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Abstract 

The diversity of a person’s B- and T-cell repertoires is both clinically important and a key meas-

ure of immunological complexity. However, diversity is hard to estimate by current methods, due 

to inherent uncertainty in the number of B- and T-cell clones that will be missing from a blood or 

tissue sample by chance (the missing-species problem), inevitable sampling bias, and experi-

mental noise. To solve this problem we developed Recon, a modified maximum-likelihood 

method that outputs the overall diversity of a repertoire from measurements on a sample. Recon 

outputs accurate, robust estimates by any of a vast set of complementary diversity measures, 

including species richness and entropy, at fractional repertoire coverage. It also outputs error 

bars and power tables, allowing robust comparisons of diversity between individuals and over 

time. We apply Recon to in silico and experimental immune-repertoire sequencing datasets as 

proof of principle for measuring diversity in large, complex systems. 
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Introduction 

Recent technological advances are making it possible to study B- and T-cell repertoires in un-

precedented detail1. Of special interest is repertoire diversity, defined as the number of different 

B- or T-cell receptors on cells present in an individual, tissue (e.g., peripheral blood, bone mar-

row), tumor (e.g., tumor-infiltrating lymphocytes), or cell subset (e.g., influenza-specific IgG+ B 

cells). This interest follows observations that immune-repertoire diversity correlates with suc-

cessful responses to infection, immune reconstitution following stem-cell transplant, the pres-

ence or absence of leukemia, and healthy vs. unhealthy aging2-5. The reliability of such observa-

tions depends on the ability to measure diversity—and differences in diversity—in overall B- or 

T-cell populations accurately and with statistical rigor from clinical and experimental samples. 

Similar requirements also arise in the study of cancer heterogeneity, microbial diversity, and 

high-throughput sequencing, as well as beyond biology.6-9 However, measuring diversity is more 

complicated than it may seem, for three reasons. 

First, “diversity” may refer to any of several different measures. The most familiar diversity 

measure is the number of different species in a population: the species richness. An example of 

species richness is the number of B-cell clones in an individual (where “clone” denotes cells with 

a common B- or T-cell progenitor). Other diversity measures provide complementary information 

about the size-frequency distribution of species in the population. For example, the Berger-

Parker index (BPI) measures clonality, i.e., the dominance of the single largest clone (Fig. 1).10 

Diversity measures that have been used on immune repertoires include species richness, 

Shannon entropy (henceforth “entropy”), and the Simpson and Gini-Simpson indices11-14. Of 

these, species richness is unique in that it takes no account of the frequency of each species. In 

contrast, entropy and other measures systematically down-weight or undercount rarer clones. 

The above measures (and many more) are related through a mathematical framework de-

scribed by Hill15, 16. Using simple mathematical transformations, this framework allows each 
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measure to be interpreted as the “effective number” of species of a given frequency, facilitating 

comparisons among different measures (Fig. 1b). For example, entropy, conventionally meas-

ured in bits, is converted into an effective number via exponentiation. Thus in the overall reper-

toire in Fig. 1, the effective number of clones is 7.4 by entropy and 2.9 by BPI (Fig. 1b). The 

point here is that different diversity measures provide complementary information: two distinct 

repertoires can have the same species richness but different entropies or BPIs, and vice versa 

(Fig. 1d).10 Thus, no single measure is likely to capture all of the features of interest in a given 

repertoire. Consequently, methods for measuring immune-repertoire diversity should be capable 

of outputting any diversity measure. 

Second, the diversity of a sample (e.g. a 5-milliliter clinical blood sample) can differ markedly 

from the diversity of the overall repertoire from which it derives (e.g., the 5 liters of blood in the 

body). Although blood and tissue samples may contain thousands or millions of B or T cells, 

these are only a fraction of the billions of such cells that may comprise an overall repertoire. 

Consequently, some clones in the overall repertoire, especially small clones, almost always go 

unsampled and thereby undetected in measurements on samples (Fig. 1a). As a result, sample 

diversity usually underestimates true diversity (Fig. 1b). This phenomenon is known as the miss-

ing-species problem17. Weighted diversity measures (e.g., entropy) are less sensitive to missing 

species than is species richness, since they down-weight the small clones that are most likely to 

be missing. However, using weighted measures as a substitute for species richness has draw-

backs. First, it is unclear what information is lost or biased by selectively ignoring small clones. 

Second, even using weighted measures, sample diversity will approximate overall diversity only 

when clone sizes (the number of cells per clone) in the sample approximate clone sizes in the 

overall population; however, clone sizes will inevitably be biased by the phenomenon of sam-

pling noise. Note that unlike experimental error, which can be minimized, sampling noise is in-

trinsic to sampling, and will affect measurements even under perfect experimental conditions 
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(e.g. even if every cell in a sample is counted and perfectly annotated). Consequently, depend-

ing on the clone-size distribution and diversity measure, sampling can misrepresent overall di-

versity even when using weighted measures (Fig. 1b and below). 

Third, real-world experiments will always exhibit some degree of experimental error, which man-

ifests as noise in sample measurements. Sources include quantitation error due to imprecise 

cell counts, amplification dropouts, and jackpot effects; sequence error from amplification and 

sequencing; and annotation error introduced during data processing. Measuring diversity accu-

rately requires methods that address not only the missing species problem and sampling noise, 

but experimental noise as well. 

