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Abstract

This manuscript explores the viability of using optimal point process (Snyder) filters in order to estimate
the underlying parameters of the variable population size coalescent process. Estimating these population
parameters is an important area of research in phylodynamics, especially given the widespread use of the
coalescent in modelling the relationship between the genetic diversity and epidemiological dynamics of
human pathogens. A variety of coalescent estimators based on a diverse set of techniques, such as skyline
plots, Bayesian and Markov Monte Carlo approaches, already exist. However, at times these methods
are inflexible, or difficult to use and there is a need to explore new estimation techniques.

This Snyder filter is proposed here as a new alternative for optimal coalescent inference and parameter
estimation. Through its application, first to a canonical set of demographic models and then to empirical
data from the Hepatitis C epidemic in Egypt, the filter is shown both useful and capable. The Snyder filter
is exact (makes no process approximations) and is optimal in mean square error. Since its implementation
is simple and it was originally developed to estimate stochastic parameters, Snyder filtering holds much
potential for coalescent estimation.

Introduction

The Coalescent Process

The coalescent process is a dominant theory in phylodynamics that links the genetic diversity of a sampled
population to its demographic history. Capable of describing a wide variety of biological phenomena [1],
the coalescent has been found to be the convergent process of many fundamental neutral evolutionary
models such as the Wright-Fisher, Moran, and their variants. Initially developed for a constant sized
population by Kingman [2] the coalescent has been extended to account for time varying populations
[3], geographically structured populations [4] and for populations sampled at different times [5].

Coalescent theory has been successfully applied to a wide variety of phylodynamical problems. It
has been used to model and infer the discontinuous growth of the Hepatitis C epidemic in Egypt [6],
the oscillating behaviour of Dengue in Vietnam [7] and to even calculate the generation time of rapidly
mutating viruses like HIV-1 [5]. Given its usefulness and popularity, it is no surprise that the coalescent
is an important and well studied process. While the constant population size model is already completely
specified, work on the variable population generalisation is still ongoing [8].

In all variants of the coalescent, it describes how a sample of lineages of size n, from a population of size
N(t), converges to its most recent common ancestor. Coalescent events indicate when two lineages from
that sample have converged to a common parent (in which case the lineage count falls by 1). Such events
continue occurring until only one common parent or ancestor is attained. In this setting t = 0 indicates
the present and t = TMRCA is the process stopping time (time to most recent common ancestor). As a
descriptor of the genetic diversity of a population, the coalescent is predicated on two main assumptions:

• Neutral evolution: there is no selection pressure so the genealogical and mutation processes are in-
dependent and separable. This not only allows one to introduce mutations later via an independent
Poisson process or nucleotide substitution model, but also ensures one can explore the genealogy of
a sample from a population without worrying about the rest of the population [1]. Consequently,
this assumption makes inference simpler and more efficient.
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• Small sample size: the lineage sample size n is much smaller than the underlying population N(t).
This assumption is important for the coalescent to maintain its biological significance as the conver-
gent process of population genetics models like the Wright-Fisher. Mathematically the coalescent
involves an approximation from a discrete geometrical process to a continuous exponential one. A
key condition for this diffusion approximation is that n

N(t) → 0.

The original forms of the coalescent also included auxiliary assumptions such as a constant, panmitic
population, and no recombination [9]. However, depending on the variant of the process studied these
can be relaxed. The following work maintains the main assumptions and further assumes a panmitic,
isochronously sampled haploid population with no recombination.

This manuscript initially analyses the original constant population size coalescent process from an
information theoretic and point process filtering perspective before shifting focus to the estimation of
complex, deterministically varying populations. No treatment of the other variants beyond a mention of
how to account for stochastic demographic functions, is provided. Such extensions are the likely topics
of future research. The main results presented show that optimal Snyder filtering can be used to achieve
effective, minimum mean squared estimation of demographic histories, that can be easily implemented.

Existing Inference Schemes for the Coalescent

Coalescent inference has been a major topic of study in the fields of phylodynamics and population
genetics [10]. Consequently a plethora of parametric and non-parametric methods exist for estimating
its underlying demographic history. This study focuses on parametric methods since non-parametric
schemes should be used more as a tool for model selection [11]. This work therefore assumes that
a suitable model for the population N(t, ~x) has already been chosen and that its parameters ~x or a
function of the parameters are to be estimated optimally in some way from the phylogenetic data.

Phylodynamic inference methods can be split into those that use maximum likelihood (ML) or
Bayesian analysis. This work focuses on the latter since comparisons until now have found that Bayesian
approaches generally outperform or are at least as good as corresponding ML ones [12]. Moreover like-
lihood functions are difficult to compute for complex demographic functions [13]. Existing Bayesian
methods often use Markov Chain Monte Carlo and importance sampling [14]. These approaches, while
capable and able to account for genealogical uncertainty, can be complex, inflexible or difficult to imple-
ment [15], especially when they involve integration over multidimensional spaces.

This manuscript will show how the Snyder filter can be used as an alternative and useful parametric
estimator. While the developed form does not yet account for genealogical uncertainty and instead focuses
on data from a single coalescent tree, the Snyder filter presents a unique, easily adaptable and different
perspective on Bayesian coalescent inference that very naturally and directly treats the coalescent data
in its full richness as a point process stream.

