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Abstract (128 words) 

Network-based analysis methods can help resolve coverage and 

inconsistency issues in proteomics data. Previously, it was demonstrated that a 

suite of rank-based network approaches (RBNAs) provides unparalleled 

consistency and reliable feature selection. However, reliance on the t-statistic/t-

distribution and hypersensitivity (coupled to a relatively flat p-value 

distribution) makes feature prioritization for validation difficult. To address 

these concerns, a refinement based on the fuzzified Fisher exact test, Fuzzy-

FishNet was developed. Fuzzy-FishNet is highly precise (providing probability 

values that allows exact ranking of features). Furthermore, feature ranks are 

stable, even in small sample size scenario. Comparison of features selected by 

genomics and proteomics data respectively revealed that in spite of relative 

feature stability, cross-platform overlaps are extremely limited, suggesting that 

networks may not be the answer towards bridging the proteomics-genomics 

divide.  

 

Introduction 

Mass spectrometry (MS)-based proteomics is now a key aspect of 

contemporary biological and clinical research. Although MS-based proteomics 

has advanced significantly in recent years, data reliability issues still persist. The 

standard setup is the Data-Dependent Acquisition (DDA) platform where eluting 

peptides from a separation column are selected for fragmentation semi-

stochastically, leading to inconsistent quantitation amongst identified proteins, 

thus presenting a severe analytical challenge. Recent technological 

advancements have led to the new Data-Independent Acquisition (DIA) 

paradigm, where fragment precursor selection is independent of stoichiometry, 

leading to more spectral coverage (1, 2). An instance of DIA is SWATH, where 

data is captured by repeatedly cycling through precursor isolation windows 

(SWATH windows) of defined m/z ranges (3). 

However, even with advanced techniques like SWATH, proteome 

coverage and signal quality issues persist. While Guo et al. have shown that, 

when coupled with PCT (Pressure Cycling Technology), SWATH could be used to 

reproducibly digitize the proteome of minute amounts of clinical samples in a 

high-throughput fashion (4), what was noteworthy, and of concern, was also the 

fact that SWATH is ostensibly noisier due to the concurrent fractionation of a 

large number of precursors. 

Networks can be combined with proteomics synergistically  to overcome 

its idiosyncratic data issues (5-10). For example, coverage and reliability of 

predictions can be improved dramatically simply using subnets (short for 

subnetworks) as contextualization (11-14). In particular, using the recently 

published clear cell renal cancer SWATH dataset of Guo et al (4), the efficacy of a 

suite of novel network-based analysis techniques termed Rank-Based Network 

Approaches (RBNAs) was demonstrated. Broadly, RBNAs work in the following 

steps: 1/ Features are ranked in inverse order (highest to lowest abundance) for 

each tissue. A cut-off at a predefined alpha level is used to identify the set of top 

alpha features for each tissue. 2/ Relevant features are used to fragment known 

pathways into subnets. Relevant features are the set of top-ranked protein 

defined subnets supported by a reasonable proportion amongst the samples 

within a class. Alternatively, where coverage is limited, a vector of known 
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biological complexes can be used in its place. 3/ Each subnet is scored on each 

tissue according to the expression levels of the features constituting the subnet. 

Class-specific weights are introduced to modulate the scores. And finally, 

differential subnets are determined in the statistical feature-selection step. For 

details, refer to Material and methods. 

Previously, it was shown that RBNAs have very high feature-selection 

stability and precision-recall rates, and work well in the small sample size 

scenario. The existing suite of RBNAs include SubNetworks (SNET), Fuzzy SNet 

(FSNET), Paired FSNet (PFSNET) and class-Paired PFSNet (PPFSNET). PFSNET 

and PPFSNET were the two best techniques, and performed very well on all 

performance benchmarks (14). However, there are two limitations worth 

investigating further --- 1/ feature selection based on the modified t-statistic and 

t-distribution may not be a valid assumption and 2/ PFSNET and PPFSNET tend 

to be extremely sensitive, making a fairly large number of predictions for which 

the p-value distribution is relatively flat (many of these are 0 or close to 0), this 

makes it difficult to prioritize which subnets to test and validate first. 

 To deal with these problems, a new addition to the RBNA family is 

introduced --- Fuzzy-FishNet. Fuzzy-FishNet uses a weighted version of the 

Fisher’s exact test to derive an exact probability for whether a subnetwork is 

differentially expressed between the normal and cancer classes. We demonstrate 

the efficacy (based on precision-rate and feature selection stability) of Fuzzy-

FishNet to its non-weighted counterpart FishNet, the standard single protein-

based two sample t-test (SP), hypergeometric enrichment (hypgeo or HE), and 

against the existing RBNAs. We also compared the networks predicted by 

proteomic and genomic data for clear cell renal cancer to investigate if network-

based analysis can give rise to improved correlations. 

 

Material and methods 

SWATH data 
The SWATH dataset of Guo et al was used in this study (4). This dataset 

contains 24 SWATH runs from 6 pairs of non-tumorous and tumorous clear-cell 

renal carcinoma (ccRCC) tissues, which have been swathed in duplicates (12 

normal, 12 cancer).  
 