Existing methods for addressing the missing species problem either output only a single diversi-

ty measure (species richness) for the overall population, or else have known or suspected prob-

lems scaling to the complexity of immune repertoires. The first category includes Fisher’s gam-

ma-Poisson mixture method, a parametric method that has been used on T-cell repertoires, 

which involves a divergent sum that can result in large uncertainties18, 19; the phenomenological 

approach of extrapolating from curve fitting13, 14, 20, 21; and the Chao estimator (CE), a fast and 

simple calculation that avoids divergent sums and has been widely used in ecology22, 23.  The 

second category includes maximum-likelihood approaches such as the state-of-the-art methods 

of Norris and Pollock (NP)24, 25 and Wang and Lindsay (WL)26; however to our knowledge these 

have not been tested on, or are known not to scale to, highly complex populations like reper-

toires; or else make restrictive assumptions about the clone-size distribution of the overall reper-

toire and therefore are not generalizable27. Moreover, because a higher-likelihood fit can often 

be had by adding more small clones, existing maximum-likelihood approaches yield estimates 

that may overestimate diversity by orders of magnitude or be entirely unbounded—i.e., they 

may find that best estimate of diversity in the overall population is infinity28. 
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We move beyond these shortcomings using a new algorithm, Recon—reconstruction of esti-

mated clones from observed numbers—a generalized high-performance modified maximum-

likelihood method that makes no assumptions about clone sizes or clone-size distributions in the 

overall repertoire, estimates any diversity measure, and leads naturally to sensible error bars 

that facilitate practical, statistically reliable comparisons between samples, including between 

individuals and over time, for complex populations. 

Results 

Description. Recon is based on the expectation-maximization (EM) algorithm6, 29. Briefly, an 

initial description of the overall distribution is refined iteratively based on agreement with the 

sample distribution, adding parameters as needed until no further improvement can be made 

without overfitting (Fig. 1c). The result is the overall clone-size distribution that, if sampled ran-

domly, is statistically most likely to give rise to the sample distribution subject to the no-

overfitting constraint (Fig. S1). The only assumptions Recon makes are that the overall reper-

toire is large relative to the sample and well mixed. 

The input is the observed clone-size distribution in a sample, provided as list of clone sizes and 

counts. This is easily generated from sequence data by counting clones that have the same 

number of sequences in the dataset for (at least semi-)quantitative sequencing. Recon outputs 

(i) the overall clone-size distribution; (ii) the diversity of the overall repertoire as measured by 

species richness, entropy, or any other Hill measure, with error bars; (iii) the number of missing 

species, with error bars; (iv) the minimum detected clone size (below); (v) the diversity of the 

sample repertoire, for comparison to overall diversity; and (vi) a resampling of the overall distri-

bution for comparison to the sample and plots thereof. Recon can be run on tumor clones, mi-

crobial species, sequence reads, or other populations, including non-biological ones. Recon can 

also generate tables for power calculations and experimental design. 
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Recon embodies six improvements over the previous state of the art. First, to avoid dependence 

on initial conditions or becoming trapped in local maxima, Recon “scans” a number of initial 

conditions in each iteration of the algorithm. We verified that scanning produces substantially 

better estimates of overall clone sizes, missing species, and diversity measurements (Fig. S4). 

Second, Recon optimizes the average of the two best fits in each round (reminiscent of genetic 

algorithms). Third, it includes a check to prevent overfitting due to sampling noise. Fourth, it 

makes no assumptions about the overall clone-size distribution, making it widely applicable. 

Fifth, it improves over previous maximum-likelihood models in avoiding unbounded uncertain-

ties, for example regarding bounds on overall diversity estimates. And sixth, it is substantially 

faster (Fig. 2b, c). 

Current methods tend to overestimate species richness when coverage is low, as small clones 

added to the estimate result in overfitting of the sample distribution—in the limit, as mentioned, 

leading to an estimate with infinite infinitesimal clones. Recon uses discrete clone sizes, which 

in the worst case ensures that estimates are bounded by the number of cells in the overall rep-

ertoire (clones cannot outnumber cells). Beyond that, Recon’s use of both a noise threshold and 

the (corrected) Akaike information criterion provide tighter bounds, rejecting additional clones 

unless their expected contribution to the sample rises above sampling noise (by 3 standard de-

viations in our implementation) and outweighs the penalty of adding more parameters. The 

trade-off is that for each sample, there is a minimum clone size that Recon can detect: if ≤1, 

Recon’s species-richness estimate will include clones represented by just a single cell in the 

overall repertoire, if there are any; if >1, in principle there may be clones in the overall repertoire 

that are too small to detect. In this case Recon can be used to calculate a strict upper bound, U, 

on species richness that includes clones that may be “hiding” (Online Methods and Supplemen-

tary Information). However we note that even in this case, in practice, for a given sample, the 

smallest clones detected may still be the smallest clones there are (the case for our in silico 
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repertoires; below). 

Validation. We validated Recon on in silico repertoires that spanned nearly five orders of mag-

nitude of overall diversity (300-10 million clones) and a wide range of clone-size distributions: 

from steep, i.e., dominated by small clones, to flat exponentials; reciprocal-exponential distribu-

tions that derive from a generative model; and multiple bimodal distributions of small and large 

clones, 1,711 in all, with and without simulated experimental noise (Online Methods). These 

repertoires served as gold standards. We sampled a known number of cells from each, for cov-

erage ranging from 0.01x to 10x, and used Recon to reconstruct overall repertoires from each 

sample. (Coverage is the number of cells in the sample ÷ the number of clones in the overall 

repertoire.) We then compared the diversity of the reconstructed overall repertoire with the true 

overall diversity and sample diversity. We measured diversity by species richness, entropy, 

Simpson Index, and BPI (Fig. 1b). 