As a method of estimation this technique has remained largely unknown to the biological sciences with
its only applications so far being to neuronal spiking by Bobrowski et al [16] and to invertebrate visual
phototransduction by Parag and Vinnicombe [17]. In both cases new and interesting results emerged
by taking this analytical viewpoint to estimation. It will be seen that the Snyder filter presents a fresh
Bayesian approach to inference with much potential for phylodynamics.

Defining the Coalescent as a Point Process

The standard coalescent with n lineages and effective population N(t), ∀t ≥ 0 can be described as an
inhomogeneous Poisson process with a maximum count of n − 1. In this interpretation the n − 1 point
coalescent event stream is separated into inter-event intervals and the coalescent rate is described for
each interval by conditioning on the currently existing number of lineages [3]. All the information for
estimation is then compactly contained in the timing of the coalescent events. Such a treatment, while
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not new to the literature [9] has only recently been used as a starting point for inference (previous
schemes started with genealogies and integrations about a tree space) [8].

This work extends this description by explicitly incorporating the fall in lineages, due to stochastic
coalescent events, into the rate. This contrasts the usual coalescent description since it removes the need
for direct conditioning. This allows the coalescent to then be redefined as a self-correcting inhomogeneous
Poisson process. Thus the salient difference between this description and those in the literature is simply
an understanding that lineage deaths are equivalent to process feedback.

A self-correcting process is dependent on past events in a manner which hinders the occurrence of
future events. This feature results from the death process description of the coalescent [2], which means
that the rate of producing coalescent events falls with the number of events. This dependence is summed
up by noting that the process has negative autocovariance over distinct time intervals, as do its converging
Wright-Fisher and Moran models over distinct generations [9].

Define {D(s) : 0 ≤ s ≤ t} := Dt0 be the counting process with points at coalescent times: {tk},
∀k ∈ Zn2 : tk ≤ t and let u(t) = |D(t)| be the number of points up to time t. Here tk is the coalescent
time for the k → k−1 transition in lineages, which means tk < tk−1, ∀k. Further λ (t, Dt0) is the feedback
dependent rate of this Poisson process. Setting D(0) = 0, the coalescent in self correcting form is:

D(t) ∼ Poiss
(
λ
(
t, Dt0

))
(1)

λ := λ
(
t, Dt0

)
=

(
n− u(t)

2

)
1

N(t)
(2)

cov (D(t− s), D(t)) < 0 (3)

Since λ ≥ 0, ∀t ≥ 0 then maxt(u(t)) = n−1, which is the number of coalescent events for n lineages, with
n

N(t) � 1, ∀t ≥ 0. The fact that self-correcting inhomogeneous Poisson processes can be reinterpreted as

doubly stochastic Poisson processes (Poisson processes with stochastic intensities) is the key insight that
allows the application of point process filtering techniques developed by Snyder to the coalescent [18]. A
summary of the notation used and the coalescent - Poisson process reinterpretation are given in figure 1.

Figure 1. Coalescent process and definition of notation. A sample bifurcating coalescent tree is
shown in the main left panel for 5 samples lineages. The coalescent times t5, . . . t2 are labelled and their
event stream shown in the top right. The counting function u(t) and the rate λ(t) are also calculated.
The bottom left panel presents the coalescent process interpretation for Snyder filtering.
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Methods

Optimal Snyder Filtering

The Snyder filter is an exact Bayesian filter that provides the optimal causal reconstruction of the un-
derlying intensity of a Poisson process given observations of its points Dt0 and a model with priors [18].
If Ft represents all the information carrying data then Ft = Dt0. The parameter estimates are optimal
according to a mean squared error criterion. Originally developed for doubly stochastic Poisson processes
or Poisson process with stochastic rates, the filter continuously solves ordinary differential equations for
the model posteriors between observed event times with discontinuous updates at event times.

Figure 2. Summary of the Snyder filter mechanism for the coalescent. From the bottom left
and moving clockwise: an underlying demographic function which is known for simulated datasets but
unknown for empirical ones is to be estimated. It modulates the coalescent rate which has
discontinuities due to lineage deaths (coalescent events). This rate results in a bifurcating tree from
which the coalescent event stream is obtained and input to the filter. The filter solves posterior
differential equations which iteratively results in the priors converging to data conditioned posteriors for
the model parameters. This results in opimal MMSE estimates of the coalescent rate and the
underlying population.

Since, as noted in the introduction, the coalescent process is a self-correcting Poisson process, which
falls within the doubly stochastic framework, the filter can be adapted to estimate demographic history.
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The mechanics of this adaptation are summarised in figure 2. The filter only requires inputs of coalescent
times and parameter priors and outputs posterior distributions from which MMSE estimates are obtained.
The computational complexity of this method depends on the number of parameters to estimate, l, the
number of lineages, n and the dimension of the filter, m (defined in the following equations). Since
it requires only the solution of linear differential equations it is quite easy to implement and requires
virtually no tweaking. The filter is, however, dependent on the quality of the coalescent time data. The
mathematical development of the filter for the coalesent follows.

