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Abstract 

One of the unaddressed challenges in drug discovery is that drug potency determined in 

vitro is not a reliable indicator of drug efficacy and toxicity in humans. Accumulated evidences 

suggest that the in vivo activity is more strongly correlated with the binding/unbinding kinetics 

than the equilibrium thermodynamics of protein-ligand interactions (PLI) in many cases. 

However, existing experimental and computational techniques are both insufficient in studying 

the molecular details of kinetics process of PLI. Consequently, we not only have limited 

mechanistic understanding of the kinetic process but also lack a practical platform for the high-

throughput screening and optimization of drug leads based on their kinetic properties.  Here we 

address this unmet need by integrating energetic and conformational dynamic features derived 

from molecular modeling with multi-task learning. To test our method, HIV-1 protease drug 

complexes are used as a model system. Our integrated model provides us with new insights into 

the molecular determinants of the kinetics of PLI. We find that the coherent coupling of 

conformational dynamics between protein and ligand may play a critical role in determining the 

kinetic rate constants of PLI. Furthermore, we demonstrated that Normal Mode Analysis (NMA) 

is an efficient method to capture conformational dynamics of the binding/unbinding kinetics. 

Coupled with the multi-task learning, we can predict combined kon and koff accurately with an 

accuracy of 74.35%. Thus, it is possible to screen and optimize compounds based on their kinetic 

property. Further development of such computational tools will bridge one of the critical missing 

links between in vitro drug screening and in vivo drug efficacy and toxicity. 
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Significance 

Drug efficacy and side effect are often dependent on the life-time rather than the binding 

affinity of drug-target complex. However, existing paradigm in drug discovery mainly focus on 

screening and optimizing drug leads based on their binding affinity to the receptor. The 

ignorance of kinetic process of drug binding and unbinding seriously hinders the development of 

efficient and safe therapeutics. For the first time, we integrate physically-based modeling with 

multi-task learning to investigate the molecular determinants of protein binding kinetics as well 

as efficiently and accurately predict the kinetic rate constants of drug-target complex. Such 

computational tools will allow us not only to elucidate novel mechanisms of protein 

binding/unbinding process but also to screen and optimize compounds based on their kinetic 

property. This will bridge one of the critical missing links between in vitro drug screening and in 

vivo drug efficacy and toxicity. 

 

Introduction 

 
Drug discovery is a costly and risky process. It often costs more than two billion dollars 

and takes more than ten years. Only about one third of drugs in phase III clinical trials reach the 

market. Target-based and cell-based screening are the two major approaches in the early stage of 

drug discovery. In both of these two technologies, one of the unaddressed fundamental 

challenges is that drug potency measured in vitro may not be a reliable indicator of drug efficacy 

and toxicity in the human body. In the compound screening and lead optimization, equilibrium 

thermodynamics constants such as half maximal inhibitory concentration (IC50) or dissociation 

constant (Kd) have been used as the measures of drug potency for years. As molecules in the 

human body are in a non-equilibrium condition, the activity of a drug depends, not only on how 
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strong it interacts with the protein, but also how easy it hits the target and how long it resides in 

the target. Increasing body of evidence suggests that drug activity in vivo is not defined by 

equilibrium conditions measured in vitro, but rather depends on the residence time (τ = 1/ koff) of 

the receptor-ligand complex in vivo in a number of cases [1]. The longer residence time will 

increase the efficacy of the drug. For example, geldenamycin has low affinity for Heat shock 

protein (Hsp90) in vitro with IC50 ~ 1 μM, in comparison to its nanomolar effects in vivo [1,2]. 