First, to illustrate the extent of the problem Recon solves, we compared sample diversity with 

overall diversity (Fig. 2a). For a given sample size, higher overall diversity means lower clonal 

coverage (the number of cells in the sample per clone in the overall repertoire). For each reper-

toire, the error, defined as the difference between sample and overall diversity, grew as cover-

age fell below 1x, because samples cannot have more clones than cells. Consequently, for spe-

cies richness, sample diversity underestimated true diversity by 50% at 1x coverage, 10 fold at 

0.1x coverage and 30 fold at 0.03x coverage. The weighted measures performed little better, 

even for the flattest clone-size distributions that we tested, partly due to the absence of clones 

large enough to dominate these repertoires (e.g., leukemic clones; Figs. 2 and S2). We con-

cluded that sample diversity is generally an unreliable proxy for true diversity below 1x coverage 

in the absence of dominant clones. 

In contrast, Recon’s estimates of overall diversity showed excellent agreement with true diversi-
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ty across the range of diversity measures, even at <1x coverage (Fig. 2a, lower panels). For 

species richness, Recon’s estimates were accurate to within 1% of the true diversity at 10x cov-

erage, 10% at 3x coverage, and 50% at just 0.03x coverage—at which there is just one cell in 

the sample for every 30 clones in the overall repertoire. Error for entropy and other weighted 

measures was lower. Recon was also robust to noise (Fig. 2b-c). 

To visualize self-consistency, we resampled from the overall repertoires we reconstructed from 

our gold-standard distributions in order to compare the resulting sample clone-size distributions 

to those of the original samples. We found excellent agreement between predicted and ob-

served frequencies of clone sizes across the range of overall diversities and levels coverage, 

including on numbers of missing clones (Fig. 3). Recon’s ability to estimate the number of miss-

ing clones accurately was a key contributor to the accuracy of its overall diversity estimates. The 

number of missing clones depended strongly on the number of singlets (clones represented by 

a single cell) and doublets (two cells) in the sample: large singlet-to-doublet ratios, with enough 

of both for low sampling noise, gave more accurate estimates. 

In head-to-head comparisons on 3,200 in silico samples with experimental noise (Online Meth-

ods), Recon was both faster and more accurate than the prior methods NP and WL, which like 

Recon can be used to estimate overall diversity by multiple diversity measures (Fig. 2b-c; Fig. 

S2h). Specifically, Recon’s median runtime of 4.7 seconds (95th percentile, 11 seconds) was 

>40x faster than WL and >800x faster than NP, both of which often took hours and sometimes 

days to complete (Fig. 2c). Recon’s median error of 0.23x was smaller than that of NP (0.25x) 

and WL (0.26x), which was often off by orders of magnitude (mean, 198x; 95th percentile, 

>1,500x). Recon was also more than twice as accurate as CE (0.53x median error; Fig. 2b, e), 

which is fast but limited to outputting species richness. 

Error bars and power calculations. Detecting reliable differences in overall diversity requires 
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that diversity estimates have reliable bounds. Recon outputs two types of bounds: error bars on 

overall diversity (more precisely, on the effective number of clones greater than or equal to a 

minimum detected clone size) and a maximum-possible overall species richness, U (Supple-

mentary Information). 

To build error bars, we first sampled gold-standard repertoires systematically across three or-

ders of magnitude of coverage (0.01x-10x). For each sample, we used Recon to estimate over-

all diversity. Because higher coverages produce better estimates, the resulting error profile con-

verges with increasing coverage to the true overall diversity (Fig. 4a). The upper and lower con-

tours of this profile correspond to the largest and smallest values of estimated diversity that are 

consistent with a given true diversity. To make an error bar for a given estimated diversity, 

Recon uses the contours of the error profile to find the true diversities for which the estimated 

diversity is at the lower bound and the upper bound. These respectively define the upper and 

lower error bars (Figs. 4b, 4c). Following cross-validation, we adjusted our error profile slightly 

so that error bars reflect 95% confidence intervals (Online Methods). Combining error profiles 

across all samples suggests that ≥1x coverage generally produces error bars of ≤10% for over-

all species richness (Fig. 4d), consistent with our previous observations (Fig. 2). 

Recon uses this error-bar framework to determine the coverage required to confidently detect 

differences in diversity between samples (e.g., between individuals or over time). Given an or-

der-of-magnitude estimate of the overall diversity for two samples, it outputs the minimum sam-

ple size for which error bars for overall diversity estimates from these samples would not over-

lap, at detection thresholds ranging from e.g. 1.1x to 5x (Table 1). This sample size is the mini-

mum required to reject the null hypothesis that two estimates that differ by a given amount are 

actually from the same overall repertoire, at a confidence level of p=0.05 (Supplementary Infor-

mation). Not surprisingly, detecting larger differences requires smaller sample sizes; less obvi-

ously, for a given overall diversity there is a minimum sample size below which the number of 
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non-singlets is expected to be too small for Recon to run. So  an experiment designed to detect 

a 1.1x (10%) difference in species richness between two samples, in which the samples are 

drawn from overall repertoires that have ~100,000 clones, will require ≥313,792 cells from each 

sample for analysis. This is the number of cells in the sample that are in small (≤30 cell-) clones 

that Recon requires to perform reconstruction; if half of the cells in a sample of 314,000 cells 

belong to a single large clone, e.g. because of leukemia, the remaining half comprising the non-

leukemic clones will be sufficient to detect a 20% difference in the species richness of the non-

leukemic portion of the repertoire (which requires ≥153,543 cells), but not 10%. 