Let a general multivariate population function with l parameters ~x = [x1, x2, . . . xl] be denoted as
N(~x, t) with parameter xi defined on the domain Xi with cardinality |Xi| = mi discretised points. Then

the joint prior, P(~x) is defined on a space of m =
∏l
i=1mi points. As the filter solves a differential

equation on each possible point dimension, its dimension is m . In this framework the coalescent rate
function is defined as:

λ = λ(~x, t, Dt0) : ⊗li=1Xi ⊗ R+
0 → R+

0 =

(
n− u(t)

2

)
1

N(~x, t)
(4)

In the above the function mapping is also shown with ⊗ indicating a Kronecker ordering. As an example of
the Kronecker ordering for l = 2, if X1 = {a1, a2} and X2 = {b1, b2, b3} then the probability vectors have
6 values pertaining to the sets {a1, b1}, {a2, b1}, {a1, b2}, {a2, b2}, {a1, b3} and {a2, b3} respectively.

If the posterior P (~x|Ft) is denoted in normalised and unnormalised form as q(t) and q∗(t) respectively,
with the posterior joint vector Kronecker ordered on the space of ~x, then the Snyder filter can be written
as below. The use of non-normalised probabilities, as developed in [19], converts the original non-
linear Snyder differential equations into a linear set that need only be normalised at every event. Here
qj = P (~x = ~xj |Ft) with q∗j as the corresponding unnormalised form and ~xj as the jth configuration of
the parameter vector which has m configurations. For convenience of notation the rate and population
are sometimes referred to as simply λ(t) and N(t). The diagonal matrix Λu(t) = diag ({λj(t), ∀j ∈ Zm1 })
is called the rate matrix, is of dimension m×m with Λu(t)[j] as its jth diagonal component. It changes
at event times due to u(t).

dq∗j (t)

dt
= −q∗j (t)Λu(t)[j] (5)

Λu(t)[j] =
1

N (~xj , t)

(
n− u(t)

2

)
= λj(t) (6)

qj(t) =
q∗j (t)∑m
j=1 q

∗
j (t)

(7)

qj(t
+
k ) =

qj(t
−
k )Λk[j]∑m

j=1 qj(t
−
k )Λk[j]

(8)

Equations 5 - 7 describe the evolution of the posterior between event times. Since these equations are
linear the solution is a matrix exponential on the probability components. At event times this solution
is discontinuously renormalised by the rate matrix as in equation 8. Here t−k and t+k are infinitesimally
before and after the event =⇒ u(t−k ) = n− k and u(t+k ) = u(t−k ) + 1.

The conditional estimate of the effective population, coalescent rate and the parameters are obtained
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from the posterior as follows. Note: AT indicates the transpose of A.

x̂i(t) = E [xi(t)|Ft] =

 ∑
Xj , ∀j 6=i

q(t)

XT
i (9)

λ̂(t) = E [λ(t)|Ft] =
m∑
j=1

qj(t)Λu(t)[j] (10)

N̂(t) = E [N(t)|Ft] =

(
n−u(t)

2

)∑m
j=1 qj(t)Λu(t)[j]

(11)

The power of the this filter is demonstrated in this work on both standard simulated and empirical data
sets. In these test cases the joint and marginal priors are uniformly defined as follows together with a
posterior bound, B which is forced to be non-negative (negative values are meaningless). Assume the mi

values of xi are uniformly and independently distributed between some minima and maxima, so that for
1 ≤ ji ≤ mi, i ∈ {1, 2, . . . l}, then:

P(~x = ~j) =
l∏
i=1

P(xi = xi(ji)) =
l∏
i=1

1

mi
=

1

m
(12)

B = max
(

0, E [xi|Ft]± 2
√

(var (xi|Ft))
)

(13)

Thus the filter takes a coalescent time series Ft and parameter priors P(~x) as its input, and iterates to a
posterior P (~x|Ft). The conditional mean estimates above minimise mean squared error. If y(t) is some
function of interest (example y(t) = N(t) or y(t) = x1) then the conditional mean estimate ŷ(t) achieves
the minimum mean squarer error (MMSE) which is defined:

R = E
[
(y(t)− E [y(t)|Ft])2

]
= E

[
(y(t)− ŷ(t))

2
]

(14)

In simulations two kinds of MMSE are used as variants of R above. The first, Rt(y(t)), is across the
time for a run, T and is more a measure of the filter performance across a n− 1 event set. The second,
Rr(y(t)) is across M repeated runs for the n− 1 events with the estimate taken at the end of each run,
Ti. Here T : u(T ) = n− 1 and Ti is such a stopping time for the ith run. Percentage relative MMSEs, Jt
and Jr are also calculated. These indices will be used to quantify estimation performance in the following
results section.

