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Quantitative genetic inference with GLMMs 2

Abstract1

Methods for inference and interpretation of evolutionary quantitative genetic pa-2

rameters, and for prediction of the response to selection, are best developed for traits3

with normal distributions. Many traits of evolutionary interest, including many life4

history and behavioural traits, have inherently non-normal distributions. The gen-5

eralised linear mixed model (GLMM) framework has become a widely used tool for6

estimating quantitative genetic parameters for non-normal traits. However, whereas7

GLMMs provide inference on a statistically-convenient latent scale, it is sometimes8

desirable to express quantitative genetic parameters on the scale upon which traits9

are expressed. The parameters of a fitted GLMMs, despite being on a latent scale,10

fully determine all quantities of potential interest on the scale on which traits are11

expressed. We provide expressions for deriving each of such quantities, including12

population means, phenotypic (co)variances, variance components including additive13

genetic (co)variances, and parameters such as heritability. We demonstrate that fixed14

effects have a strong impact on those parameters and show how to deal for this effect15

by averaging or integrating over fixed effects. The expressions require integration of16

quantities determined by the link function, over distributions of latent values. In gen-17

eral cases, the required integrals must be solved numerically, but efficient methods are18

available and we provide an implementation in an R package, QGglmm. We show19

that known formulae for quantities such as heritability of traits with Binomial and20

Poisson distributions are special cases of our expressions. Additionally, we show how21

fitted GLMM can be incorporated into existing methods for predicting evolutionary22

trajectories. We demonstrate the accuracy of the resulting method for evolution-23

ary prediction by simulation, and apply our approach to data from a wild pedigreed24

vertebrate population.25

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 8, 2015. ; https://doi.org/10.1101/026377doi: bioRxiv preprint 

https://doi.org/10.1101/026377
http://creativecommons.org/licenses/by/4.0/


Quantitative genetic inference with GLMMs 3

Introduction26

Additive genetic variances and covariances of phenotypic traits determine the response to se-27

lection, and so are key determinants of the processes of adaptation in response to natural28

selection and of genetic improvement in response to artificial selection (Fisher, 1918; Falconer,29

1960; Lynch and Walsh, 1998; Walsh and Lynch, forthcoming). While the concept of additive30

genetic variance (Fisher, 1918; Falconer, 1960) is very general, being applicable to any type of31

character with any arbitrary distribution, including, for example, fitness (Fisher, 1930), tech-32

niques for estimating additive genetic variances and covariances are best developed for Gaussian33

traits (i.e., traits that follow a normal distribution; Henderson 1950; Lynch and Walsh 1998).34

Furthermore, quantitative genetic theory for predicting responses to selection are also best35

developed and established for Gaussian characters (Walsh and Lynch, forthcoming), but see36

Morrissey (2015). Consequently, although many characters of potential evolutionary interest37

are not Gaussian (e.g. survival or number of offspring), they are not well-handled by existing38

theory and methods. Comprehensive systems for estimating genetic parameters and predict-39

ing evolutionary trajectories of non-Gaussian traits will hence be very useful for quantitative40

genetic studies of adaptation.41

For the analysis of Gaussian traits, linear mixed model-based (LMM) inferences of genetic42

parameters, using the ‘animal model’, have become common practice in animal and plant43

breeding (Thompson, 2008; Hill and Kirkpatrick, 2010), but also in evolutionary studies on44

wild populations (Kruuk, 2004; Wilson et al., 2010). Recently, the use of generalised linear45

mixed models (GLMMs) to analyse non-Gaussian traits has been increasing (e.g. Milot et al.,46

2011; Wilson et al., 2011; Morrissey et al., 2012; de Villemereuil et al., 2013; Ayers et al.,47

2013). Whereas LMM analysis directly estimates additive genetic parameters on the scale on48

which traits are expressed and selected, and upon which we may most naturally consider their49

evolution, this is not the case for GLMMs. In this paper, we offer a comprehensive description50

of the assumptions of GLMMs and their consequences in terms of quantitative genetics and a51

framework to infer quantitative genetic parameters from GLMMs output. This work applies and52

extends theory in Morrissey (2015), to handle the effects of (non-linear) relationships among the53

scale upon which inference is conducted in a GLMM and the scale of data, and to accommodate54
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Quantitative genetic inference with GLMMs 4

the error structures that arise in GLMM analysis. These results generalise existing expressions55

for specific models (threshold model and Poisson with a log-link, Dempster and Lerner, 1950;56