Copeland et al. analyzed the results of the experiment of mutation-based resistance to inhibitors 

of HIV-1 protease studied by Maschera et al., and concluded that the essential factor for 

sustained drug efficacy in vivo is the residence time but not the affinity of the drug molecule on 

its target [3]. Pan et al. reported that residence time is highly correlated with functional efficacy 

of a series of agonists of the A2A adenosine receptor (r2 = 0.95), but there is little correlation with 

binding affinity (r2 = 0.15) [4]. Furthermore, Dahl and Akerud disclosed that long residence time 

has predictability value only when koff is slower than the pharmacokinetics elimination, which is 

defined as the elimination rate of the drug from the target vicinity [5]. On the other hand, the on-

target side effect could be reduced by reducing the drug residence time. Thus, a drug with 

optimal efficacy and toxicity profile should have a balanced kon and koff. Since IC50 and Kd 

depend on the measurement of the combined effect of kon and koff, they are actually insufficient 

to explain the impact of binding/unbinding kinetic on drug action, as the same value of Kd can 

come from infinite number of combinations of kon and koff. Additionally, since Kd is dependent 

on the free energy difference between the bound and unbound states but is independent on the 

transition state of protein-ligand interaction (PLI), it is inadequate to elucidate the 

binding/unbinding kinetics of PLI [4,6]. 
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Experimental techniques for the study of PLI kinetics such as surface plasmon resonance, 

fluorescence polarization, isothermal titration calorimetry, and mass spectrometry are not only 

expensive and time-consuming but also insufficient of providing detailed molecular 

characterization of the PLI kinetics process [7-9]. Computational modeling plays an increasing 

role in elucidating the binding/unbinding process of PLI. Molecular dynamics (MD) simulations 

have been reported to be capable to capture the binding process, from beginning to end, in full 

atomic detail. Unfortunately, the power of MD simulations is limited due to the fact that protein-

ligand binding event takes place in a time scale ranging from microseconds up to hours and days. 

For the majority of the binding processes, they are infeasible for MD simulations. For this 

reason, metadynamics and other conformational sampling techniques have been developed not 

only to improve sampling in MD simulations of a system where ergodicity is hindered by the 

form of the system’s energy landscape, but also adopted as a powerful technique for 

reconstructing the free-energy surface as a function of few selected degrees of freedom.  

Buch et al. presented a kinetic model for the binding process of serine protease β-trypsin 

and inhibitor benzamidine obtained from MD simulations of free ligand binding. In addition to 

the kinetic pathway of the binding process, the binding free energy and the kinetic constants (kon 

and koff) of the process were also reported. This study reveals that benzamidine moves between 

two metastable intermediate states: S2 and S3; and reaches the bound state through S3 [10]. 

Gervasio et al. applied a metadynamics method successfully to the docking of ligands on flexible 

receptors in water solution. The method is able not only to find the docked geometry and to 

predict the binding affinity (ΔGbinding) but also to explore the entire docking process from the 

solution to the docking cavity, including barriers and intermediate minima [11]. Even though 

these progresses are remarkable, metadynamics is not yet feasible to study the whole 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 12, 2015. ; https://doi.org/10.1101/024513doi: bioRxiv preprint 

https://doi.org/10.1101/024513
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 

 

binding/unbinding process of PLI on a large scale. In addition, the choice of collative variables 

in the metadynamics simulation is not a trivial task. 

With the increasing availability of protein binding kinetics data [12,13], data-driven 

modeling provides an alternative and efficient solution to studying the PLI kinetics. Several 

predictive models for kinetic constants of protein-protein interaction (PPI) have been developed 

[14,15]. However, the molecular attributes in these models only covered static structural 

characteristics such as the percentage of residues in α-helix, the buried surface area of protein, 

the proportion of charged residues and the proportion of polar atoms at the interface, and the 

energetic features such as hydrogen bonding potential and the interfacial electrostatic interaction 

energy between interfacial residues. These features may not sufficiently capture conformational 

dynamics of the PLI kinetic processes. In addition, existing methods predict kon and koff 

independently. As a matter of fact, they are dependent in nature. To our knowledge, few methods 

are available for the large-scale modeling of the binding/unbinding kinetics of PLI with explicit 

dynamic features, as well as predicting kon and koff simultaneously.   