Rt(y(t)) =
1

T

∫ T

0

(y(t)− ŷ(t))
2

dt, Jt(y(t)) =
1

T

∫ T

0

100

(
1− ŷ(t)

y(t)

)2

dt (15)

Rr(y(t)) =
1

M

M∑
i=1

(y(Ti)− ŷ(Ti))
2
, Jr(y(t)) =

1

M

M∑
i=1

100

(
1− ŷ(Ti)

y(Ti)

)2

(16)

It is worth noting that the filter mechanism remains largely unchanged even if it is extended to more
complex demographic functions than those explicitly dealt with in this script. For example, if N(t) was
stochastic and describable as a continuous time Markov process with infinitesimal generator Q then the
only alteration would involve replacing Λu(t) with Λu(t) − Q in equation 5 (with appropriate changes
to prior definitions). Additionally, the filter can be simplified to perform similar inference for normal
inhomogeneous processes as well as combined into a more involved form to handle complex Poisson
processes which have feedback dependent and stochastic multimodal rates [16].
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Results and Analysis

Constant Intensity Coalescent

Consider the original constant population Kingman coalescent with N(t) = N0. The time interval for
this process to fall from k to k − 1 lineages, δk is known to follow the exponential distribution:

δk = tk−1 − tk ∼ exp

((
k

2

)
1

N0

)
(17)

E [δk] =
2N0

k(k − 1)
(18)

The causal estimation problem is then to find N̂0(t) = E [N0(t)|Ft]. Since this involves estimating a
single parameter on which the filter converges, then for a given evolution time, T : u(T ) = n−1, the best
estimate of the parameter N0 is N̂0(T ).

For this problem the uniform prior is constructed by assuming that the minimum and maximum value
possible are: Nmin � n and Nmax > Nmin and then that N0 can take 1 of m values uniformly within this

range with equal probability. Thus: P
(
N0 = ai = Nmin + (i− 1)Nmax−Nmin

m−1

)
= 1

m , ∀i ∈ {1, 2, . . .m}.
As an examination of its behaviour, the filter is also run on the data in reverse. In this case the coalescent
times from a standard run are reversed (the inter-event times are summed in reverse order) and the rows
of Λu(t) reordered appropriately so that the first event has rate λ(t) = 1

N0
and the last event λ(t) =

(
n
2

)
1
N0

.
The simulation results are for Nmin = 100n, Nmax = 1000n with n = 100 and m = 100. Figure

3a plots the square error between N0 and N̂0 from the filter across M = 1000 runs. The mean of these
points would be Jr. While not shown, as expected, estimates were found to improve with n (Jr decreases).
Figure 3b shows that reversed and forward time posteriors are essentially convergent and suggests that
data can be equally well processed in either time direction.
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Figure 3. MMSE estimators and performance for constant size population model. Panel 3a
gives the relative square errors between N0 and its estimate across 1000 runs. Panel 3b shows for a
single simulated coalescent dataset that the normal and reversed filter converge to the same posterior.
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Comparing Independent Trees (Multiple Loci) to a Single Coalescent Tree: the Snyder
filter treats the constant size coalescent as a self-correcting Poisson process. It will be seen that this can
be simplified, after first examining the relative efficiency of the different types of constant population
data that can be used. Let η = 1

N0
and initially consider the data from a single tree. For n lineages

a single tree provides n − 1 coalescent times, with inter-event intervals δk, 2 ≤ k ≤ n and distribution
given in equation 17. As in [20], the likelihood function, L1(η), can be written as below, by using the
independence of the coalescent intervals.

L1(η) =

[
n∏
i=2

(
i

2

)]
ηn−1e−η

∑n
i=2 (i

2)δi = [h1(n)]g1(η, T1(δ)) (19)

T1(δ) =
n∑
i=2

(
i

2

)
δi,

(
i

2

)
δi ∼ exp (η) (20)

The sufficient statistic for this estimation problem is T1(δ), in accordance with the Fisher-Neyman fac-
torisation. The

(
i
2

)
δi distribution comes from the scaling property of exponentials.

Now assume a single rth coalescent event is observed from each of n− 1 independent trees. The data
are now τr(i) for i = 2, 3, . . . n where each τr(i) ∼ exp (η). Factorising the likelihood, L2(η) gives:

L2(η) =

[(
r

2

)n−1]
ηn−1e−η

∑n
i=2 (r

2)τr(i) = [h2(n)]g2(η, T1(δ)) (21)

T2(τr) =
n∑
i=2

(
r

2

)
τr(i),

(
r

2

)
τr(i) ∼ exp (η) (22)

For both cases, the maximum likelihood estimator (MLE) can be obtained:

∂L1

∂η
= 0 =⇒ ∂L1

∂N0
= − 1

N2
0

∂L1

∂η
= 0 =⇒ N̂1mle =

1

η̂1
=
T1(δ)

n− 1
(23)

∂L2

∂η
= 0 =⇒ ∂L2

∂N0
= − 1

N2
0

∂L2

∂η
= 0 =⇒ N̂2mle =

1

η̂2
=
T2(τr)

n− 1
(24)

Generally N̂0 6= 1
η̂ . It applies in this case because the same value of N̂0 results from solving ∂L1

∂η = 0

and ∂L1

∂N0
= 0. Since both sufficient statistics break down into a sum of n − 1 independent exponential

variables with rate η and both MLEs only depend on the sufficient statistic and the sample number, then
it is equally efficient to sample from a single tree or multiple trees. Here Xi is a sample from the exp (η)
distribution.

var
(
N̂1mle

)
= var

(
N̂2mle

)
=

var
(∑n−1

i=1 Xi

)
(n− 1)2

=
N2

0

n− 1
(25)

This observation means that there is no more information in the coalescent times of one tree than in the
last coalescent time from independent trees, for a constant population. This can be formally shown by
noting that expression 26 implies equality 27 by the properties of sufficient statistics.