SWATH data interpretation 
All SWATH maps were analyzed using OpenSWATH (15) and a spectral 

library containing 49,959 reference spectra for 41,542 proteotypic peptides 

from 4,624 reviewed SwissProt proteins (4). The library was compiled using 

DDA data of the kidney tissues in the same mass spectrometer. Protein isoforms 

and protein groups were excluded from this analysis. The peptides identified 

were aligned prior to protein inference using the algorithm TRansition of 

Identification Confidence (TRIC) (version r238), which is available from 

https://pypi.python.org/pypi/msproteomicstools and 

https://code.google.com/p/msproteomicstools. The parameters used for the 

feature_alignment.py program are: max_rt_diff=30, method=global_best_overall, 

nr_high_conf_exp=2, target_fdr=0.001, use_score_filter=1. The two most intense 

peptides were used to quantify proteins. 3,123 proteins were quantified across 

all samples with peptide and protein FDR below 1%. 
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Next-generation sequence data (genomics) 
For comparison, a genomics (Illumina HiSeq 2000 RNA sequencing 

platform) dataset for clear cell renal cancer is derived from The Cancer Genome 

Atlas (https://tcga-data.nci.nih.gov/docs/publications/kirc_2013/). 

The dataset comprises 31 normal samples and 31 tumor samples 

covering 18,400 genes (16).  Gene expression was quantified by counting the 

number of reads overlapping each gene model’s exons and converted to Reads 

per Kilobase Mapped (RPKM) values via division by the transcribed gene length.  

 
 Protein complexes (Subnets)  

Subnets can be determined a priori and independent of the data used for 

analysis. For example, decomposition of a network into subnets can be optimized 

via functional coherence evaluation (11). However, protein complexes are true 

biological subnets, and shown to be superior to inferred ones (13).  They are also 

stable as they are determined independently of the experimental data. Thus the 

complex-based feature vector can be used in generalizability studies comparing 

related genomic and proteomic data.  

Protein complexes were obtained from CORUM database which contains 

manually annotated protein complexes from mammalian organisms (17). 

Complexes with at least 3 proteins that were identified and measured in the 

proteomics screen were retained (1363 complexes). 

 
Standard protein-based feature selection using t-test (SP) 

As a control to why network methods are required to extend proteomic 

analysis, a t-statistic (Tp) is calculated for each protein p by comparing the z-

normalized expression scores between classes C1 and C2, with the assumption of 

unequal variance between the two classes (18).  
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where ��� is the mean expression level of the protein p, sj is the standard deviation 

and nj is the sample size, in class Cj.  

The Tp is compared against the nominal t-distribution to calculate the 

corresponding p-value. A feature is deemed significant if p-value ≤ 0.05. 

 
Hypergeometric Enrichment (HE) 

HE is a standard hypergeometric enrichment pipeline performed in many 

earlier studies (6)  and consists of two parts: 1/ Differential proteins are 

identified using the unpaired two-sided t-test between normal and disease 

samples using their z-normalized protein expressions (This is similar to SP) (19). 

Proteins with p-value ≤ 0.05 are considered differential. 2/ This is followed by a 

hypergeometric enrichment analysis against the protein complexes (p-value ≤ 

0.05). Given a total number of proteins N, with B of these belonging to a complex 

and n of these proteins in the test set, the probability P that b or more proteins 

from the test set are associated by chance with the complex is given by: 
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The complex is deemed significant in HE if P(� � �) ≤ 0.05. 

 
Fuzzy-FishNet/FishNet 

Fuzzy-FishNet and FishNet are similar methods differing only in weights 

assigned to the rank proteins. Fuzzy-FishNet uses rank weights while FishNet 

uses a binary metric (see below). 

We begin with a description of FishNet: Given a protein gi and a tissue pk, 

let fs(gi,pk) = 1, if the protein gi is among the top alpha percent (default = 10%) 

most-abundant proteins in the tissue pk; and = 0 otherwise. 

For a complex S, and samples in class J, Cj, and samples in class k, Ck. We 

can express the distribution of proteins in the top alpha percent between Cj and 

Ck against S in a contingency table as: 

 

 In complex S Not in Complex S Marginals 

Samples in Class J 

(Cj) 
a b a+b 

Samples in Class 

K(Ck) 
c d c+d 

Marginals a+c b+d a+b+c+d=n 

 

where a and c are the sum of alpha proteins for samples in class Cj and Ck 

mappable to proteins within complex S respectively, and b and d are the sum of 

proteins across samples in class Cj and Ck that are missed for proteins in complex 
S respectively.  

The fisher exact probability p of obtaining this given set of values is then: 

 

� � �� 	 �� � �� 	 �� �
� �� 	 �� � �� 	 ��! �� 	 ��! �� 	 ��! �� 	 ��!�! �! �! �! �!  

 

The fisher exact probability is also the hypergeometric probability of 

observing this particular arrangement of the data, assuming the given marginal 

totals, on the null hypothesis that both Cj and Ck have similar distributions of 

alpha proteins across their class members mappable to proteins in complex S. 

To calculate a significance value (p-value) for a given observed 

probability p, we can sum the probabilities of obtaining a value equal to or 

greater than the observed p in a one-sided test. Alternatively, when n is 

relatively large, and a, b, c and d  are all greater than 5, the p-value for the 

observed fisher exact probability can be approximated using the chi-square 

distribution. Given that the  fisher test is known to be conservative --- i.e., its 

actual rejection rate is lower than the nominal level, and that the actual data 

distribution might not match well theoretical distributions, we rank p in order of 

increasing value, and select the  top 1% features.  