Robertson, 1950; Foulley and Im, 1993). We show that fixed effects in GLMMs raise special57

complications and we offer some efficient approaches for dealing with this issue.58

While it will undoubtedly be desirable to develop a comprehensive method for making data-59

scale inferences of quantitative genetic parameters with GLMMs, such an endeavour will not60

yield a system for predicting evolution in response to natural or artificial selection, even if a61

particular empirical system is very well served by the assumptions of a GLMM. This is because62

systems for evolutionary prediction, specifically the Breeder’s equation (Lush, 1937; Fisher,63

1924) and the Lande equation (Lande, 1979; Lande and Arnold, 1983), assume that breeding64

values (and in most applications, phenotypes) are multivariate normal or make assumptions65

such as linearity of the parent-offspring regression, which are unlikely to hold for non-normal66

traits (Walsh and Lynch, forthcoming). Even if it is possible to estimate additive genetic vari-67

ances of traits on the scale upon which traits are expressed, we will show that these quantities68

will not strictly be usable for evolutionary prediction. However, we will see that the scale on69

which estimation is performed in a GLMM does, by definition, satisfy the assumptions of the70

Breeder’s and Lande equations. Thus, for the purpose of predicting evolution, it may be useful71

to be able to express selection of non-Gaussian traits on this scale. Such an approach will yield72

a system for evolutionary prediction of characters that have been modelled with a GLMM,73

requiring no more assumptions than those that are already made in applying the statistical74

model.75

The main results in this paper are arranged in four sections. First, we describe the GLMM76

framework: its relationship to the more general (Gaussian) LMM and especially to the Gaussian77

animal model (Henderson, 1973; Kruuk, 2004; Wilson et al., 2010), how GLMMs can be usefully78

viewed as covering three scales and how some special interpretational challenges arise and are79

currently dealt with. Second, we propose a system for making inferences of quantitative genetic80

parameters on the scale upon which traits are expressed for arbitrary GLMMs. We show how81

to estimate genotypic and additive genetic variances and covariances on this scale, accounting82

for fixed effects as necessary. We lay out the formal theory underlying the system, apply it to83

an empirical dataset. The relationships between existing analytical formulae and our general84
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Quantitative genetic inference with GLMMs 5

framework are also highlighted. Third, we illustrate the issues when inferring quantitative85

genetic parameters using a GLMM with an empirical example on Soay sheep (Ovis aries) and86

how our framework can help to overcome them. Fourth, we outline a system of evolutionary87

prediction for non-Gaussian traits that capitalises on the fact that the latent scale in a GLMM88

satisfies the assumptions of available equations for the prediction of evolution. We show in89

a simulation study that (i) evolutionary predictions using additive genetic variances on the90

observed data scale represent approximations, and can, in fact, give substantial errors, and91

(ii) making inferences via the latent scale provides unbiased predictions, insofar as a GLMM92

may provide a pragmatic model of variation in non-Gaussian traits. The framework introduced93

here (including both quantitative genetic parameters inference and evolutionary prediction) has94

been implemented in a package for the R software (R Core Team, 2015) available at https:95

//github.com/devillemereuil/qgglmm.96

The generalised linear mixed model framework97

Linear mixed models for Gaussian traits98

For Gaussian traits, a linear mixed model allows various analyses of factors that contribute to99

the mean and variance of phenotype. In particular, a formulation of a linear mixed model called100

the ‘animal model’ provides a very general method for estimating additive genetic variances and101

covariances, given arbitrary pedigree data, and potentially accounting for a range of different102

types of confounding variables, such as environmental effects, measurement error or maternal103

effects. A general statement of an animal model analysis decomposing variation in a trait, z,104

into additive genetic and other components would be105

z = µ+ Xb + Zaa + Z1u1 + ...+ Zkuk + e, (1)

where µ is the model intercept, b is a vector of fixed effects such as sex and age, relating106