P (T1(δ))
d
=P (T2(τr)) and P (T1(δ)|η)

d
=P (T2(τr)|η) (26)

I (η;D1) = I (η;T1(δ)) = I (η;T2(τr)) = I (η;D2) (27)

Here the Di indicate different forms of coalescent data,
d
= means equivalent in distribution and I (X; Y )

is the mutual information between random variables X and Y . A key result of this analysis is that since
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information is preserved, one can generate n− 1 variables from a exp
(

1
N0

)
distribution and reformulate

the coalescent inference from that for a self-correcting homogeneous Poisson process to that for a simple
homogeneous Poisson process.

Available Analytical Results: given previously shown information equalities, the Snyder filter can
be reformulated so that the Poisson process is homogeneous instead of self-correcting. This only affects
the rate matrix since Λu(t) is replaced with Λ = diag ({ai : ∀i ∈ Zm1 }). This transformation allows one
to use the explicit result obtained in [21] for the posterior, P(η = x|Ft) when estimating a constant
intensity Poisson process with prior P(η = x).

P(η = x|Dt0) =
xu(t)e−xtP(η = x)∫∞

0
xu(t)e−xtP(η = x) dx

(28)

This expression allows for continuous priors (in practice a discrete form would be simulated). Assuming
a uniform prior then: N̂0 = E[N0|Dt0] and P(η = 1

x |D
t
0) = P(N0 = x|Dt0) and:

η̂(t) =

∫ ∞
0

xP(η = x|Dt0) dx =

∫∞
0
xu(t)+1e−xt dx∫∞

0
xu(t)e−xt dx

(29)

N̂0(t) =

∫ ∞
0

xP(N0 = x|Dt0) dx =

∫∞
0
x−u(t)+1e−

1
x t dx∫∞

0
x−u(t)e−

1
x t dx

(30)

An informative comparison can be drawn between the posterior for η in equation 28 and the single tree
likelihood expression of equation 19 when n = 2. In this case there is only one coalescent event. The
final Snyder posterior will then occur at the point when this single coalescent event occurs which will be
defined as t = T , u(T ) = 1. The expression of 28 therefore collapses to:

P(η|DT0 ) =
ηe−ηTP(η)∫∞

0
ηe−ηTP(η) dη

(31)

The likelihood function gives P(DT0 |η). Using this function with event time δ2 = T and n = 2 gives
L1(η) = ηe−ηT . Applying Bayes theorem:

P(η|DT0 ) =
L1(η)P(η)∫∞

0
L1(η)P(η) dη

=
ηe−ηTP(η)∫∞

0
ηe−ηTP(η) dη

(32)

The convergence of the results is therefore proven in the trivial single event case.
Unfortunately, similar analytic transformations and expressions like equation 28 are not available in

the time varying N(t) case. For these inhomogeneous rate functions it is not easy to scale the exponential
parameters with the self-correcting binomial factors as before to remove the count dependent component
of the process. This makes the estimation problem more difficult as much of the intensity variation may
be lineage dependent instead of due to effective population changes. Consequently, the complete Snyder
formulation must be used. Application of the complete Snyder to such demographic functions forms the
focus of the next section.
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Simulation and Estimation of Standard Phylodynamic Population Models

The power of the multivariate Snyder filter is demonstrated below on several canonical population exam-
ples often found in the phylodynamic literature. Simulations are performed according to the following
procedure:

• An l parameter population model is chosen and maxima and minima specified for each parameter.

• Each parameter is discretised into mi values within its extrema. This defines the filter dimension
m =

∏
imi and the parameter spaces Xi.

• A true value for each parameter, xi, is randomly selected from this set and the true demographic
model defined as N

(
t, {xi}i∈{1, 2, ...l}

)
= N(t, ~x).

• A coalescent stream with n− 1 coalescent events is simulated by incorporating the true model into
the coalescent rate function λ(t). This rate is then used to produce a time series according to the
appropriate inhomogeneous Poisson process.

• This simulation uses either a time rescaling [8] or standard rejection sampling algorithm. The
points are generated one at a time so that the rate can be properly adjusted to account for the
self-correcting nature of the process.

• The coalescent stream is then fed into the Snyder filter and the prior iteratively updated into the
final joint posterior q(T ) where T is such that u(T ) = n− 1.

• MMSE estimates of the parameters x̂i and the demographic history N̂(t) are obtained by either
marginalising or evolving the posterior through the appropriate function and calculating the ap-
propriate conditional mean.

The population models and specific details related to their importance, simulation and estimation are
described subsequently.