For Fuzzy-FishNet, the definition of the function fs(gi,pk) is replaced so 
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that fs(gi,pk) is assigned a value between 5 and 0 as follows: fs(gi,pk) is assigned 

the value 5 if gi is among the top alpha1 percent (default = 10%) of the most-

abundant proteins in pk. It is assigned the value 0 if gi is not among the top 

alpha2 percent (default = 20%) most-abundant proteins in pk.  The range 

between alpha1 percent and alpha2 percent is chopped into n equal-sized bins 

(default =4), and fs(gi,pk) is assigned the value 4, 3, 2, or  1 depending on which 

bin gi falls into in pk.  As with FishNet, the top 1% of features is selected. 

 
SNET/FSNET/PFSNET/PPFSNET 

The RBNAs (SNET, FSNET, PFSNET and PPFSNET) are similar algorithms 

but differing in certain key assumptions or test set-ups.  

We begin with a description of SNET: 

Given a protein gi and a tissue pk, let fs(gi,pk) = 1, if the protein gi is 

among the top alpha percent (default = 10%) most-abundant proteins in the 

tissue pk; and = 0 otherwise. 
Given a protein gi and a class of tissues Cj, let  

����, � � � � !����, �"�|� |
�� � ��

 

That is, ����, � � is the proportion of tissues in Cj that have gi among their top 

alpha percent most-abundant proteins. 

Let score(S,pk,Cj) be the score of a protein complex S and a tissue pk 

weighted based on the class Cj. It is defined as: 

��$%&�', �", � � � � !����, �"� (
�� � �

����, � � 

The function !�����', �, ), � � for some complex S is a t-statistic defined 

as: 

!�����', �, ), � � � *&���', �, � � � *&���', ), � �
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where mean(S,#,Cj) and var (S,#,Cj) are respectively the mean and variance of 

the list of scores { score(S,pk,Cj) | pk is a tissue in # }. 

The complex S is considered significantly highly abundant (weighted 

based on Cj) in X but not in Y if fSNET(S,X,Y,Cj) is at the largest 5% extreme of the 

Student t-distribution, with degrees of freedom as determined by the Welch-

Satterwaite equation. 

Given two classes C1 and C2, the set of significant complexes returned by 

SNET is the union of {S | fSNET(S,C1,C2,C1) is significant} and {S | fSNET(S,C2,C1,C2) 

is significant}, the former being complexes that are significantly consistently 

highly abundant in C1 but not C2, the latter being complexes that are significantly 

consistently highly abundant in C2 but not C1. 

FSNET is identical to SNET, except in one regard: 

For FSNET, the definition of the function fs(gi,pk) is replaced so that 

fs(gi,pk) is assigned a value between 1 and 0 as follows: fs(gi,pk) is assigned the 
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value 1 if gi is among the top alpha1 percent (default = 10%) of the most-

abundant proteins in pk. It is assigned the value 0 if gi is not among the top 

alpha2 percent (default = 20%) most-abundant proteins in pk.  The range 

between alpha1 percent and alpha2 percent is chopped into n equal-sized bins 

(default =4), and fs(gi,pk) is assigned the value 0.8, 0.6, 0.4, or  0.2 depending on 

which bin gi falls into in pk.   

A test statistic fFSNET is then defined analogously to fSNET.  Given two classes 

C1 and C2, the set of significant complexes returned by FSNET is the union of {S | 

fFSNET(S,C1,C2,C1) is significant} and {S | fFSNET(S,C2,C1,C2) is significant}. 

For PFSNet, the same fs(gi,pk) function as in FSNet is used. But it defines a 

score delta(S,pk,X,Y) for a complex S and tissue pk wrt classes X and Y as the 

difference of the score of S and tissue pk weighted based on X from the score of S 

and tissue pk weighted based on Y.  More precisely: delta(S,pk,X,Y) = score(S,pk,X) 

– score(S,pk,Y). 

If a complex S is irrelevant to the difference between classes X and Y, the 

value of delta(S,pk,X,Y) is expected to be around 0. So PFSNet defines the 

following one-sample t-statistic: 

 

!�������', �, ), -� � *&���', �, ), -��&�', �, ), -�  

 

where mean(S, X, Y, Z) and se(S, X, Y, Z)  are respectively the mean and standard 

error of the list { delta(S,pk,X,Y) | pk is a tissue in Z}. The complex S is considered 

significantly consistently highly abundant in X but not in Y if fPFSNet(S, X, Y, X ∪ Y) 

is at the largest 5% extreme of the Student t-distribution. 

Given two classes C1 and C2, the set of significant complexes returned by 

PFSNet is the union of {S | fPFSNet(S,C1,C2,C1 ∪ C2) is significant} and {S | 

fPFSNet(S,C2,C1,C1 ∪ C2) is significant}, the former being complexes that are 

significantly consistently highly abundant in C1 but not C2, the latter being 

complexes that are significantly consistently highly abundant in C2 but not C1. 