To test Recon and our error-bar framework beyond exponentially and multimodally distributed 

samples, we ran it on a sample distribution previously identified as causing difficulties for overall 

species-richness estimation by multiple existing methods, corresponding to an overall popula-

tion of ~3,000 species sampled at ~0.8x coverage (Supplementary Information)28. Three- and 

four-point mixture models, a logit normal model, a log-gamma model, and a beta model gave 

variable estimates that ranged from 2,930-3,494 overall species, with non-overlapping error 

bars that ranged from 2,867 to >10,000. In contrast, Recon returned an estimate of 3,014 over-

all species, with error bars (2,709-3,513) that bracketed the range of other models’ estimates, 

suggesting Recon improves on multiple methods beyond WL and NP in arbitrary and/or difficult 

cases. 

Experimental data. Having validated Recon, we next applied it to six experimental datasets: 

four of paired heavy-and-light chain sequence and two of heavy chain sequence (Online Meth-

ods). We used the authors’ clone definitions—clusters of reads with ≥96% nucleotide identity in 

heavy-chain complementarity determining region 3 (CDRH3)30 or reads with identical CDRH3s 

and VH annotations 31—with the caveats that clone assignment is difficult, some cells may not 

have been sequenced, artifacts are possible, and sequencing is only semi-quantitative. Be-

cause such datasets reflect the current state of the art in the field and are used for diversity 
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measurements, we considered them as (imperfect) samples and used Recon to estimate diver-

sity for the corresponding overall repertoires (Table 2). As with our gold-standard samples, 

resampling showed excellent agreement with the observed data (Fig. 5). For four of the six rep-

ertoires, we found that missing species accounted for the majority of clones: i.e., half of all 

clones are unseen, and species richness in the sample underrepresents overall species rich-

ness by 2x. Entropy was generally very similar between samples and overall repertoires, result-

ing from very large clones and/or PCR jackpot effects that contribute disproportionately to the 

entropy calculation. Thus in these datasets, overall species richness, estimated using Recon, 

captures information lost during sampling that entropy does not. 

Discussion 

High-throughput technologies enable highly detailed descriptions of B- and T-cell repertoires. 

That these descriptions are generally of samples, and not e.g. blood or tissue repertoires over-

all, may seem to be a distinction without a difference when samples contain many cells. Howev-

er, and perhaps counterintuitively, it turns out to be critical for estimating overall diversity. Un-

less the number of cells in a sample exceeds the number of clones in the overall repertoire by 

~3-10-fold (Fig. 3), sample and overall diversity may bear little relation (Figs. 2a, S2a-c). Im-

portantly, this discrepancy is not a technological shortcoming but an inherent constraint of ran-

dom sampling (Fig. 1a). In humans, overall repertoires may contain many millions of clones. 

Because routine blood samples rarely contain more than a few million B and T cells of any sort 

combined, they are too small for sample diversity to serve as a reliable proxy for overall diversi-

ty. Thus conclusions drawn only from sample diversity measurements warrant caution. 

This caveat applies for all diversity measures. Entropy, often used to measure sample diversity 

in immune-repertoire studies, is less prone to undercounting. However, in our gold-standard 

repertoires even BPI, the Hill measure least prone to undercounting and most robust to missing 
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species, underestimates overall diversity by an order of magnitude for levels of coverage en-

countered in experiments (Figs. 2, S2). It is unsurprising, then, that sample entropy can also 

underestimate overall entropy in these repertoires (Figs. 2, S2). Additional caveats apply to ex-

perimental datasets. Insufficient read clustering will overestimate species richness; for clone 

sizes defined proportional to the number of reads, PCR jackpot effects can produce artificially 

large “clones,” overestimating entropy. These biases, not mutually exclusive, may affect species 

richness and entropy in the experimental datasets we studied (Table 2). Better quantitation 

(e.g., via barcoding and robust clonality modeling) would mitigate these biases but not the bias 

intrinsic to sampling, which Recon addresses. 

Recon outperforms prior methods even for large, complex clone-size distributions, at fractional 

coverage, and in the presence of experimental noise (Figs. 2-3, S2). Notably, Recon avoids 

WL’s major failure modes: the 10-50 percent of cases in which WL unpredictably takes hours or 

days to run and/or overestimates diversity by orders of magnitude. Recon’s characteristic 

runtime of seconds to a minute is especially faster than NP, and negligible relative to the hours-

to-days of current sequence-processing pipelines. These advantages are not unexpected given 

that Recon was designed for handling samples from large, complex, and arbitrary distributions. 

Error bars and power tables are necessary steps toward being able to compare diversity be-

tween samples and over time and thus for evaluating diversity as a potential biomarker. Recon’s 

error bars and tables for entropy, BPI, and other measures mean differences can be assessed 

for any measure or noise level. Recon’s error bars perform well by practical tests, bracketing the 

number of missing species in validation studies and squaring previous models28. Its power ta-

bles offer guidance for sample requirements during experimental design and suggest expected 

limitations for different studies. For example, measuring the species richness of naïve reper-

toires of ~107 clones31, 32 will likely require phlebotomy or apheresis samples; even then, detect-

ing 50-percent differences is probably the limit (Table 1). Meanwhile, measuring diversity for 
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effector/memory subsets should require only routine blood draws (2-6mL), which should detect 

sub-fold differences. For marrow, spleen, tumor, granuloma, or abscess samples, the investiga-

tor must decide whether the sample is well mixed, which Recon requires. 

High-throughput technologies hold much promise for measuring diversity in repertoires, cancer, 

and other complex populations, but current limitations warrant caution. Because most sequenc-

ing experiments are still only semi-quantitative, the number of reads does not always reflect the 

number of cells. Chimerism and sequencing/annotation errors mean not all clusters are clones. 