potentially both continuous and categorical effects to observations via the fixed effects design107

matrix X, just as in an ordinary linear model, and e is the vector of normally-distributed108

residuals. An arbitrary number of random effects can be modelled, with design matrices Z,109
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Quantitative genetic inference with GLMMs 6

where effects (a, u1...uk) are assumed to be drawn from normal distributions with variances110

to be estimated. The key feature of the animal model is that it includes individual additive111

genetic effects, or breeding values, conventionally denoted a. These additive genetic effects112

and, critically, their variance, are estimable given relatedness data, which can be derived from113

pedigree data, or, more recently, from genomic estimates of relatedness (Sillanpää, 2011). The114

covariances of breeding values among individuals can be modelled according to115

a ∼ N (0,AVA) , (2)

where A is the additive genetic relatedness matrix derived from the pedigree and VA is the116

genetic additive variance.117

Common issues with non-Gaussian traits118

Many non-Gaussian traits, however, cannot be strictly additive on the scale on which they are119

expressed. Consider, for example, survival probability that is bounded at 0 and 1 so that effects120

like the substitution effect of one allele for another necessarily must be smaller when expressed121

in individuals that otherwise have expected values near zero or one. In such a scenario, it may122

be reasonable to assume that there exists an underlying scale, related to survival probability,123

upon which genetic and other effects are additive.124

In addition to inherent non-additivity, many non-Gaussian traits will have complex patterns125

of variation. Over and above sources of variation that can be modelled with fixed and random126

effects, as in a LMM (e.g., using Eqs. 1 and 2), residual variation may include both inherently127

stochastic components, and components that correspond to un-modelled systematic differences128

among observations. In a LMM, such differences are not distinguished, but contribute to resid-129

ual variance. However, for many non-Gaussian traits it may be desirable to treat the former130

as arising from some known statistical distribution, such as the binomial or Poisson distribu-131

tion, and to deal with additional variation via a latent-scale residual (i.e. an overdispersion132

term). Separation of these two kinds of variation in residuals may be very generally useful in133

evolutionary quantitative genetic studies.134
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Quantitative genetic inference with GLMMs 7

The scales of the generalised linear mixed model135

Generalised linear mixed model (GLMM) analysis can be used for inference of quantitative136

genetic parameters, and provides pragmatic ways of dealing with inherent non-additivity and137

with complex sources of variation. The GLMM framework can be thought of as consisting of138

three distinct scales on which we can think of variation in a trait occurring (see Fig. 1). A latent139

scale is assumed (Fig. 1, top), on which effects on the propensity for expression of some trait140

are assumed to be additive. A function, called a ‘link function’ is applied that links expected141

values for a trait to the latent scale. For example, a trait that is expressed in counts, say,142

number of behaviours expressed in a unit time, is a strictly non-negative quantity. As depicted143

in Fig. 1, a strictly positive distribution of expected values may related to latent values ranging144

from −∞ to +∞ by a function such as the log link. Finally, a distribution function (e.g.145

Binomial, Poisson, etc.) is required to model the “noise” of observed values around expected146

value (Fig. 1, bottom). Different distributions are suitable for different traits. For example,147

with a count trait such as that depicted in Fig. 1, observed values may be modelled using the148

Poisson distribution, with expectations related to the latent scale via the log link function.149

More formally, these three scales of the GLMM can be written:150

` = µ+ Xb + Zaa + Z1u1 + ...+ Zkuk + o, (3a)

151

η = g−1(`), (3b)
152

z ∼ D(η,θ), (3c)

where Eq. 3a is just as for a LMM (Eq. 1), except that it describes variation on the latent153

scale `, rather than the response directly. Note that we now refer to the “residual” (noted e in154

Eq. 1) as “overdispersion” (denoted o, with a variance denoted VO), since residuals (variation155

around expected values) are defined by the distribution function, D, in this model. Just as for156

the LMM (Eq. 1), all random effects are assumed to follow normal distributions with variances157

to be estimated on the latent scale. Particularly, the variance of additive genetic effects a is158

assumed to follow Eq. 2 on the latent scale.159

Eq. 3b formalises the idea of the link function. Any link function has an associated inverse160
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Quantitative genetic inference with GLMMs 8

link function, g−1, which is often useful for converting specific latent values to expected values.161