The above formulation of PFSNet is for the situation where tissues in C1 

and C2 are unpaired.  If paired tissues are used, a paired-sample version of 

PFSNet (PPFSNET) can be formulated as follows. 

Given a subject pk, we write pkA  to denote his tissue in class C1 and pkB 

to denote his paired tissue in class C2. Then we define the following paired delta 

score of the complex S and subject pk wrt classes X and Y: 

paired(S,pk,X,Y) = |score(S,pkA,X) – score(S,pkB, Y)| 

If the complex S is irrelevant to the difference between classes X and Y, as 

mentioned earlier, then the mean of paired(S,pk,X,Y)  is expected to be 0. We 

define a one-sample t-statistic to test for this: 

 

!��������'� � *&��.���%&��', �", �1, �2�|�" �� � �1� &�2 �� -�3�&.���%&��', �", �1, �2�|�" �� � �1� &�2 �� -�3  

 

where Z is the set of all subjects with paired tissues in C1 and C2. A complex S is 

considered significant, if fPPFSNET(S) is at the largest 1% extreme of the Student t-

distribution. 

 
Performance Benchmarks 
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Precision/recall and feature-selection stability were used as performance 

benchmarks. Cross-validation predictive accuracy is omitted since FishNet does 

not provide feature-level scores per sample.  

Precision/Recall --- In precision/recall, the significant complexes c, from 

each subsampling simulation is benchmarked against the total set of significant 

complexes, C, derived from an analysis of the complete dataset. We make the 

assumption that the complete dataset is representative of the population. Thus, a 

completely precise method based on a subsampling should report a subset c of C 

(c ⊆ C) as significant, and no more (considered false positives). Similarly, perfect 

recall should report all complexes in C (i.e., c = C) as significant. 
Precision and recall are calculated as follows: 


%&����$� �  �
�
 	 4
 ; 6&��77 �  �
�
 	 48 

where TP, FP and FN are the True Positives, False Positives and False Negatives 

respectively. 

Both measurements are important in evaluating the performance of a 

method. A method that is precise but not sensitive would make some good-

quality predictions but may not provide enough data for model building or 

understanding the phenomena whereas a highly imprecise but sensitive method 

may capture all relevant features but at the cost of introducing much noise 

(irrelevant features). A good method must be both precise and sensitive (high 

recall). To evaluate both precision and recall concurrently, we can use the F-

score (FS), which is basically the harmonic mean:  

4� � 2 ( 
%&����$� ( 6&��77
%&����$� 	 6&��77 

 

These evaluation metrics require prior knowledge of the set of TP, TN, FP 

and FN in the dataset. In biology and particularly in proteomics, such “gold 

standard” data does not exist. We therefore make the assumption that the full 

dataset is the population, and apply the given feature-selection algorithm to 

determine the total set of TPs. Comparisons of features selected by repeated 

subpopulation sampling against those from the complete dataset provides an 

estimate of the precision and recall rates. However, we must highlight a caveat to 

this way of defining the gold standard: It may mislead when the given feature-

selection algorithm is unstable, as the algorithm is likely to return an entirely 

different “gold standard” set of features when applied to a different dataset. 

Feature-selection stability --- A good feature-selection method must be 

able to make consistent and reproducible selections, even at small sample sizes. 

Across different samplings, the technique should reliably provide similar 

findings. A method with generally high accuracy but low stability has limited 

utility. It is well known that depending on the dataset, or different parts of the 

dataset, the same test can select highly different feature sets; this can be 

attributed to a lack of statistical power and/or unreliable p-value.  

For each method, we took random samplings of size 4, 6 and 8 tissues 

from both normal and cancer classes (n=12) to simulate small (4) to moderate 

(8) sample-size scenarios. This is repeated 1,000 times to generate a binary 
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matrix, where each row is a simulation, a value of 1 indicates a complex is 

significant, and 0 otherwise.  

The binary matrix is used for comparing stability and consistency of 

significant features produced by each method. Two evaluations on the binary 

matrix were performed: 1/ row-wise comparisons based on the Jaccard 

coefficient to evaluate feature vector pairwise similarity, and 2/ column 

summation to evaluate the persistence/stability of each selected significant 

complex. 

The feature-selection stability score is calculated as follows: The columns 

in the binary matrix generated per bootstrap sampling represent the all 

complexes being tested, while the rows represent the number of simulations 

(n=1,000).  A value of 1 means the complex turned up significant while 0 means 

it did not. Summing each column and dividing it by the number of simulations 

provides a single stability vector containing the normalized values indicative of 

complex stability (0 means the complex was never observed, while 1 means the 

complex was significant across all 1,000 simulations). To calculate a unified 

score for feature-selection stability, first, all 0 values are discarded from the 

stability vector (since these are complexes that have never been observed even 

once across all simulations, and thus irrelevant). Next, the remaining values are 

summed and divided by the total length of the stability vector, thus generating 

the feature-selection stability score.  

 

Results and discussions 
Fuzzy-FishNet addresses over-reliance on the t-distribution and limits feature-

selection inflation 

The design for Fuzzy-FishNet stems from the need to address two 

potential flaws in earlier RBNAs: the first being the assumption that the data has 

to approximate a t-distribution (All current RBNAs use the t-statistic, and 

compares it to a reference t-distribution), and the second being the need to 

reduce the number of features being predicted (limiting over-sensitivity), while 

maintaining excellent precision-recall.  