To tackle the above problems, we integrate energetic and conformational dynamic 

features derived from efficient molecular modeling with state-of-the-art multi-task learning 

(MTL) approach. In this study, ligand-bound HIV-1 proteases are used as an example to build 

models.  In addition to Electrostatic Energy (EE) and van der Waals Energy (VDWE), which are 

derived from all-atom Molecular Dynamics simulation [16,17] and environmental-dependent 

electrostatic potential energy [18], Relative Movement of Ligand-Residue (RMLR) and Relative 

Movement of Residue-Residue (RMRR) that represent the dynamics impact of ligand binding on 

the amino acid residues are derived from Normal Mode Analysis (NMA) analysis and used to 

train machine learning models.   
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Our multi-facet statistical analysis consistently shows that conformational dynamic 

features, such as RMLR, are as important as energetic features, particularly EE, in predicting kon, 

koff. Based on these findings, we propose that coherent conformational dynamic coupling 

between protein and ligand may play a critical role in determining the kinetic rate constants of 

PLI. Furthermore, we demonstrated that NMA is an efficient method to capture conformational 

dynamic features of the binding/unbinding kinetics of PLI. Coupled with the state-of-the-art 

multi-target classification as well as multi-target regression, it is possible for us to screen and 

optimize compounds based on the binding/unbinding kinetics of PLI in a high-throughput 

fashion.  The further development of such computational tools will bridge one of the critical 

missing links between in vitro drug potency and in vivo drug efficacy and safety, thereby 

accelerating drug discovery process. 

 

Results 

1. Characteristics of data set 

In this study, we focused on using HIV-1 protease complex structure to investigate the 

conformational dynamics and develop predictive model of ligand binding/unbinding kinetics. 

The HIV-1 protease is an excellent model system for our purpose. First, thirty-nine HIV-1 

protease inhibitors have experimentally determined kon and koff under the same condition [19,20]. 

They provide reasonable number of high quality data points for the data-driven modeling. 

Second, abundant data of HIV-1 protease inhibitor resistance mutation (PIRM) are available. 

They can be used to validate the predictive model. Third, both unbound and complex structures 

of HIV-1 protease are released in Protein Data Bank [21]. The apo- and holo-conformations are 

the basis for our analysis.     
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When mapping the 39 HIV-1 protease inhibitors on the 2-dimensional space of kon and 

koff, as shown in Figure 1, all FDA-approved drugs were clustered in the upper-left corner with 

high kon and low koff.  Based on the criteria of log10koff  = -2 and log10kon = 5.6, which will put all 

FDA approved drugs in a single class and evenly distribute the inhibitors into four different 

classes, with the labels (0,0), (0,1), (1,0), and (1,1) (see Supplementary Table S1). It is noted that 

several inhibitors such as A037 have the similar value of Kd, which is equal to koff/kon, to that of 

the approved drugs, but fall into different classes from the FDA-approved drugs in the 2D map. 

It suggests that atomic interactive constant Kd alone is not sufficient to determine the drug effect. 

Ten inhibitors have solved HIV-1 complex structures in PDB.  For the remaining 

inhibitors whose complex structures have not been experimentally determined, protein-ligand 

docking software eHiTS [22] is applied to predict its binding pose. The receptor is chosen from 

one of the ligand-bound HIV-1 complexes with the co-crystallized ligand structure similar to the 

docked ligand structure. Whenever possible, the common fragment of the co-crystallized and the 

docked ligand is used as a constraint to select the final binding pose of the docked ligand, such 

that the RMSD of superimposed common fragments is minimal. An example is shown in 

Supplementary Figure S1.  

Binding site amino acid residues that are involved in the HIV-1 protease inhibitor 

interactions are determined using the change of solvent assessable surface area (SASA) upon 

ligand binding. As depicted on Figure 2, there are total 44 amino acids on both chains of the 

HIV-1 dimmer.  

 

2. Characterization of protein-ligand interaction using the directionality of 

normal modes 
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Normal Mode Analysis (NMA) is a powerful computational method to identify and 

characterize the slowest molecular deformational motions with large amplitude, which are 

widely involved in biological functions of macromolecules, but inaccessible by other methods. 