Incomplete cell lysis and sequencing inefficiencies can underestimate sample size. These limi-

tations affect the calculation and interpretation of diversity estimates and upper bounds; the ex-

amples we have shown should be interpreted accordingly, even as they illustrate application of 

our method. Overcoming these limitations will improve our understanding of overall diversity, a 

defining characteristic of complex systems that we can now better measure. 
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Online Methods 

Core algorithm. Mathematically, the problem is to find the B- or T-cell clone-size distribution in 

the individual (the “parent” or “overall” distribution) that is most likely to give rise to the clone 

size distribution that is observed in the sample (the sample distribution) (Fig. 1). From the parent 

distribution, we can then calculate overall diversity according to any diversity measure in the Hill 

framework. The core of our method is the expectation-maximization (EM) algorithm, in which a 

rough approximation of the parent distribution is refined iteratively until no further improvement 

can be made without overfitting29. 

The EM algorithm begins by assuming a parent distribution in which clones are all the same 

size, taken from the mean of the observations. To perform the fit, we need to know not just the 

observed clone frequencies but also the number of missing species, which is unknown and 

therefore must first be estimated. Following previous work33, we estimate the number of missing 

species by calculating the expected clone size distribution for a (Poisson) sample of the parent 

distribution (see “Sampling” below) and applying the Horvitz-Thomson estimator 34. We then fit 

the clone size of the parent distribution using maximum likelihood, recalculate the number of 

missing species, and repeat these steps until a self-consistent number of missing species is ob-

tained. This completes the first iteration of the algorithm, yielding the uniform parent distribution 

that is most likely to give rise to the sample distribution. 

In the second iteration, we refine this uniform parent distribution by adding a second clone size. 

We estimate the number of missing species for this new two-size distribution, fit the two clone 

sizes and their relative frequencies by maximum likelihood, and, as in the first iteration of the 

algorithm, repeat until there is no further improvement33. The result (pending a check for overfit-

ting, below) is the two-clone-size parent distribution that is most likely to give rise to the sample 

distribution. 
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In subsequent iterations, we continue to refine the parent distribution by adding clone sizes and 

refitting as above, iterating until no more clone sizes can be added without overfitting (using the 

corrected Akaike information criterion [AICc] as a stop condition). The result is the desired MLE. 

Note that whereas the sample distribution generally traces out a smooth curve, the MLE parent 

distribution is spiky, reflecting the limited resolution that information in the sample distribution 

provides about the parent distribution. 

Sampling. We assume that each clone in the individual contributes cells to the sampled popula-

tion according to a Poisson distribution. This will be true if (i) clones are well mixed in the blood 

or evenly distributed in the tissue being sampled, (ii) the parent population is sufficiently large 

that the Poisson estimate for the probability of e.g. a singleton contributing >1 cell is negligible, 

and (iii) no single clone is a large fraction (~30% or more) of the parent population. In practice, 

condition (iii) is satisfied by counting large clones directly (see “Fitting”). 

Fitting. The largest clones may be represented by hundreds or even thousands of cells in a 

sample. For such large clones, sampling error is small: the relative size of the clone in the sam-

ple and in the individual will be about the same. As a result, clones that are large enough to 

have sufficiently small sampling error do not have to be fit by EM, and instead can simply be 

added to the MLE. We found that using a threshold of 30 cells, and therefore applying EM only 

to clones that contribute ≤30 cells to the sample and then adding larger clones back to the re-

sulting MLE gives results that are indistinguishable from applying EM on the entire sample dis-

tribution, but with vast gains in speed. (Note that not seeing clones of sizes similar to sizes for 

which clones are seen is itself an observation, and therefore counts toward the number of ob-

servations used for calculating the AICc.) 

Scanning. In the standard EM algorithm, the exact sizes and frequencies of clones in the final 

MLE can vary depending on the sizes and frequencies used at the start of each iteration, reflect-
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ing different relative maxima. To find global maxima, we developed a “scanning” approach in 

which we applied EM to many starting clone sizes and frequencies (56 in our implementation), 

ranking results by maximum likelihood (after first adjusting likelihoods according to the number 

of ways to choose clones in each distribution; see Supplementary Information). In each round 

we perform an additional fit with starting clone sizes and frequencies at an average of the two 

top-ranked results. We then select the resulting best-ranked fit from the starting points. Runtime 

and (to some extent) accuracy correlate with the number of starting points.  

Diversity measures. Species richness, entropy, the Gini-Simpson Index, BPI, and indeed many 

other diversity measures are related to each other through the mathematical framework of the 

so-called Hill numbers15, 35. These form a series in which the index reflects the extent to which 

counts are weighted toward large clones. Species richness, in which large and small clones are 

counted equally and so large clones are unweighted, has an index of zero and is denoted !!  ( 

“D-zero”). Other measures, or simple mathematical transformations thereof, correspond to larg-

er indices; these include entropy (ln( !)! ), the Simpson Index (1 !! ), and BPI (1 !! ). 

We calculated !! , !! , !! , and !!  for sample and overall distributions from in silico-sampled 

synthetic gold-standard distributions (see “Validation” below and in the main text) and from sev-

eral published data sources (see “Experimental Data” in the main text). These !!  are a function 

of frequencies of clone frequencies !!, where i ranges over each clones and the frequencies are 

normalized to !!! = 1, defined as ! ! =! !!!!
!

!/(!!!)35. 