The Fisher’s test has some useful properties for the first problem. First, it 

is valid for small sample sizes, which is fairly common when dealing with 

biological data (when n ≤ 5). Secondly, it is an exact test, which means that the 

extent of deviation from a null hypothesis can be calculated determinably, rather 

than reliance on a theoretical distribution (as well with the t-test).  

In the second concern, as mentioned, while the most powerful RBNAs 

(PFSNET and PPFSNET) exhibit very high feature-selection stability, as well as 

precision-recall rates (14), it should be noted they also report a relatively large 

number of features as well. Significant features selected by PFSNET and 

PPFSNET have a rather flat p-value distribution i.e., many of the features had p-

values at 0 or close to 0 (Supplementary Data 1) thus making it difficult to 

prioritize which features to test and validate experimentally. In FishNet and 

Fuzzy-FishNet, because exact probabilities can be calculated, it should generate 

values with relative high resolution, allowing the features to be ranked. 

Furthermore, to limit the number of features selected, instead of returning all 

features that meet some statistical threshold cut-off (e.g. 0.05 or 0.01), we 

ranked the fisher exact probabilities calculated for each complex from lowest to 

highest, and selected the top 1% (1363*0.01≈14). The downside to this 
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procedure is that regardless, 14 features will always be selected even if these are 

not relevant. However, the stability of the ranks of these features can be checked 

given the assertion that if these features are meaningful, then they should be 

repeatedly observed (at the top 1%) given tests on any random subset of the full 

data. Otherwise, the ranks would be highly unstable. 

 
The fuzzification procedure in Fuzzy-FishNet selects better quality features 

The fuzzification procedure in Fuzzy-FishNet is inherited from methods 

such as FSNET, PFSNET(20) and PPFSNET(14). The purpose of fuzzification is to 

weigh the signal more favorably from proteins that are highly ranked, while 

allowing signal from lower ranked proteins to also be included, thus boosting 

sensitivity. 

 In FSNET/PFSNET/PPFSNET, the weights are interpolated from 1 to 0 as 

continuous variables. In Fuzzy-FishNet, the weights have to be integers due to 

the permutation-based calculations. To determine if fuzzification improves the 

quality of feature selection, we compared Fuzzy-FishNet to a non-fuzzified 

variant, FishNet.  

Figures 1A and 1B shows the CORUM Complex IDs, contingency tables 

and Fisher probability for the top 5 complexes in Fuzzy-FishNet and FishNet 

respectively. The top 3 complexes are similar, but it can also be seen that due to 

fuzzification, the p for Fuzzy-FishNet is smaller --- i.e., harder to observe the data 

distribution by chance. It is noteworthy that that most complexes have high p 

(Supplementary Figure 1). There is deep overlap of complexes between Fuzzy-

FishNet and FishNet (Figure 1C). Interestingly, the complement showed that the 

5 Fuzzy-FishNet only complexes corresponded to only 17 proteins while the 5 

FishNet only complexes corresponded to a large 109 proteins. This suggests that 

the 14 complexes in Fuzzy-FishNet are more homogeneous than in FishNet. The 

5 were probably missed because these complexes are smaller and/or the signal 

is weaker (e.g. there are fewer overlapping proteins but these are actually highly 

ranked). Obviously, the signal can be accentuated by the fuzzification procedure. 

To confirm if the selected complexes could discriminate sample classes, 

we derived the constituent protein expressions from selected complexes (115 

for Fuzzy-FishNet and 207 for FishNet), and performed hierarchical clustering 

(Euclidean Distance, Ward’s linkage). Figure 2 shows that for the large part, 

normal and cancer classes can be discriminated using either methods. However 

the class segregation for Fuzzy-FishNet is stronger. Normal samples 6, 7 and 8 

from the second replicate are consistently misgrouped with the cancer branch. 

Using other analysis methods, this misgrouping was also observed (21). 

Feature-selection stability, pairwise feature vector similarity and false 

positive rates are compared between Fuzzy-FishNet, FishNet, the standard single 

protein t-test (SP), and the hypergeometric test (hypgeo) (Figure 3). Random 

selection of 4, 6 and 8 samples from each class was performed 1000 times to 

evaluate how persistent each feature is (Figure 3A), and how similar pairwise 

samplings were (Figure 3B). Amongst these, Fuzzy-FishNet demonstrated that it 

was able to make very reliable predictions, and appeared to be fairly robust even 

at small sample sizes. Moreover, it was able to achieve these with the lowest false 

positves rates as well (Figure 3C). This suggests that the rank order amongst the 

top 1% is conserved.  
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To further determine if the selected features are meaningful, we 

calculated the precision-recall rates from random subsets of the data and 

compared it against features selected in the full dataset (Table 1). Fuzzy-FishNet 

excelled in both precision and recall with the highest F-scores amongst the 

methods tested. It should be noted that the high precision observed for SP is 

inflated. To examine this, the p-value threshold was adjusted to restrict the 

number of allowed features in SP to approximately the top 500. Noticeably, by 

restricting the number of features, there is a drop in the proportion of stable 

features (Supplementary Figure 2A compared to Figure 1A; SP) which suggests 

substantial fluctuations in the ranks of those features which met the original 

threshold requirement (p-val ≤0.01). This is accompanied by a concomitant drop 

in the pairwise feature similarity (Supplementary Figure 2B). Supplementary 

Figure 2C shows that the increased feature-selection stringency produces a 

drastic drop in recall while precision is maintained. These results show that the 

perceived stability and consistency produced by SP is likely an artifact due to the 

large number of features it reports. 