Exponential Growth Model: N(t) = N0e
−rt [22] with x1 = N0 and x2 = r set for notational

consistency with the literature. This function is often used to describe explosive epidemic growth in
forward time. The relevant inhomogeneous self-correcting Poisson process is generated using the time-
rescaling algorithm [8] which when solved for this N(t) gives:∫ tk

tk+1

(
k

2

)
1

N0
ers ds = z =⇒ tk =

1

r
log

(
ertk+1 +

rzN0(
k
2

) ) , z ∼ exp(1) (33)

Using a uniform joint prior, simulations are performed at N0min = 100n, N0max = 1000n, rmin = 0.1,
rmax = 10, [m1, m2] = [20, 20] =⇒ m = 400, n = 200 and M = 1000. The resulting estimates over 1000
and a single run are given in panels 4c and 4d. These types of plot will form the standard description for
the subsequent mutivariate models. Figures 4a and 4b illustrate the filter convergence to the conditional
mean estimates of the parameters, and the final joint posterior. Analogous illustrations are not given for
the higher dimensional multivariate models that follow.
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(d) Bivariate exponential reconstruction

Figure 4. Snyder estimate of exponential growth model. Panel 4a compares the mean of the
marginal parameter posteriors, from the filter as it iterates across the coalescent time, to the true
values. The final value is the optimal estimate. Sub-figure 4b plots the joint final posterior for the
parameters. Panels 4c and 4d respectively present the relative square errors across 1000 runs and an
illustrative reconstruction from a single run for the demographic function.
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Sinusoidally Oscillating Population: this function models a seasonal population with N(t) =
x1 sin (x2t+ x3) + x4. Test data was generated under a rejection sampling algorithm applied to the
appropriate inhomogeneous Poisson process with acceptance probability:

N(t) ≥ x4 − x1 =⇒ λmax ≤
(
n

2

)
1

x4 − x1
=⇒ p(k, t) =

(
k
2

)
1

N(t)

λmax
(34)

Simulations were done at [mi, m, n, M ] = [10, 104, 200, 1000] with max(~x) = [1000n, 10, π2 , 1200n] and
min(~x) = [100n, 0.1, 0, 1100n]. Single parameter performance across 1000 runs and overally demographic
reconstruction for a single run are given in figures 5a and 5b respectively.
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(b) Four parameter sinusoidal reconstruction

Figure 5. Snyder estimation for a multivariate sinusoidally varying population. Subplot 5a
gives the relative square errors for each parameter across 1000 runs while panel 5b illustrates a
reconstruction from a single run of the entire demographic history.

Logistic Growth Population Model: this function is based on the sigmoidal solution of the

SIS transmission equations, derived in [23] and originally developed in [24] as N(t) = N0
1+e−rt50

1+e−r(t50−t) .

To prevent N(t) = 0 occurring, an offset parameter is added so that the function used is: N(t) =

x1
1+e−x2x3

1+e−x2(x3−t) + x4 with x1 = N0 as the expanding population component (decays in reverse time),
x2 = r as the the exponential rate, x3 = t50 as the time for half decay and x4 as the background offset.
With this setup x4 ≤ N(t) ≤ x4 + x1. The probability of acceptance in the rejection algorithms is:

λmax ≤
(
n

2

)
1

x4
=⇒ p(k, t) =

(
k
2

)
1

N(t)

λmax
≥ k(k − 1)

n(n− 1)

x4
x1 + x4

(35)

Simulations were done at [mi, m, n, M ] = [20, 204, 200, 1000] with max(~x) = [1000n, 10, 5000, 100n]
and min(~x) = [100n, 0.1, 1000, 50n]. For the batch simulation mi = 10 was used. Parameter estimation
performance is shown in figure 6a and demographic estimation in figure 6b.
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(b) Four parameter logistic reconstruction

Figure 6. Snyder estimation of a multivariate logistic demographic function. Panels 6a and
6b show batch relative square error estimation performance for each parameter across 1000 runs and an
example single run reconstruction of the full population function.

Constant-Exponential-Constant model: related to the logistic function, this population model
focuses on the times at which the population rapidly changes from constant to exponential growth and
then back to constant (in forward time). It was first applied to the coalescent by Pybus et al [6] for
Egyptian HCV, which will be described more in the following section on empirical application. The
population equation and the acceptance probability are given below. The indicator function I(A) = 1
only if condition A is true.

N(t) = x1I(t ≤ x3) + x1e
−x2(t−x3)I(x3 < t < x4) + x1e

−x2(x4−x3)I(t ≥ x4) (36)

x1e
−x2(x4−x3) ≤ N(t) ≤ x1 =⇒ λmax ≤

(
n

2

)
1

x1e−x2(x4−x3)
(37)

p(k, t) =

(
k
2

)
1

N(t)

λmax
≥

(
k
2

)
1
x1(

n
2

)
1

x1e−x2(x4−x3)

=
k(k − 1)

n(n− 1)
e−x2(x4−x3) (38)

Simulations were performed using [mi, m, n, M ] = [10, 104, 200, 1000] with max(~x) = [2000n, 0.75, 100, 150]
and min(~x) = [1000n, 0.1, 10, 50]. Figure 7a examines the individual parameter batch performance. The
individual run used max(~x) = [2000n, 0.1, 200, 1000] and min(~x) = [1000n, 0.01, 100, 500] for better
illustration. The demographic reconstruction for this case is in panel 7b below.
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(b) Constant-exponential-constant reconstruction

Figure 7. Snyder estimation of a multivariate constant-exponential-constant demographic
function. Subplots 7a and 7b give the relative square error estimation performance for each parameter
across 1000 runs and an illustrative single run reconstruction of the discontinuous population function.