The expected values η constitute what we call the expected data scale. For example, where162

the log link function translates expected values to the latent scale, its inverse, the exponential163

function, translates latent values to expected values. Finally, Eq. 3c specifies the distribution164

by which the observations z scatter around the expected values according to some distribution165

function, that may involve parameters (denoted θ) other than the expectation. We call this166

the observed data scale. Some quantities of interest, such as the mean, are the same on the167

expected data scale and on the observed data scale. When parameters are equivalent on these168

two scales, we will refer to them together as the data scales.169

The distinction we make between the expected and observed data scales is one of convenience170

as they are not different scales per se. However, this distinction allows for more biological171

subtlety when interpreting the output of a GLMM. The expected data scale can be thought172

of as the “intrinsic” value of individuals (shaped by both the genetic and the environment),173

but this intrinsic value can only be studied through random realisations. As we will see,174

because breeding values are intrinsic individual values, the additive genetic variance is the175

same for both scales, but, due to the added noise in observed data, the heritabilities are not.176

Upon which scale to calculate heritability depends on the underlying biological question. For177

example, individuals (given their juvenile growth and genetic value) might have an intrinsic178

annual reproductive success of 3.4, but can only produce a integer number of offspring each179

year (say 2, 3, 4 or 5): heritabilities of both intrinsic expectations and observed numbers can180

be computed, but their values and interpretations will differ.181

Current practices and issues to compute genetic quantitative parameters from182

GLMM outputs183

Genetic variance components estimated in a generalised animal model are obtained on the184

latent scale. Hence, the “conventional” formula to compute heritability:185

h2lat =
VA,`

VA,` + VRE + VO
, (4)
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Quantitative genetic inference with GLMMs 9

where VRE is the summed variance of all random effects apart from the additive genetic variance,186

and VO is the overdispersion variance, is the heritability on the latent scale, not on the observed187

data scale (Morrissey et al., 2014). Here, and throughout this paper, VA,` stands for the additive188

genetic variance on the latent scale. Although it might sometimes be sensible to measure the189

heritability of a trait on the latent scale (for example, in animal breeding, where selection might190

be based on latent breeding values), it is natural to seek inferences on the scale upon which the191

trait is expressed, and on which we may think of selection as acting. Some expressions exist192

by which various parameters can be obtained or approximated on the observed data scale. For193

example, various expressions for the intra-class correlation coefficients on the data scale exist194

(reviewed in Nakagawa and Schielzeth, 2010), but, contrary to LMM, heritabilities on the data195

scales within a GLMM framework cannot be considered as intra-class correlation coefficients.196

Exact analytical expressions exist for the additive genetic variance and heritability on the197

observed data scale for two specific and important families of GLMMs (i.e. combinations of198

link functions and distribution functions): for a binomial model with a probit link function (i.e.,199

the “threshold model,” Dempster and Lerner, 1950) and for a Poisson model with a logarithm200

link function (Foulley and Im, 1993). A general system for calculating genetic parameters on201

the expected and observed data scales for arbitrary GLMMs is currently lacking.202

In addition to handling the relationship between observed data and the latent trait via203

the link and distribution functions, any system for expected and observed scale quantitative204

genetic inference with GLMMs will have to account for complex ways in which fixed effects205

can influence quantitative genetic parameters. It is currently appreciated that fixed effects206

in LMMs explain variance, and that variance associated with fixed effects can have a large207

influence on summary statistics such as repeatability (Nakagawa and Schielzeth, 2010) and208

heritability (Wilson, 2008). This principle holds for GLMMs as well, but fixed effects cause209

additional, important complications for interpreting GLMMs. While random and fixed effects210

are independent in a GLMM on the latent scale, the non-linearity of the link function renders211

them inter-related on the expected and observed scales. Consequently, and unlike in a LMM212

or in a GLMM on the latent scale, variance components on the observed scale in a GLMM213

depend on the fixed effects. Consider, for example, a GLMM with a log link function. Because214

the exponential is a convex function, the influence of fixed and random effects will create more215
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Quantitative genetic inference with GLMMs 10

variance on the expected and observed data scales for larger values than for smaller values.216