 
Fuzzy-FishNet selected features are supported by other RBNAs 

The features selected by Fuzzy-FishNet, FishNet, PFSNET and PPFSNET 

are compared using a four-way Venn diagram (Figure 4A). All 9 intersecting 

complexes between FishNet and Fuzzy-FishNet were also reported by PFSNET 

and PPFSNET. The RBNAs also reported the Fuzzy-FishNet complement and 

FishNet complement as significant. Note that PFSNET and PPFSNET reports an 

additional 54 complexes. 

Since PFSNET and PPFSNET’s p-value distribution are both quite flat, we 

cannot say if the FishNet and Fuzzy-FishNet selected features are enriched for 

higher quality selections. As a getaround, this can be tested indirectly by 

comparing the distribution of t-test p-values for proteins found in significant 

complexes. Figure 4B shows that the intersect for Fuzzy-FishNet and FishNet, 

and Fuzzy-FishNet only are enriched for more significant proteins than FishNet 

only and PPFSNET/PFSNET only. Hence, although it reports fewer complexes 

than current generation RBNAs, these are likely to be higher quality. 

Table 2 shows the feature-stability scores and F-scores (precision-recall) 

comparing the FishNet methods, all RBNAs, SP (single-protein t-test) and HE 

(Hypergeometric Enrichment). FishNet has very strong precision-recall, 

comparable to PPFSNET’s. Feature-selection stability however, is relatively 

weaker compared to P/PFSNET’s. However, it should be noted that P/PFSNET 

are likely hyper-sensitive, hence, it will tend to report similarly large sets of 

complexes regardless of sampling. Unfortunately, because the p-value 

distribution for P/PFSNET is quite flat, we cannot test the rank stability of the 

top 14 significant complexes, and compare these statistics directly against the 

Fisher-based methods. 

Given that Fuzzy-FishNet complexes are enriched for highly significant 

SP-proteins, supported by the RBNAs, relatively stable and are rankable due to 

non-flat p distribution, this makes it a useful technique for feature selection in 

proteomics data. 

 
Significant features in proteomics and genomics data are poorly corroborative 
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To demonstrate that Fuzzy-FishNet also works on genomics data, analysis 

was repeated on the full TCGA dataset. Table 3 shows that the fisher p is low for 

the top 6 features while precision-recall performance is good relative to the 

other methods such as standard t-test and hypergeometric enrichment.  Figure 

5A shows that selected complexes are informative, and their constituent protein 

expression can clearly distinguish sample classes with little error (one 

misclassification). Comparing genomics complexes against proteomics 

complexes revealed that there is little overlap. Only 2 complexes overlapped, and 

there appeared to be few shared proteins amongst the significant complexes. 

It is possible that the alpha genes for genomics data might be drastically 

different since many more genes are being considered relative to proteins in 

proteomic data. To counteract this possible effect, the genomics data matrix was 

subsetted to only include genes corresponding to proteins identified in the 

SWATH proteomics screen and the same analysis repeated.   

With the subsetted TCGA matrix, Figure 6A shows improvements in the 

hierarchical clustering (no misclassifications were made this time). However, 

overlaps remain abysmal. Clearly this means that the top complexes selected by 

genomics and proteomics screens do not corroborate. It should also be noted 

that the 2 overlapping complexes in the subsetted genomics dataset are not the 

same. In fact, there are no overlaps amongst the top 14 complexes selected 

between the full and subsetted TCGA datasets. Furthermore, none of the 

overlapping TCGA (all and subset) selected complexes are amongst the top 5 in 

proteomics screen. 

Proteomics and genomics measurements are known to be poorly-

correlative (22-24). While it may be an attractive idea that networks can help to 

improve correlations between proteomics and genomics data (10), it appears 

that in practice the divide is not so easily bridged. 

 
Integrating Fuzzy-FishNet with proteomics reveals a key role for mitochondrial 

complexes 

The top three complexes consistent between FishNet and Fuzzy-Fishnet 

were the 55S ribosome (CORUM Complex ID 320), 28S ribosomal subunit 

(CORUM Complex ID 315) and F1/F0-ATP Synthetase (CORUM Complex ID 563). 

All three complexes are mitochondrial in origin. Based on the contingency tables 

in Figure 1A, all are overexpressed in the cancer class.  

55S ribosome is involved in protein biosynthesis within the 

mitochondrial matrix (25). The 55S ribosome is composed of two subunits, the 

28S subunit (which was also detected as overexpressed) and a 39S subunit. Not 

much has been reported on the mechanistic association of mitochondrial 

ribosomes with renal cancer. Increase in mitochondrial biogenesis is correlated 

to increased basal oxygen consumption, which in turn, leads to increased energy 

production. This phenomenon is well reported in Acute Myelogenous Leukemia 

(AML) (26). Skrtic et al showed that inhibiting mitochondria ribosome proteins 

using tigecycline as selectively killed leukemia stem and progenitor cells (26). 