Ligand binding and unbinding events are often on a long-time scale ranging from milliseconds to 

days, far beyond the current capability of MD simulations. Coarse-grained NMA may allow us to 

extract important dynamic information on protein-ligand binding/unbinding processes. Since the 

presence of solvent damping dramatically slows down the large-amplitude motions of bio-

molecules, the timescales of molecular motions in reality are much longer than what can be 

estimated from the eigenvalues of NMA that are calculated in vacuum. In other words, solvent 

damping causes a discrepancy on a timescale between NMA and real molecular motions.  

However, the study conducted by Ma revealed that the presence of solvent has a minor impact on 

eigenvectors, which are determined by the potential surface only [23]. Thus, the information 

provided by the eigenvectors for the directionality of conformational transitions could be used to 

study dynamic processes in the time-scale of real situations.  

In this study, NMA was conducted using iMod [24]. The directionality of normal modes 

of the residues in the binding site is used to characterize the conformational dynamic features of 

binding and unbinding event. Specifically, two data sets including Relative Movement of 

Ligand-Residue (DS-RMLR), and Relative Movement of Residue-Residue (DS-RMRR) were 

derived from NMA analysis. Both DS-RMLR and DS-RMRR cover the 10 lowest frequency 

modes, where DS-RMLR illustrates the relative directionality of normal modes between ligand 

and residue, and DS-RMRR illustrates the change of directionality of normal modes of binding 

site residues upon the ligand binding. As an example, Figure 3A depicts the superposition of the 

44 residue eigenvectors of the aligned apo structure and the DMP bound structure of 1st normal 
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mode. It illustrates the shift of the eigenvectors of the 44 residues of HIV-1 protease upon ligand 

binding. Figure 3B illustrates the relative displacements of the 44 ligand-residue pairs in the 

DMP bound HIV-1 complex. 

 

3. Characterization of ligand-residue interaction energy 

Residue decomposed Pairwise Interaction Energy (PIE) and its two constituting 

components including Electrostatic Energy (EE) and van der Waals Energy (VDWE), between 

the ligand and the binding site residue of HIV-1 protease, are calculated from all-atom Molecular 

Dynamics (MD) simulation and environmental-dependent electrostatic potential energy. The 

values of PIE, EE, and VDWE, which characterize various energetic aspects of ligand-residue 

interaction, are used to build three data sets: DS-PIE, DS-EE, and DS-VDWE.  

 

4. Structural determinants of protein-ligand binding/unbinding 

We use the energetic and conformational dynamic attributes derived from MD 

simulation and NMA to train a multi-target machine learning (MTML) model for the 

classification prediction of kinetic rate constants. In total, there are five principal training data 

sets including DS-PIE, DS-EE, DS-VDWE, DS-RMLR, and DS-RMRR. Each of them 

comprises thirty-nine cases with each case comprising 44 attributes. 

MTML is defined as follows: Given a set of learning examples D of the form (X,Y), 

where X = (x1, x2,…, xk) is a vector of k training attributes and Y = (y1, y2,…, yt) is a vector of  t 

target attributes, learn a model that, given a new unlabeled example X, can predict the values of 

all target attributes Y simultaneously. When yi is categorical, the problem is known as 

classification. In this study, the yi is binarized value of kon and koff as shown in Figure 1.  
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Random Forest Predictive Clustering (RF-Clus) is applied for the task of MTML. RF-

Clus outperforms other MTML algorithms in the benchmark studies [25]. In addition, it can 

handle high-dimensional features, e.g. in the situation where the number of attributes is much 

higher than the number of cases, and can select the importance of attributes (amino acid residues) 

that contribute to the accuracy of kon/koff prediction. The model was run on the iteration numbers 

of 100, 200, 250, and 500 in the leave-one-out cross-validation experiment. 

Table 1 shows the selected features in the descending order of score of importance. 

Consequently, sixteen, fifteen, thirteen, and fourteen features were selected from DS-RMLR, 

DS-RMRR, and DS-EE, and DS-PIE. These identified key residues consist of three motifs: an N-

terminal motif (R8, L10), a charged motif (L23, D25, G27, A28, D29, D30, and V32), and a 

motif corresponding to flap region (residue 43-58), as shown in Figure 4. Both the N-terminal 

motif and the charged motif are common to DS-PIE, DS-RMLR, DS-RMRR and DS-EE. The 

flap region is identified by DS-RMRL and DS-RMRR.  