Quantitative genetic parameters in GLMMs217

Although all examples and most equations in this article are presented in a univariate form, all218

our results are applicable to multivariate analysis, which is implemented in our software. Unless219

stated otherwise, the equations below assume that no fixed effect (apart from the intercept)220

were included in the GLMM model.221

Phenotypic mean and variances222

Expected population mean The expected mean phenotype z̄ on the data scale (i.e., applying223

to both the mean expected value and mean observed value) is given by224

z̄ =

∫
g−1(`)fN (`, µ, VA,` + VRE + VO)d`, (5)

where fN (`, µ, VA,` + VRE + VO) is the probability density of a Normal distribution with mean225

µ and variance VA,` + VRE + VO evaluated at `.226

Expected-scale phenotypic variance Phenotypic variance on the expected data scale can be227

obtained analogously to the data scale population mean. Having obtained z̄, the phenotypic228

variance is229

VP,exp =

∫ (
g−1(`)− z̄

)2
fN (`, µ, VA,` + VRE + VO)d`. (6)

Observed-scale phenotypic variance Phenotypic variance of observed values is the sum of the230

variance in expected values and variance arising from the distribution function. Since these231

variances are independent by construction in a GLMM, they can be summed. This distribution232

variance is influenced by the latent trait value, but might also depend on additional distribution233

parameters included in θ (see Eq. 3c). Given a distribution-specific variance function v:234

VP,obs = VP,exp +

∫
v(`,θ)fN (`, µ, VA,` + VRE + VO)d`. (7)
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Quantitative genetic inference with GLMMs 11

Genotypic variance on the data scales, arising from additive genetic variance on235

the latent scale236

Because the link function is non-linear, additive genetic variance on the latent scale is manifested237

as a combination of additive and non-additive variance on the data scales. Following Falconer238

(1960) the total genotypic variance on the data scale is the variance of genotypic values on239

that scale. Genotypic values are the expected data scale phenotypes, given latent scale genetic240

values. The expected phenotype of an individual with a given latent genetic value a, i.e., its241

genotypic value on the data scales E[z|a], is given by242

E[z|a] =

∫
g−1(`)fN (`, µ+ a, VRE + VO)d`. (8)

The total genotypic variances on the expected and observed data scales are the same, since243

genotypic values are expectations that do not change between the expected and observed scales.244

The total genotypic variance on both the expected and observed data scales is then245

V (E[z|a]) =

∫
(E[z|a]− z̄)2 fN (a, 0, VA,`)da. (9)

This is the total genotypic variance on the data scale, arising from strictly additive genetic246

variance on the latent scale. If non-additive genetic effects are modelled on the latent scale,247

they would be included in the expectations and integrals in Eqs. 8 and 9.248

Additive genetic variance on the data scales249

The additive variance on the data scales is the variance of breeding values computed on the250

data scales. Following Robertson (1950; see also Fisher 1918), breeding values on the data251

scales, i.e., aexp and aobs, are the part of the phenotype z that depends linearly on the latent252

breeding values. The breeding values on the datas scale can then be defined as the predictions253

of a least-squares regression of the observed data on the latent breeding values,254

aobs = ẑ|a = m+ ba, (10)
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Quantitative genetic inference with GLMMs 12

where ẑ is the value of z predicted by the regression, a the latent breeding value and m and b255

the parameters of the regression. Thus, we have VA,obs = b2VA,` and, from standard regression256

theory:257

b =
cov(z, a)

VA,`

. (11)

Because of the independence between the expected values of z (i.e. the expected data scale258

g−1(`)) and the distribution “noise” (see Eq. 7), we can obtain the result that cov(z, a) =259

cov(g−1(`), a), hence:260

b =
cov(g−1(`), a)

VA,`

. (12)

Stein’s (1973) lemma states that ifX and Y are bivariate normally distributed random variables,261

then the covariance of Y and some function of X, f(X), is equal to the expected value of f ′(X)262

times the covariance between X and Y , so,263

cov(g−1(`), a) = E

[
dg−1(`)

d`

]
cov(`, a) = E

[
dg−1(`)

d`

]
VA,`, (13)

noting that the covariance of latent breeding values and latent values is the variance of latent264

breeding values. Finally, combining Eq. 12 with Eq. 13, we obtain:265

b = E

[
dg−1(`)

d`

]
. (14)