We calculated !!  by simply counting the number of different clones, !!  according to 

exp (− !! ln !!)!  , !!  according to the definition, and !!  as the reciprocal of the frequency of 

the largest clone (the above definition reduces to these expressions for the value ! = 0 and in 

the limits ! → 1 and ! → ∞). 
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Validation. We validated Recon against CE, Norris and Pollock, and Wang and Lindsay by 

generating a wide range of biologically plausible synthetic parent distributions of 109 cells in sili-

co, sampling from these distributions to produce samples of different known sizes, using the 

samples to estimate overall diversities according to species richness by the listed methods and 

the other above measures for all but CE (which outputs only species richness), and comparing 

these estimates against the (known) calculated diversities of the original parent distributions. 

We studied three families of test distributions in detail: (i) exponential distributions (of the form 

! ! ∝ !!!", where ! denotes clone size, ! !  is the frequency of clones of that size, and ! is a 

parameter that controls the steepness of the distribution), which are simple distributions that de-

scribe the shape of observed sample distributions phenomenologically; (ii) “reciprocal-

exponential” distributions (! ! ∝ !
!!!!"), which are the analytical solution to a simple biologically 

plausible model of the dynamics of most B- and T-cell clones; (iii) bimodal distributions with the 

largest clones an average multiple of the size of the smallest clones (e.g. 20-30x) in the overall 

population. We tested these distributions systematically by varying the steepness from very 

steep (s=1.2) to nearly flat (s=0.12) exponential distributions and different multiples for the bi-

modal distributions, encompassing the a range of biologically plausible clone-size distributions, 

with and without noise. We investigated three different modes of noise: (i) noise added to each 

count n with mean of zero and standard deviation 1.22· !; (ii) a small baseline amount of noise 

added to all clone sizes; and (iii) sporadic noise at random clone sizes (reminiscent of PCR 

jackpot effects). For completeness, we tested on both Macintosh (2.7GHz Intel Core i5 running 

OS X 10.11.1) and Linux (2.3-2.8GHz Intel Xeons running RHEL CentOS 6.6) platforms. NP 

and WL fits that were still incomplete after 100 hours were terminated. 

Error bars. Error bars define the range of overall diversity values that, given inevitable sampling 

error and any error in reconstructing parent distributions from samples of a given size, are con-

sistent with Recon’s estimate. We determined error bars for each diversity measure (species 
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richness, entropy, etc.) as follows (Fig. 4). First, we generated a wide range of exponentially and 

multimodally distributed in silico parent populations with known diversities of 3x102-1x107 spe-

cies. Next, we took samples of these known distributions at systematically increasing cover-

age/sample sizes from 0.01x to 10x and, for each sample size, ran Recon to estimate the over-

all diversity, running on 1,716 samples in all (Fig. 4a). Five outliers (0.3%) were removed, leav-

ing 1,711. For each overall diversity and coverage, the error was defined as the difference be-

tween the (true) overall diversity and Recon’s overall diversity estimate. Given a test sample, 

the coverage, and Recon’s estimate, one can then look up or interpolate from these errors the 

largest and smallest diversity values that are consistent with the estimate (Fig. 4b, c). These 

upper and lower bounds define the desired error bars on Recon’s estimate. 

We established these error bars as 95% confidence intervals using Monte Carlo cross valida-

tion. Briefly, we randomly partitioned the above 1,711 samples 70-30 into reference and valida-

tion sets 100 times, each time using the reference set to calculate error bars for the samples in 

the validation set and counting how often error bars bracketed true diversity. These raw error 

bars bracketed true diversity in 93.6±1.3% of cases; adjusting them by raising the upper bar by 

1.6 percent brought this figure to the desired conventional level for confidence intervals, 95% 

(96.2±1.0%). Note that error bars bracketed true diversities despite the formal possibility of 

there being clones in the parent population too small to observe in the sample (see Minimum 

detected clone sizes and upper bounds (U), below), meaning in practice this was not an issue. 

The above procedure can be generalized to incorporate arbitrary models of experimental noise. 

Experimental datasets. We found and downloaded six publically available datasets. Four were 

from paired heavy-and-light-chain sequencing experiments: two of IgG+ B cells (from two sub-

jects), one of memory B cells post-influenza vaccination, and one of tetanus-toxoid-specific 

plasmablasts30. Following that study’s methods, we clustered reads with ≥95% heavy-chain 

complementarity-determining region 3 (CDR3) nucleotide identity (the study treated clusters as 
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clones). The other two datasets were of pooled PCR of heavy-chain genomic DNA from bone-

marrow plasma cells from a healthy subject and non-myeloma plasma cells from a subject with 

multiple myeloma, with clones defined as sequences with identical CDR3s at the amino acid 

level and identical VH nucleotides36. We estimated the total number of IgG+ B cells, post-

vaccination memory B cells, tetanus-specific plasmablasts (and plasma cells), bone-marrow 

plasma cells in a healthy patient, and non-myelomatous plasma cells to be 75 million, 260 mil-

lion, 3.5 million, 6 million, and 3 million, respectively, for N (See below)37-42. 