All-atom MD simulations have shown that the conformational dynamics of flap region 

(residue 43-58) plays a key role in the ligand binding process of HIV-1 protease [26,27,28]. 

Consistent with this observation, the residues in the flap region are identified as key kinetic 

features with signification displacement upon ligand binding. The recapitulation of the findings 

from the MD simulation provides a validation to the data-driven approach in the paper. The 

charged motif in the active site participates in substrate peptide recognition. Specifically, D25 

and D29 form hydrogen bonds with substrate peptide. Additionally, R8 and D30 can interact 

with polar side chains or distal main chain groups in longer substrate peptides. Moreover, the 

mutation of L10, L23, and V32 lead to drug resistance of HIV protease inhibitors.  
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5. Combined electrostatic and conformational dynamic features can predict 

kon/koff  accurately 

We examine the impacts of the energetic and conformational dynamic features on the 

prediction of kon/koff accuracy by building different MTML models in three stages. First, we use 

energetic features (data sets: DS-EE, DS-PIE, DS-VDWE) to build the MTML model. Second, 

in order to evaluate if the normal mode directionality features can be used to predict the ligand 

binding and unbinding process, we apply DS-RMRR, DS-RMLR and DS-RMLR+DS-RMRR 

comprising 88 training attributes in the feature vectors to build the MTML model. Third, we 

integrate the properties of conformational dynamics and energetics by adding the RMLR features 

to DS-EE (data set DS-EE+DS-RMLR) to build the MTML model.  

For the models trained by DS-EE, DS-PIE, DS-VDWE, DS-RMLR, DS-RMRR, DS-

RMLR+DS-RMRR, and DS-EE+DS-RMLR, the highest prediction accuracy of log10kon are 

71.79, 69.23, 43.59, 69.23, 51.28, 69.23, and 76.92% respectively (Figure 5A), the highest 

prediction accuracy of log10koff are 76.92, 66.67, 56.41, 71.79, 64.10, 71.79, and 71.79% 

respectively (Figure 5B), and the highest prediction accuracy of the combined four-class 

log10kon/log10koff are 71.79, 66.66, 47,43, 69.23, 57.69, 70.51, and 74.35% respectively (Figure 

5C). 

Among the three models trained by the energetic features, the prediction accuracy of the 

combined four-class log10kon/log10koff given by the DS-EE and DS-PIE models are significantly 

higher than a random guess (50%) by 21.79 and 16.66% respectively, but the accuracy given by 

the DS-VDWE model is lower than random by 2.57%. These results suggest that in the case of 

HIV-1 protease, electrostatic interaction plays a key role in the binding/unbinding process, and 
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the Electrostatic Energy features are more accurate in predicting kon and koff than the features of 

van der Waals Energy and Pairwise Interaction Energy. 

For all the three models trained by the normal mode directionality features, the prediction 

accuracy of the combined four-class log10kon/log10koff is higher than random. Although the 

accuracy given by the DS-RMRR model is only slightly higher than random by 7.69%, the 

accuracy given by the DS-RMLR and DS-RMLR+DS-RMRR models are significantly higher 

than random by 19.23, and 10.51% respectively. These results suggest that the normal mode 

directionality can capture the information on the ligand binding and unbinding process.  

Comparing with the prediction accuracy of the combined four-class log10kon/log10koff 

given by the DS-EE  and DS-EE+DS-RMLR models shows that integrating the conformational 

dynamic features into the energetic features increases the accuracy from 71.79 to 74.35 by 

2.56%. Consequently, it implies that the electrostatic interaction and conformational dynamics 

are jointly responsible for the binding kinetics of HIV protease.  

