of corresponding peptides/proteins corresponding to each set of 

significant MZ-bins (from level 1 to 4).  

 

 
  

Figure 3. MZ-Bin false-positive rates and agreements of MZ-Bin performed 

on individual SWATH windows. A: False-positive checks. Using control data 
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derived from normal tissue only, we randomly split these into two groups, and 

tested the level-1 MZ-bins 1,000 times using standalone t-test and rule-based 

feature selection. Note that the “merged” MZ-bins refers to concurrent analysis of 

the 32 SWATH windows. The number of false-positives is within expectation, 

with a median =1 and mean =34 (expected value = 800 *0.05 =40), confirming 

that the MZ-Bin approach does not generate overly high noise levels. However, 

the rule-based feature-selection strategy is even more stringent, with lower false 

positive rate. B and C: Cross-validation and number of predicted features 

across 32 individual SWATH windows for both MS1 and MS2 level-1 MZ-

bins. MS1 are m/z values derived from unfragmented peptide species while MS2 

are m/z values derived from fragmented peptides. We compared the MS1 and 

MS2 spectra over 32 SWATH windows and found that the patterns of cross-

validation (CV) accuracy and number of predicted features are fairly similar 

demonstrating the consistency of the MZ-Bin strategy. D: High-intensity 

SWATH windows have higher CV accuracy dispersal. It is particularly 

interesting that SWATH windows with extremely high spectral intensities have 

wide CV accuracy range. This suggests that these SWATH windows are noisy and 

should be cleaned prior to feature selection. 

 

 

 
 

Figure 4. Peptide/protein features associated with MZ-Bin levels. A: 

Numbers of associated peptides/proteins. With each MZ-Bin iteration, the 

number of significant features generally increases, with a concomitant decrease 

in the number of associated peptides/proteins. B: Class segregation for 

peptides and proteins. Hierarchical Clustering  (Euclidean distance; Ward’s 

Linkage) shows that the significant peptides selected based on level-3 MZ-bins 

can clearly separate the sample classes (Notation: N7_CC_2 refers to normal 

sample 7, clear-cell renal carcinoma, replicate 2). It is particularly interesting 
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that patients C2 and C8, who suffered from a severe form of the disease, are 

grouped together. In contrast, the proteins corresponding to these peptides seem 

to have poorer discrimination, since patients N6, N7 and N8 seem to have been 

misclassified in the cancer branch. This suggests there is some loss of 

information in the peptide-to-protein transition. 

 

 
 

Figure 5. Peptide features associated with MAPT. A: Hierarchical clustering 

using MAPT peptides. MAPT peptides are differential between severe (red) and 

less severe cancers (orange). This suggests that these peptides may be useful as 

markers for prognosis. B: Localization of MAPT differential peptides within 

exon junction. For the most part, severe and less severe peptides are located 

within different exons, except for exons 5 and 9. This suggests that there may be 

patients with mutations within these regions that may generate novel splice sites 

within these exons.  

 

 

Tables 

 

Table 1. Cross-Validation (CV) accuracies of level-2 and level-3 MZ-bins with 

and without rule-based feature selection. The rule-based MZ-bin selection 

process expectedly generally predicts lower number of features than non-rule 

based (standalone t-test), while maintaining similar CV accuracy. This 

observation is consistent, as shown for levels 2 and 3.  
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Table 2. Cross-Validation (CV) accuracies of unmerged, unmerged SWATH 

windows, and protein-based expression (Single Proteins, SP). MS1 merged 

and unmerged level-1 MZ-Bins do not agree on the number of significant 

features, suggesting signal spillover between SWATH windows. Although the CV 

accuracy is high in SP, any random selection of random proteins yields equally 

high CV accuracy (cf. Supplementary Fig 2). On the other hand, although CV 

accuracy of MZ-Bin is lower, the results are statistically more meaningful.  

 

 
 

 

Supplementary figures 
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Supplementary Figure 1. A: Raw spectra has high data holes. Due to stochastic 

effects and misalignments, many of the m/z values have high presence of data 

holes (0s). B: Unbinned features are poorly predictive. Without binning, many 

of the features are misaligned, generating many data holes and therefore poorly 

predictive. The cross-validation accuracy as shown here is about 0.6. This is low. 

C: Contribution of signal intensities. The heatmap on the left shows that the 

majority of signal per MZ-Bin is contributed by a small number of features. The 

violinplot on the right shows the distribution of spectral features required to 

exceed 25%, 50% and 75% of each MZ-bin’s total intensity. This confirms that a 

small number of features dominates the signal in each MZ-bin.  
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Supplementary Figure 2. Null models for cross-validation prediction 

accuracy. In SP, any random selection of at least 5 proteins can build a model 

with very high cross-validation accuracy, i.e., any random selection of proteins 

are highly class-predictive. In contrast, most MZ-bins (MS1-merged level 1 is 

shown here) are not correlated with the classes and, thus, randomization 

generates more evenly distributed null CV values. 

 

 
 

Supplementary Figure 3 A: NA counts for each peptide group. Most peptides 

are well-quantitiated across samples. Hence we do not expect that excluding NAs 

from median calculations will have a strong effect. B. Hierarchical clustering 

for 4 altnerative splice candidates. Although these 4 proteins met our filtering 

criteria for differentially expressed constituent peptides, only the first (P10636) 

can discriminate between normal, severe and less severe cancer classes.  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 31, 2015. ; https://doi.org/10.1101/023515doi: bioRxiv preprint 

https://doi.org/10.1101/023515


 26

 

 

 
 

Supplementary Figure 4. Protein sequence for MAPT. The distribution of 

severe and less severe peptides (highlighted in red and green respectively) are 

quite well spaced. We hypothesize that these peptides are interspersed within 

different splice sites (exons).  

 

Supplementary tables 

 

Supplementary Table 1. Combined tables for both level-1 MS1 and MS2, 

merged and unmerged at 95% and 99% significance levels.  
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Supplementary Table 2. Comparison of level-1 MZ-bins following removal of 

low-quality SWATH windows in MS1 space. Following the removal of low-

quality SWATH windows (cf. Figure 3), the numbers of selected features for both 

SWATH window-merged and un-merged level-1 MZ-bins now match exactly.  
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