Sub-figures 4d, 5b, 6b and 7b above compare the MMSE estimated demographic functions with their
true value across time. These plots are obtained by using the final joint posterior P(~x|FT ). Estimate
uncertainty is shown on the plots by heuristic bounds at twice the posterior standard deviation. Panels
4c, 5a, 6a and 7a, however, give the relative MMSE for each parameter in each model across 1000 runs. In
some of these batch comparisons, although the shape of the demographic function N(t) is well estimated,
some parameters appear to have high relative MMSE values and others very low ones. This could be
explained by either or both of two known phenomena:

• Some parameters are more fundamentally difficult to individually estimate. The idea was hinted
at by Slatkin et al [22]. This can be reasonably expected since a parameter that has a much
larger effect on the coalescent rate would likely be more easily estimated than one that contributed
relatively negligibly to the observed events.

• Coalescent data is naturally limited in the information it can encode due to inherent Poisson noise.
The coalescent process in fact may be thought of as a communication over a Poisson channel. Such
channels have known capacities which bound the ability to reconstruct the driving intensities [25].
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Estimation of the Hepatitis C (HCV) epidemic in Egypt

Having looked at simulated data, this section now applies the filter to empirical phylodynamic data. The
Egyptian HCV dataset is a standard isochronous set that is often used to evaluate coalescent inference
techniques. Based on independent epidemiological data it is highly suspected that the high prevalence of
HCV in Egypt is due to poor sterilisation during a parenteral antischistosomal therapy (PAT) campaign
between 1920 and 1980. Consequently, a good benchmark for phylogenetic analysis is the ability to
reproduce this expected rise in infection during the PAT period from genetic data. The data, sampled
in 1993, consist of 63 type 4 and 5 subtype 1g sequences of length 411bp. To maintain consistency with
[6] the data was separated into set A which contained all 68 samples and B which had only the 63 type
4 cases. The aim is to fit the constant-exponential-constant demographic model, used in [6] and defined
below, to these datasets.

N(t) =


NC , if t ≥ x
NCe

−r(t−x), if x < t < y

NA = NCe
−r(y−x), if t ≥ y

Using the Snyder filter notation, the 4 parameters to be estimated will be defined as x1 = NC , x2 = r,
x3 = x and x4 = y − x. The demographic model can be written as below with indicator functions I(...)
and t > 0 describing time in the past from 1993.

N(t) = x1I(t ≤ x3) + x1e
−x2(t−x3)I(x3 < t < x3 + x4) + x1e

−x2x4I(t ≥ x3 + x4) (39)

As the Snyder filter requires coalescent times, it is necessary to convert the HCV sequence data into a
phylogenetic tree and then, under a molecular clock assumption, obtain a time scaled tree from which
event times can be extracted. The software Garli [26] was used to estimate a ML tree for each dataset.
This was done under a GTR substitution model with gamma rate heterogeneity, which is consistent with
the work of Pybus et al [6]. The ML trees were then converted into the ultrametric time trees of figures
8a and 8b. This was done with the software R8s [27] via a Langley-Fitch clock method. The TMRCA
of each root was constrained to lie within the same range reported in [6], to ensure sensible ultrametric
trees. Further, the clock assumption was set to allow 3 rates (local molecular clocks).

Coalescent times were then extracted from these trees and the Snyder filter run to achieve the curves
of figures 9a and 9b. After removing duplicate sequences the coalescent trees were found to possess n = 54
and n = 64 for the 63 and 68 datasets respectively. The filter simulations were done with mi = 20 and
m = 204 with priors set to match those used in [6] as closely as possible.

Comparison of the estimates with those obtained in [6] are given in table 1. Note that the op-
timal estimates of the parameters given in table 1 are not used to construct the optimal population
reconstruction shown in figures 9a and 9b. Instead the final joint posterior is evolved through the
population model to obtain these demographic curves. Mathematically, the difference results because
E [N(t, ~x)|Ft] 6= N (t, E [~x|Ft]). The marginal posteriors for each parameter are shown in figures 9c and
9d. The estimates from both methods are similar. The differences in values are likely due to different
optimisations and differences in the coalescent trees used in both studies.
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Parameter Estimates of Demographic Function N(t)
Parameter Pybus 63 Snyder 63 Pybus 68 Snyder 68
NC 8779 (3323, 15780) 7639 (943, 14334) 10310 (4095, 18960) 8205 (1376, 15034)
r (yr−1) 0.237 (0.072, 0.564) 0.2678 (0, 0.5438) 0.264 (0.075, 0.620) 0.2935 (0.076, 0.5084)
x (yr) 1953 (1941, 1966) 1965 (1956, 1974) 1953 (1941, 1966) 1970 (1963, 1978)
y (yr) 1932 (1922, 1940) 1949 (1936, 1962) 1934 (1924, 1943) 1957 (1947, 1966)