 

 

Discussions 

1. Coherent receptor-ligand movement is one of the structural determinants of 

protein binding/unbinding kinetics 

Consistent with the all-atom MD simulation, the MTML model trained with the relative 

directionality of normal mode between residue and ligand recapitulates the role of flap region in 

the binding kinetics of HIV protease.  It is known that electrostatic interaction between a charged 

drug and a charged receptor impacts the kinetic rate constants [29,30]. Specifically, kon is 

sensitive to long-range electrostatic interaction, and koff tend to be influenced more by short-

range interactions such as hydrogen bonds, salt bridges and van der Waals contacts [31]. The 
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majority of the residues selected in this study are hydrophobic; the exceptions are the catalytic 

D25 and D29, which are able to form hydrogen bonds with the main chain groups of substrate 

peptides, and R8, D30 and K45 which can interact with polar side chains or distal main groups in 

longer substrate peptides. The MTML model ranks these charged residues more important than 

the flap region in their contribution to the prediction accuracy. In addition, the MTML model can 

achieve high prediction accuracy using the electrostatic energy alone. These indicate that the 

electrostatic interaction is one of the major factors in determining the binding/unbinding kinetics 

of HIV protease.  

Interestingly, in addition to the electrostatic interactions, the directionality of ligand 

binding site residue movement also has strong correlations with the kinetic constants. Not only 

the similar residues are selected from DS-RMLR to those from DS-EE, the best performed 

MTML model is obtained from the combination of DS-RMLR and DS-EE. Based on this 

observation, we propose that the coherent movement between the ligand and the receptor may 

play a critical role in determining the ligand binding and unbinding kinetics. As shown in Figure 

6, even two protein-ligand complexes have the same non-covalent interactions with the same 

intensity, they may have different kinetic constants due to the different relative movements 

between the ligand atom and the receptor atom. It is not surprising, as the non-covalent 

interactions, especially hydrogen-bonding, depends on the relative directionality of atomic pairs. 

The relative movement may change the directionality of the interaction, thus weaken (even 

break) or strengthen the interaction. Thus, the coherent conformational dynamics coupling could 

be one of key structural determinants of protein binding/unbinding kinetics. This has not been 

observed before.  
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2. High-throughput predictive modeling of ligand binding and unbinding 

kinetics 

In spite of recognized importance of protein-ligand binding and unbinding kinetics in the 

drug discovery, few efficient computational tools are available to screen and optimize chemical 

compounds based on the binding and unbinding kinetics. With the increasing availability of 

experimentally determined kon/koff data [14,15], data-driven approach is an appropriate choice for 

the development of a high-throughput predictive model of ligand binding and unbinding kinetics 

[32]. However, two questions remain to be answered in developing an effective and efficient 

machine learning model. First, what are the molecular determinants of ligand binding and 

unbinding kinetics so that they can be used as features to train a high-quality machine learning 

model with the minimum impact of over-fitting, and false correlation? Second, what are the 

suitable machine learning algorithms that can handle high-dimensional data and predict kon/koff 

simultaneously? For the first time, we have shown that NMA could be an efficient tool to capture 

the conformationally dynamic information of the ligand binding and unbinding kinetics. The 

features derived from the NMA could be used to enhance the performance of the machine 

learning model. Moreover, recently developed multi-target classification algorithms such as RF-

Clus could be adopted to train a machine learning model that can predict dependent kon/koff 

simultaneously.  

Although this proof-of-concept study demonstrates the potential of integrating 

physically-based modeling with multi-target machine learning in understanding the molecular 

determinants, and developing high-throughput predictive model of ligand binding and unbinding 

kinetics, there is plenty of space to improve the methodology.  Since solvation effect causes a 

discrepancy on a timescale between real molecular motion and NMA that are calculated in 
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vacuum, it is expected that NMA coupled with an implicit or explicit solvation model may 

provide more information on the conformational dynamics of ligand binding process. As water 

plays a critical role in the ligand binding, the explicit incorporation of the water molecule in the 

binding site may improve the accuracy of simulation. The global and local geometry of binding 

pocket could be another important feature [33,34]. In the current study, the ligand is treated as a 

single rigid body. As a matter of fact, the flexibility of the ligands may have impacts on the 

kinetic rate constants. As shown in supplemental information Figure S2, both of the values of 

log10kon and log10koff are weakly correlated with the ligand flexibility that is characterized by the 

number of rotatable bonds. The general trend is that the kon and koff decrease as the number of the 

ligand rotatable bonds increases. It suggests that the performance of MTML model could be 

further improved by incorporating the ligand properties. We group the kon/koff into four classes 

and use the classification model to predict the class and to select features. In practice, it could be 

more useful to predict the real value of kon and koff simultaneously. It requires a multi-target 

regression model, which is an active area of research in machine learning.  