To avoid confusion with various uses of b as other forms of regression coefficients, and for266

consistency with Morrissey (2015), we denote the average derivative of expected value with267

respect to latent value as Ψ:268

Ψ = E

[
dg−1(`)

d`

]
=

∫
dg−1(`)

d`
fN (`, µ, VA,` + VRE + VO)d`. (15)

The additive genetic variance on the expected and observed scales are still the same and are269

given by270

VA,obs = VA,exp = Ψ2VA,`. (16)
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Quantitative genetic inference with GLMMs 13

Including fixed effects in the inference271

General issues Because of the non-linearity introduced by the link function in a GLMM, all272

quantitative genetic parameters are directly influenced by the presence of fixed effects. Hence,273

when fixed effects are included in the model, it will often be important to marginalise over them274

to compute accurate population parameters. There are different approaches to do so. We will275

first describe the simplest approach (i.e. directly based on GLMM assumptions).276

Averaging over predicted values In a GLMM, no assumption is made about the distribution of277

covariates in the fixed effects. Given this, we can marginalise over fixed effects by averaging over278

predicted values (marginalised over the random effects, i.e. Xb̂, where b̂ are the fixed effects279

estimates). Note that, doing so, we implicitly make the assumption that our sample is repre-280

sentative of the population of interest. Using this approach, we can compute the population281

mean in Eq. 5 as:282

z̄ =
1

N

N∑
i=1

∫
g−1(`)fN (`, µ+ ˆ̀

i, VA,` + VRE + VO)d`, (17)

where N is the number of predicted latent values in ˆ̀ = Xb̂. Typically, X will be the fixed283

effects design matrix used when fitting the generalised animal model (Eqs. 1, 2, and 3), and284

N will be the number of data observations. Furthermore, this assumes that all fixed effects285

represent biologically relevant variation, rather than being corrections for the observation pro-286

cess or experimental condition. From this estimate of z̄, we can compute the expected-scale287

phenotypic variance:288

VP,exp =
1

N

N∑
i=1

∫ (
g−1(`)− z̄

)2
fN (`, µ+ ˆ̀

i, VA,` + VRE + VO)d`. (18)

Note that we are not averaging over variances computed for each predicted values, since the289

value of the mean z̄ is the same across the computation. Eqs. 7, 8, 9 and 15 are to be modified290

accordingly to compute all parameters, including Ψ. This approach has the advantages of being291

simple and making a direct use of the GLMM inference without further assumptions.292
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Quantitative genetic inference with GLMMs 14

Sampled covariates are not always representative of the population The distribution of covariate293

values in X may not be representative of the population being studied. In such cases, integration294

over available values of fixed effects may be inappropriate. For example, a population may be295

known (or assumed) to have an equal sex ratio, but one sex may be easier to catch, and296

therefore over-represented in any given dataset. In such a situation, incorporation of additional297

assumptions or data about the distribution of covariates (e.g., of sex ratio) may be useful.298

A first approach is to predict values according to a new set of covariates constructed to be299

representative of the population (e.g. with balanced sex ratio). Given these new predicted300

values, the above approach can readily be used to compute quantitative genetic parameters301

of interest. A drawback of this approach is that it requires one to create a finite sample of302

predicted values instead of a full distribution of the covariates. A second approach will require303

one to specify such a distribution for fixed covariates, here noted fX(X). In that case, Eq. 17304

can be modified as follows305

z̄ =

∫∫
g−1(`)fN (`, µ+ Xb̂, VA,` + VRE + VO)fX(X)dXd`. (19)

All relevant equations (Eqs. 6, 7, 8, 9 and 15) are to be modified accordingly. This approach is306

the most general one, but requires the ability to compute fX(X). Note that this distribution307

should also account for potential covariance between covariates.308

Summary statistics and multivariate extensions309

Eqs. 5 through 16 give the values of different parameters that are useful for deriving other310

evolutionary quantitative genetic parameters on the observed data scale. Hence, from them,311

other parameters can be computed. The narrow-sense heritability on the observed data scale312

can be written as313

h2obs =
VA,obs

VP,obs
. (20)