Perhaps  a similar strategy could also be deployed for renal cancer.  

F1/F0-ATP Synthetase is involved in energy production using the 

oxidative phosphorylation pathways along the inner membrane of the 

mitochondrial wall (27). Recent work by Wang et al (28) also implicates the 

involvement of the oxidative phosphorylation pathways, and correlated this to 
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metastatic outcome.  To check if the high ranking of F1/F0-ATP Synthetase is 

strongly correlated with severe outcome, patients 2 and 8 (whom suffered from 

severe cancer) were removed from the data matrix and Fuzzy-FishNet repeated. 

F1/F0-ATP Synthetase dropped from rank 3 to 4 (p = 3.85e-04), which suggests 

the association of F1/F0-ATP Synthetase with severe renal cancer, at least based 

on our dataset, is limited. On the contrary, the 28S subunit suffered a 

pronounced drop from rank 2 to 5 (p = 4.84e-04), which implies stronger 

association with the severe phenotype.  

 

Conclusions 

Fuzzy-FishNET is a new addition to the RBNA arsenal, and excels in 

precision-recall while maintaining small feature selection set. Using clear cell 

renal cancer as a case study, we demonstrated that the technique works well on 

both genomics and proteomics data. Cross-platform comparative analysis using 

Fuzzy-FishNet however, shows that the gulf between proteomics and genomics 

is not easily bridged, and significant features stably selected in genomics seldom 

match its proteomics counterpart. 
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Figures 

 
Figure 1. Comparison of significant complexes and overlaps between Fuzzy-

FishNet and FishNet. A: Top 5 complexes selected by Fuzzy-FishNet. The 

table shows the CORUM IDs for the complex, the contingency table and the 

corresponding Fisher exact probability that was calculated. B: Top 5 complexes 

selected by FishNet. As before, the table shows the CORUM IDs for the complex, 

the contingency table and the corresponding Fisher exact probability that was 

calculated. Note that the top three complexes are similar (c.f. Figure 1A). C: 

Complex and protein overlap between Fuzzy-FishNet and FishNet. There is 

deep sharing of complexes between Fuzzy-FishNet and FishNet. Interestingly, 

the complement show that the 5 Fuzzy-FishNet only complexes corresponded to 

only 17 proteins while the 5 FishNet only complexes corresponded to a large 109 

proteins. This result shows that the 14 complexes in Fuzzy-FishNet are more 

homogeneous. The 5 were probably missed because they are smaller and/or the 

signal is weaker. Obviously, the signal can be accentuated by the fuzzification 

procedure. 

 

A C

Proteins

Complexes

complex class hits non.hits fisher1probability

320 cancer 782 260 1.02E*07

normal 533 304

315 cancer 294 120 1.47E*05

normal 180 144

563 cancer 15 137 4.56E*05

normal 0 144

1095 cancer 23 42 2.28E*04

normal 3 45

1104 cancer 23 42 2.28E*04

normal 3 45

complex class hits non.hits fisher1probability

320 cancer 196 260 0.003

normal 152 304

315 cancer 72 120 0.011

normal 48 144

563 cancer 7 137 0.015

normal 0 144

59 cancer 0 48 0.026

normal 6 42

652 cancer 0 60 0.027

normal 6 54

B

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 12, 2015. ; https://doi.org/10.1101/024430doi: bioRxiv preprint 

https://doi.org/10.1101/024430


 
Figure 2. Hierarchical clustering (HCL) of proteins (from significant 

complexes) for Fuzzy-FishNet and FishNet. A: HCL (Fuzzy-FishNet). The tree 

(Euclidean Distance, Ward’s linkage) shows relatively better separation than the 

corresponding tree for FishNet (c.f. Fig 2B). B: HCL (FishNet). 

The tree (Euclidean Distance, Ward’s linkage) shows relatively better separation 

than the corresponding tree for FishNet (c.f. Fig 2B). B: HCL (FishNet). The tree 

(Euclidean Distance, Ward’s linkage) shows relatively poorer separation than the 

corresponding tree for FishNet (c.f. Fig 2A). This provides some indication that 

the complexes selected by Fuzzy-FishNet are more informative. Note that normal 

samples 6,7,8 from replicate 2 are consistently misclassified.  
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Figure 3. Performance metrics (Feature-selection stability, pairwise feature 

vector similarity and false positive distribution) for single protein 

standard t-test (SP), Hypergeometric Enrichment (Hypgeo), Fuzzy-FishNet 

and FishNet. A: Feature-selection stability across 1,000 simulations. With 

increased sampling size (from 4 to 8), SP, HE and FishNet’s feature-selection 

stability improved, i.e., an observable right shift in the histograms. In these cases 

however, a vast majority of selected features was never consistently reproduced. 

Fuzzy-FishNet responded well to sample size increments, with an obvious right-

shift indicating many of the features were stably observed. B: Pairwise feature 

vector similarity across random samplings. SP, HE, Fuzzy-FishNet and 

FishNet were evaluated 1,000 times on random subsets of sizes 4, 6 and 8. 