There are three different models of conformational ensemble of protein-ligand complex. 

They are the model of induced fit mechanism which is adopted by HIV-1 protein-ligand complex 

[1,35], the model of selected fit mechanism [36,37], and the model of three step mechanism 

[38,39]. The mechanism of model determines the on-rate and off-rate equations. For example, 

the induced fit on-rate is limited by the diffusional rate of encounter complex formation of the 

proteins in their unbound conformational ensemble, but the off-rate is dependent on the 

equilibrium between the ground state complex and the excited state complex [35]. Since all the 

training data sets in this study only cover the characteristics of the ground state HIV-1 complex, 

the ignorance of the characteristics of the excited state HIV-1 complex could induce deficiency 
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in the predictive model. In summary, the further development of predictive modeling tools of 

ligand binding and unbinding kinetics will bridge one of the critical missing links between in 

vitro drug potency and in vivo drug efficacy and safety on a large scale, thereby accelerating 

drug discovery process. 

 

Materials and Methods 

Figure 7 depicts the workflow of computational procedure in this study, which includes 

four phases: Phase 1 concerns the structure construction of 3D ligand-bound HIV-1 protease 

complex. Phase 2 addresses the identification of ligand binding site residues. Phase 3 targets the 

construction of the five principal data sets. Phase 4 is machine learning computation.  

In brief, chemical structures of HIV protease inhibitors were converted into 3D 

conformation from their 2D structure. Then, the ligand was docked in the HIV protease if no co-

crystallized structures exist. Normal Mode Analysis (NMA) was performed for both apo- and 

holo-structure for each inhibitor. Relative Movement of Ligand-Residue (RMLR) and Relative 

Movement of Residue-Residue (RMRR) that represent the conformational dynamics impact of 

ligand binding on the binding site residues were derived from NMA analysis. In addition, 

Pairwise Interaction Energy as well as its two components, van der Waals Energy and 

Electrostatic Energy between the ligand and amino acid residues, were derived from the 20 ns 

all-atom Molecular Dynamics simulation and environmental-dependent electrostatic potential 

energy. Finally, conformational dynamics and thermodynamics features, individually or 

combined, are used to train multi-target machine learning models.  
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Table 1. Key residues identified from four data sets: DS-RMLR, DS-RMRR, DS-EE, and 

DS-PIE. The feature selection criterion is the frequency of attribute occurrence ≥ 25%. Most of 

the residues are in chain A, and only three residues (with * superscript) are in chain B. Residues 

whose mutation lead to drug resistance are underlined. 

 

Residue         DS-RMLR         DS-RMRR             DS-EE            DS-PIE 

Frequency Score Frequency Score Frequency Score Frequency Score 

R8 35.86 0.78 56.46 0.73 64.79 0.74 52.32 0.73 

L10 39.13 0.75 61.16 0.71 34.72 0.77 43.04 0.75 

L23 45.60 0.71 54.18 0.71 40.69 0.72 35.52 0.76 

D25 44.21 0.69 45.02 0.73 37.41 0.75 49.28 0.70 

G27 42.85 0.68 39.96 0.73 30.62 0.75 35.40 0.72 

A28 34.70 0.68 39.67 0.70 35.23 0.71 27.48 0.75 

D29 28.18 0.71 41.37 0.67 28.36 0.73 48.60 0.67 

D30 30.95 0.70 39.79 0.67 25.90 0.72 28.24 0.71 

V32 29.35 0.66 37.83 0.66 25.15 0.72 29.84 0.70 

K45 37.77 0.65 35.79 0.68   27.98 0.70 

   I47 30.44 0.68 35.19 0.66 25.54 0.68   

G48 26.88 0.67 26.10 0.66     

G49 34.44 0.63 31.57 0.63 33.23 0.66   

I50   36.64 0.61     

A52 26.08 0.66 27.07 0.62   26.73 0.64 

F53 27.90 0.66       

L76       26.63 0.62 

P81     25.54 0.63 25.78 0.61 

R8* 30.55 0.61       

D25*       31.25 0.60 

D29*     28.13 0.65   
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Figure legends 