Minimum detected clone sizes and upper bounds (U). The smallest clone size in the recon-

structed clone-size distribution is described by two parameters: the mean number of cells that 

each clone of this size contributes to the sample, mmin, and the fraction of all clones that are of 

this size, wm. The size of this smallest detectable clone in the overall repertoire is mmin scaled to 

the total number of cells: mminN/S. This is Recon’s minimum detected clone size. It is possible 

that there are clones smaller than this size in the overall repertoire, but because they contribute 

a mean of zero cells to the sample they are not detected and therefore do not contribute to 

Recon’s estimate of overall species richness. An upper bound on species richness that includes 

clones smaller than the minimum detected clone size, U, is obtained by assuming that all cells 

in clones that could be smaller than this are singlets: U = RmaxwmmminN/S, where Rmax is Recon’s 

upper error bar estimate of overall species richness (Supplementary Information). We calculated 

these quantities for our validation and experimental data. 
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Table and Figure Legends 

Table 1. Power calculations. Table entries give the minimum number of cells that must be ana-

lyzed in order to be able to detect a given fold-difference in species richness between two sam-

ples at p=0.05 (row headings), given an expected overall species richness (column headings). 

As noted in the main text, these numbers exclude cells that might belong to large clones (here, 

of clone size ≥30 in the sample). Minima required for reliable reconstructions are in gray. See 

Supplementary Information for details. 

Table 2. Diversity estimates for experimental datasets from humans. Summarized are Recon’s 

estimates of overall diversity for six datasets; its estimate of the number of missing species; 

comparisons to sample diversity, for species richness and entropy (given as effective numbers; 

2bits); the minimum detected clone size (see main text); and upper bound for species richness 

that includes potential “hiding” clones. Cell-surface phenotypes were as follows: IgG+ B cells, 

IgG+CD2-CD14-CD16-CD36-CD43-CD235a-; post-vaccination memory B cells, 

CD19+CD3−CD27+CD38int; tetanus-specific plasmablasts, 

CD19+CD3−CD14−CD38++CD27++CD20−; plasma cells, CD138+. See references for details. 

Figure 1. Overall repertoires vs. samples. (a) shows an overall repertoire (top left) and a reper-

toire from a random sample of this repertoire (top right), together with respective clone-size dis-

tributions from the overall repertoire and sample (bottom). Each circle denotes a cell; different 

colors denote different clones. Note that five clones are missing from the sample entirely, repre-

sented by the open red circle at a clone size of zero in the sample clone-size distribution. (b) 

Sample diversity underrepresents overall diversity across a range of diversity measures. (c) 

Recon reconstructs the overall repertoire by estimating the number of missing clones and itera-

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 2, 2016. ; https://doi.org/10.1101/024612doi: bioRxiv preprint 

https://doi.org/10.1101/024612


	 21	

tively updating until the predicted clone size distribution in the sample (red crosses) matches the 

observed clone-size distribution in the sample (open circles), stopping short of overfitting. (d) 

Different diversity measures are complementary. Repertoires R1, R2 and R3 each have a total 

of 7 cells. R1 and R3 have the same species richness but different inverse Berger-Parker index 

(inv. BPI); R2 and R3 have the same Berger-Parker index but different species richness. 

Figure 2. Comparison of diversity estimates. (a) Sample diversity (top) and Recon’s estimate 

(bottom) of overall diversity vs. true overall diversity for three different sample sizes—10,000 

cells (filled circles), 100,000 cells (small open circles), and 1 million cells (large open circles)—

for a representative gold-standard distribution without noise (shown in Fig. S2e, left panel; see 

Fig. S2 for additional examples). Coverage is defined as the number of cells in the sam-

ple/effective number of clones in the overall population. Red line, unity (zero error). Left-to-right: 

species richness, entropy, and the inverse Berger-Parker index. (b) Performance summary of 

Recon vs. two other state-of-the-art methods for estimating any overall diversity measure (NP 

and WL) as well as a method for estimating only species richness (CE) on 3,200 noisy distribu-

tions, 100 realizations of noise for each of 32 combinations of exponential and multimodal distri-

butions (Online Methods), coverage (0.05-0.3x), and overall diversity (100,000-3 million clones 

in the overall population). (c) Cumulative distribution of performance for distributions in (b) 

showing Recon is much faster than NP and more accurate than WL, which could be off by or-

ders of magnitude. (d) Cumulative distribution of performance for distributions in (b) showing 

Recon is more accurate than CE. 

Figure 3. Predictions vs. simulated observations, in silico gold standards. Shown are fits to ob-

servations from representative gold-standard distributions of the shape shown in Figure S2e, left 

panel. Left-to-right: overall distributions with increasing numbers of clones. Top-to-bottom: in-

creasing sample size measured in coverage of the number of clones in the overall population. 

Open black circles denote observed clone-size distributions, which was the input data given to 
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Recon. The open red circle denotes the number of missing clones, which was not known to 

Recon. Red crosses denote Recon’s prediction of the clone-size distribution in the sample, 

based on its reconstruction of the clone-size distribution of the overall repertoire. This includes a 

prediction for the number of missing clones, plotted as the number of clones of size zero, with 

error bars as shown.  

Figure 4. Error bars. (a) shows a schematic representation of Recon’s diversity estimates (open 

circles) from a single gold-standard in silico repertoire with overall diversity d for many different 

levels of coverage (=sample size/d). We used the absolute value of the proportional error of the 

worst fit at each level of coverage, making an error profile that is vertically symmetric around d. 

Given a test sample, Recon first estimates the overall diversity, dR, and the coverage. (b) Using 

the error profile, it then looks up the maximum (d⊕) and minimum (d⊖) diversities that are con-

sistent with its estimate (dR); schematically, this is where the edges of the funnel plots for d⊕ and 

d⊖ intersect. (c) Higher coverage gives smaller error (arrows). (d) Combining errors from all 

1,711 gold-standard repertoires into a single plot suggests that ≥1x coverage generally gives 

error bars of 5-10% for species richness (line, median; shaded area, 5th-95th percentiles). 