Simulations were compared pairwise for reproducible features using the Jaccard 

Coefficient. Fuzzy-FishNet excelled here, even in small sample size scenario.  C: 

False-positive distribution across 1,000 simulations. Samples from the 

normal class were randomly assigned to two groups, with feature selection 

performed using each method. Fuzzy-FishNet has the lowest false positive rate. 

 

 
Figure 4 Comparisons of Fuzzy-FishNet against other network algorithms A: 

Overlaps between 4 rank-based network approaches (RBNAs): FishNet , 

Fuzzy-FishNet, PFSNET and PPFSNET. We compared the complexes predicted 

by FishNet and Fuzzy-FishNet against two recently developed RBNAs (PFSNET 

and PPFSNET). All complexes selected by FishNet and Fuzzy-FishNet were also 

selected by PFSNET/PPFSNET. However, PFSNET/PPFSNET picked up many 

additional complexes. Because the PFSNET/PPFSNET p-value distribution is 

generally flat, with most features with p-values at 0 or close to 0, these 

algorithms might be too sensitive, and prevent discrimination or prioritization of 

which complexes/proteins to test first. B: Fuzzy-FishNet selects more 

significant t-test features. Because the p-value distribution for PFSNET and 

PPFSNET lacks variability, we compared the standard t-test p-values of proteins 

(from 9 significant complexes) overlapped between FishNet and Fuzzy-FishNet 

(intersect), proteins found in FishNet only (fisher_only; from 5 complexes), 

proteins found in Fuzzy-FishNet only (fuzzy_only, 5 complexes), PFSNET and 

PPFSNET only complexes (54 complexes), and the remaining significant single 

protein t-test proteins (sp). The intersection and Fuzzy-FishNet only median 

points were lower, suggesting selection of highly significant proteins. On the 
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other hand, the median of the FishNet only proteins were higher, suggesting 

selection of less significant proteins. Fuzzification improves the signal for 

relevant complexes that might otherwise be missed. 

 

 
Figure 5 Fuzzy-FishNet also works on genomics data but selected features 

have little correspondence to proteomics. A: Fuzzy-FishNet can reliably 

separate sample classes based on the selected features. The tree (Euclidean 

Distance, Ward’s linkage) shows that using Fuzzy-FishNet, the sample classes 

can be reliably separated (with the exception of one normal sample). B: Selected 

genomic features have poor correpondence to proteomics features. The 

venn diagrams shows the complex overlap, and the corresponding protein 

overlap. Only 2 complexes, corresponding to 5 proteins, matched.  
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Figure 6 Subsetting genomics data to corresponding SWATH proteins did 

not improve proteomic-genomic correlation. A: Subsetted genomics data 

can still give rise to informative features. The heatmap (Euclidean Distance, 

Ward’s linkage) shows that using Fuzzy-FishNet on the subsetted genomics 

dataset (only include genes that corresponded to the proteins identified in 

SWATH), the sample classes can be reliably separated (interestingly, the 

clustering quality appeared better than using all genes; c.f. Figure 5A). B: Post- 

subsetting, selected genomics features still have poor correlation to 

proteomics features. The venn diagrams shows the complex overlap, and the 

corresponding protein overlap. 2 complexes, corresponding to 43 proteins, 

matched.  

 

Tables 

Table 1. Precision-Recall performance for Fuzzy-FishNet (A), FishNet (B), 

standard t-test (sp) and hypergeometric-enrichment (hypgeo) (C). Fuzzy-

FishNet performs extremely, excelling both in precision and recall. It is 

noteworthy that it also functions very well in the small-sample size scenario. 
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Table 2. Comparison of feature-stability scores (A) and F-scores (B) 

between standard t-test (SP), hypergeometric-enrichment (HE), the rank-

based network analysis methods, SNET, FSNET, PFSNET and PPFSNET, 

FishNet  and Fuzzy-FishNet. Fuzzy-FishNet’s strength lies in precision-recall 

but not so much in feature-selection stability. However, it should be noted that 

the RBNAs’ feature-stability may be inflated due to hypersensitivity. 

 

 
 

Table 3. Top 5 complexes selected by Fuzzy-FishNet for renal cancer 

genomics data derived from TCGA. The table shows that CORUM ID for the 

complex, the contingency table and the corresponding Fisher exact probability 

that was calculated.  
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Supplementary Figures 

 
 

Supplementary Figure 1 Distribution of fisher probabilities across 1363 

protein complexes for Fuzzy-FishNet (A) and FishNet (B). Only a minority of 

complexes have small fisher exact probability. This shows that the calculation 

approach where we summed the signal across samples within classes does not 

lead to large selection sizes. 

 

 
 

Supplementary Figure 2 Evaluating single protein (SP) two sample t-test 

statistics A: Feature-stability following top 500 SP feature filtering. The 

proportion of stable features drops significantly when only the top 500 features 

per simulations are kept. B: Pairwise feature-selection similarity following 
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top 500 SP feature filtering. Following feature filtering, the pairwise similarity 

decreases dramatically (y-axis, Jaccard coefficient) although it is still better than 

hypergeometric enrichment (HE). C: Precision/recall following top 500 SP 

feature filtering. After adjusting the critical value threshold to keep the top 500 

features. Use of similar threshold on random subsamplings shows that precision 

is well maintained but recall drops further.  
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