Table 1. Parameter estimates for Egyptian HCV. The Snyder and Pybus estimates are compared
across both the 63 and 68 sequence datasets. The conditional means are used by both methods with
95% bounds given in the Pybus scheme and 2 standard deviations provided in the Snyder case.

years forward from TMRCA
1708 1758 1808 1858 1908 1958

AF271882i_2153
AF271879i_2113
AF271878i_2000
AF271877i_1999
AF271875i_1380
AF271876i_1797
AF271887i_3405
AF271880i_2115
AF271881i_2116
AF271883i_2432
AF271886i_3319
AF271884i_2659
AF271885i_3289
AF271874i_1359
AF271850i_2673
AF271828i_0922
AF271868i_3471
AF271837i_1801
AF271845i_2386
AF271865i_3463
AF271846i_2429
AF271838i_1803
AF271835i_1767
AF271840i_2130
AF271847i_2438
AF271851i_2681
AF271858i_3318
AF271827i_0883
AF271860i_3400
AF271857i_2957
AF271839i_1997
AF271829i_0923
AF271855i_2862
AF271842i_2141
AF271866i_3465
AF271873i_4055
AF271843i_2147
AF271849i_2663
AF271826i_0873
AF271834i_1339
AF271856i_2926
AF271833i_1240
AF271870i_4033
AF271844i_2150
AF271861i_3452
AF271825i_0800
AF271852i_2685
AF271853i_2852
AF271867i_3468
AF271862i_3458
AF271864i_3461
AF271859i_3393
AF271832i_1226
AF271836i_1796
AF271872i_4053
AF271869i_4020
AF271871i_4036
AF271830i_1150
AF271863i_3460
AF271831i_1164
AF271841i_2134
AF271848i_2446
AF271854i_2856

Ultrametric tree for 63 HCV sequences

(a) Time scaled tree for 63 sequences
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AF271878i_2000
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AF271886i_3319
AF271885i_3289
AF271874i_1359
AF271850i_2673
AF271854i_2856
AF271845i_2386
AF271828i_0922
AF271840i_2130
AF271835i_1767
AF271838i_1803
AF271837i_1801
AF271865i_3463
AF271846i_2429
AF271848i_2446
AF271868i_3471
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Ultrametric tree for 68 HCV sequences

(b) Time scaled tree for 68 sequences

Figure 8. Ultrametric trees estimated from sequence datasets. Panels 8a and 8b show time
scaled trees derived using Garli and R8s on the 63 and 68 sequence datasets respectively. The extra 5
sequences in the latter form an outgroup which appears at the bottom of the tree in panel 8b. This
explains why the parameter estimates are similar for both datasets.
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(b) Optimal estimate of N(t), 68 sequences
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(c) Posterior comparisons, 63 sequences
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(d) Posterior comparisons, 68 sequences

Figure 9. Snyder estimates of the HCV demographic history showing expansion in the
PAT period. Panels 9a and 9b are, respectively, optimal reconstructions of the infected population for
the 63 and 68 sequence sets. Exponential growth within the PAT period is clear in both cases. Subplots
9c and 9c compare the posteriors derived from the filter for each parameter with Pybus’ estimates on
both datasets.
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Discussion

This manuscript shows that the Snyder filter is a viable technique for coalescent parameter estimation
under a range of demographic models. The filter was initially introduced and formulated in full complexity,
in the methods section, for a multivariate time varying population. It was then applied to the original
Kingman coalescent and found capable of optimal estimation even when the data is provided in reverse
order. Additionally, it was proven that, for this constant population size case, there is an information
equivalence between coalescent data across one tree and any given coalescent inter-event time from several
independent trees (multiple loci). This suggested a transformation which resulted in the constant size
self-correcting coalescent inference problem converging to that for a simple homogeneous Poisson process.
This allowed an analytical optimal solution for the constant population model to be presented.

The filter was then applied to non-trivial multivariate non-homogeneous self-correcting coalescent
processes. It was found to achieve good estimates of the demographic history for several simulated
canonical phylodynamic population models. The filter performance was then tested on empirical Hepatitis
C data from Egypt. Not only did it reproduce the expected infection expansion during the PAT period,
but it also achieved estimates that compared well with those from Pybus et al [6].

Thus, the Snyder filter seems promising as an alternative inference measure for coalescent estimation.
Since the filter only involves the solution of a set of linear differential equations, it is easy to implement.
Moreover, the filter was originally developed for doubly stochastic Poisson processes [18]. Consequently,
it can handle stochastic demographic functions and may even be able to handle the birth-death model
approach which is the main competitor to coalescent theory. Thus the flexibility, exactness and robustness
of this filter coupled with the initially favourable results found in this manuscript, suggest that the Snyder
approach has much potential in the field of phylodynamics.

Future iterations of this work will develop the filter for heterochronously sampled data (for which
information is also contained in sampling times), assess its ability to deal with birth-death models and
also appraise stochastic demographic performance.
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