Figure 5. Predictions vs. observations, experimental data. Shown are Recon’s estimates of 

overall diversity for six experimental datasets. These included (a, b) immunoglobulin heavy 

(IgH)- and light-chain (IgL) paired-chain sequencing experiments from IgG+ B cells from the 

blood of two different subjects, (c) pooled-DNA IgH sequencing experiments on the bone-

marrow plasma cells from a healthy adult, (d) IgH+L of post-vaccination memory B cells, (e) 

IgH+L tetanus toxoid-specific plasmablasts, and (f) pooled-DNA IgH sequencing experiments on 

the bone-marrow plasma cells from a multiple myeloma patient (only the non-myeloma cells). 

Details, including references, are presented in Table 2.  
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Figure S1. The Recon algorithm. Steps in the flowchart are as described in the main text, 

Online Methods, and Supplementary Information. 

Figure S2. Recon diversity vs. other estimates showing fits to additional gold standard reper-

toires plotted as for Figure 2. (a)-(c) Comparisons of sample diversity (top) to Recon diversity 

(bottom) plotted as in Figure 2a for (a) a steep exponential clone size distribution (b) a bimodal 

distribution in which the overall distribution contains a population of small clones and a popula-

tion 31 times as large and (c) a bimodal distribution in which the overall distribution contains a 

population of small clones and a population 20 times as large. (d)-(g) Comparison of species 

richness estimates by Recon (middle) and CE (right) shown as in Figure 2b for an example ad-

ditional gold standard overall distributions (left) for (d) a steep exponential clone-size distribu-

tion, (e) a shallow exponential clone-size distribution, (f) a bimodal distribution in which the 

overall distribution contains a population of small clones and a population 31 times as large, and 

(g) a bimodal distribution in which the overall distribution contains a population of small clones 

and a population 20 times as large. (h)-(k) Comparative performance of Recon, NP, WL, and 

CE for noisy samples from steep exponential distribution shown in (d) at 0.05x for overall popu-

lations with (h) 10 million, (i) 3 million, (j) 100,000, and (k) 10,000 clones. (l-m) Comparative per-

formance for higher D numbers on (l) the exponential distribution in (d) at 0.05x coverage and 

(m) the bimodal distribution in (f) at 0.3x coverage. (Note CE outputs only 0D, species richness.) 

Figure S3. Recon vs. CE, NP, and WL on noisy distributions. Each pair of cumulative distribu-

tions show accuracy (left) and speed (right) for 100 realizations of noise on the different distribu-

tion types described in Fig. 2. 

Figure S4. Scanning. Probability densities of the ratio of estimated missing species/true missing 

species demonstrating the benefit of using additional starting points. Fits using, in each round of 

fitting, 9 (red), 20 (yellow), 56 (green), 72 (pink) and 110 (blue) combinations of starting weights 
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and means (yellow) show that the set of 56 starting points used in the main study result in a 

sharper peak of the probability distribution function (pdf) near 1.0, and diminished trapping in 

local minima away from 1.0. Pdfs are plotted using Gaussian kernel density estimates over 800 

samples from gold-standard distributions (see main text).  
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Table 1 

 10,000 30,000 100,000 1 million 3 million 

1.1 34,634 118,418 313,792 2,211,303 16,230,339 

1.2 19,103 56,989 153,543 1,277,637 10,598,339 

1.3 14,142 28,206 85,156 649,124 1,947,385 

1.4 14,142 27,711 70,415 639,665 1,919,012 

1.5 14,142 27,238 64,982 630,590 1,891,799 

2.0 14,142 24,495 64,977 510,381 1,524,687 

5.0 14,142 24,495 44,721 141,421 244,949 
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Table 2 

    Species richness  Entropy (eff. no.) 
Min clone 
size, cells 

 

Subset Source Method Cells Sample Overall Missing 
species Sample Overall Strict upper 

bound, clones 

IgG+ B cells, 
 individual 122 

healthy 
adult 

IgH+L 
single-

cell 
61,000 2,759 

5,870 
(4,761-
8,395) 

3,111 
(2,002-
5,636) 

696 700  
(691-720) 400 1 million 

IgG+ B cells, 
individual 222 

healthy 
adult 

IgH+L 
single-

cell 
47,000	 2,211 

4,616 
(3,374-
7,000) 

2,405 
(1,163-
4,789) 

345 
348 

 (327-
373) 

700 5 million 

memory B 
cells (IgG, IgM, 

and IgA)22 

healthy 
adult 

vaccinee 

IgH+L 
single-

cell 
8,000 336 

473 
(446-
614) 

137 (77-
245) 21 21 30,000 14 million 

tetanus toxoid-
specific 

plasmablasts22 

healthy 
immunized 

adult 

IgH+L 
single- 

cell 
2,000 159 

239 
(200-
313) 

80  
(41-154) 3.5 3.5 1,000 300,000 

bone-marrow 
plasma cells24 

healthy 
adult 

IgH 
pooled 
DNA 

26,000 14,337 
37,110 

(27,350-
58,916) 

22,773 
(13,013-
44,579) 

11,148 
21,582 

(20,891-
22,572) 

80 4 million 

non-tumor 
plasma cells24 

multiple 
myeloma 
patient 

IgH 
pooled 
DNA 

30,000 325 
703 

(563-
1,081) 

378 (238-
756) 1.4 1.4 80 80,000 
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diversity measure overall sample ratio

species richness 10.0 5.0 2.0x
exp(entropy)   7.4 4.5 1.7x
inverse Simpson index   5.6 4.2 1.3x
inverse Berger-Parker index 2.9 2.7 1.1x
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