 

Figure 1. Discretization of kon and koff of HIV protease inhibitors. Results of the discretization 

based on the criteria set at log10koff = -2 (x-axis) and log10kon = 5.6 (y-axis). Thirty-nine training 

records were discretized into four binary classes: (0,0), (0,1), (1,0), and (1,1).  

 

Figure 2. Forty-four HIV-1 residues selected by SASA program and the 26 drug resistant mution 

residues. The chains A and B of HIV-1 are in transparent gray and green ribbons, respectively, 

with their flap regions (residue id: 43 – 58) in pink cartoon and active site (residue id: 25 – 29) in 

blue cartoon. The 22 SASA residues on the chain A are represented by 5 red beads for the 

charged residues and 17 green beads for the neutral residues. The 26 drug resistant mutation 

residues are depicted in lines on the chain B including the 12 PIRM residues near the binding site 

in red and the 16 PIRM residues outside the binding site in green. 

 

Figure 3. Directionality of normal mode. (A) Superposition of the 44 residue eigenvectors of the 

aligned apo HIV-1 structure (red) (PDB code:3IXO) and the DMP bound HIV-1 structure (blue) 

(PDB code: 1QBS) of 1st normal mode. (B) Eigenvector displacements of the 44 DMP (red) –

residue (green/blue) pairs in the DMP bound HIV-1 complex (1st normal mode). Green/blue 

arrows are the eigenvectors of the 22 residues of chain A/B respectively. 

 

Figure 4. Twenty-one key residues. Chains A and B of HIV-1 protease are in transparent grey 

and transparent yellow ribbons, respectively. The three residues located on the chain B are 

labeled with * superscript. Charged residues including L23, D25, G27, A28, D29, D30 and V32 
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are in green. Residues located on the N-terminal including R8 and L10 are in red. Residues 

located in the flap region including K45, I47, G48, G49, I50, A52, and F53 are in blue; L76 and 

P81 located near the flap region are in pink. 

 

Figure 5. Prediction accuracy of (A) log10kon, (B) log10koff, and (C) the combined four-class 

log10kon/log10koff. The number in parentheses is the iteration number used in the experiment. 

 

Figure 6. (A) Coherent conformational coupling. The relative movement between ligand atom 

and receptor atom will not change the distance and directionality of the interaction, thus the 

intensity of interaction will not be changed. (B) Incoherent conformational coupling. The relative 

movement between ligand atom and receptor atom will alter the distance or directionality of the 

interaction. As a result, the interaction could be weaken or broken. 

 

Figure 7. Schema of methodology. 
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Supporting Information 

 
Table S1. Results of the discretization. There are 9, 8, 10, and 12 training records in the binary 

classes of (0,0), (0,1), (1,0), and (1,1), respectively. Each record was identified by its 

corresponding ligand name. 

Binary Class (0,0) (0,1)  (1,0) (1,1) 

Ligand I.D. 

A037 Saquinavir B347 B369 

B429 B440 B365 B388 

B409 Nelfinavir A016 A021 

A038 Indinavir A024 B355 

B412 B408 A047 A030 

B439 Ritonavir A023 B322 

B268 Amp A017 B425 

B277 U75875 B249 A045 

B435   A018 B295 

    A015 B376 

      A008 

      DMP323 

No. of records in the class 9 8 10 12 
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Figure S1. Docking ligand into HIV-1 protease.  DMP (blue) is the co-crystalized ligand in 

HIV-1 protease (PDB code: 1QBS). Ligand A008 (red) is docked into the HIV-1 of 1QBS. 
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Figure S2. Number of ligand rotatable bond versus log10kon / log10koff. Each data point represents 

one sample of ligand-HIV-1 complex. 
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