Replacing VP,obs by VP,exp will lead to the heritability on the expected data scale h2exp:314

h2exp =
VA,exp

VP,exp
. (21)
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Quantitative genetic inference with GLMMs 15

Recalling that VA,obs = VA,exp, but VP,obs 6= VP,exp, note that the two heritabilities above differ.315

Parameters such as additive genetic coefficient of variance and evolvability (Houle, 1992) can316

be just as easily derived. The coefficient of variation on the expected and observed data scales317

are identical and can be computed as318

CVA,obs = CVA,exp = 100

√
VA,obs

z̄
, (22)

and the evolvability on the expected and observed data scales will be319

IA,obs = IA,exp =
VA,obs

z̄2
. (23)

The multivariate genetic basis of phenotypes, especially as summarised by the G matrix,320

is also often of interest. For simplicity, all expressions considered to this point have been pre-321

sented in univariate form. However, every expression has a fairly simple multivariate extension.322

Multivariate phenotypes are typically analysed by multi-response GLMMs. For example, the323

vector of mean phenotypes in a multivariate analysis on the expected data scale is obtained by324

defining the link function to be a vector-valued function, returning a vector of expected values325

from a vector of values on the latent scale. The phenotypic variance is then obtained by inte-326

grating the vector-valued link function times the multivariate normal distribution total variance327

on the latent scale, as in Eq. 5 and Eq. 7. Integration over fixed effects for calculation of the328

multivariate mean is directly analogous to either of the extensions of Eq. 5 given in Eqs. 17329

or 19. Calculation of other parameters, such as multivariate genotypic values, additive-derived330

covariance matrices, and phenotypic covariance matrices, have directly equivalent multivariate331

versions as well. The additive genetic variance-covariance matrix (the G matrix) on the ob-332

served scale is simply the multivariate extension of Eq. 16, i.e., Gobs = ΨG`Ψ
T . Here, G` is the333

latent G matrix and Ψ is the average gradient matrix of the vector-valued link function, which334

is a diagonal matrix of Ψ values for each trait (simultaneously computed from a multivariate335

version of Eq. 15).336
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Quantitative genetic inference with GLMMs 16

Relationships with existing analytical formulae337

Binomial distribution and the threshold model338

Heritabilities of binary traits have a long history of analysis with a threshold model (Wright,339

1934; Dempster and Lerner, 1950; Robertson, 1950), whereby an alternate trait category is340

expressed when a trait on a latent “liability scale” exceeds a threshold. Note that this liability341

scale is not the same as the latent scale hereby defined for GLMM (see Fig. S1 in Supplementary342

Information). However, it can be shown (see Supplementary Information, section A) that343

a GLMM with a binomial distribution and a probit link function is exactly equivalent to344

such a model, only with slightly differently defined scales. For threshold models, heritability345

can be computed on this liability scale by using adding a so-called “link variance” VL to the346

denominator (see for example Nakagawa and Schielzeth, 2010; de Villemereuil et al., 2013):347

h2liab =
VA,`

VA,` + VRE + VO + VL
. (24)

Because the probit link function is the inverse of the cumulative standard normal distribution348

function, the “link variance” VL is equal to one in this case. One can think of the “link variance”349

as arising in this computation because of the reduction from three scales (in case of a GLMM)350

to two scales (liability and observed data in the case of a threshold model): the liability scale351

includes the link function.352

When the heritability is computed using the threshold model, Dempster and Lerner (1950)353

and Robertson (1950) derived an exact analytical formula relating this estimate to the observed354

data scale:355

h2obs =
t2

p(1− p)
h2liab, (25)

where p is the probability of occurrence of the minor phenotype and t is the density of a356

standard normal distribution at the pth quantile (see also Roff, 1997). It can be shown (see357

SI, section A) that this formula is an exact analytical solution to Eqs. 5 to 21 in the case of358

a GLMM with binomial distribution and a probit link. When fixed effects are included in the359

model, it is still possible to use these formulae by integration over the marginalised predictions360

(see SI, section A). Note that Eq. 25 applies only to analyses conducted with a probit link, it361
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Quantitative genetic inference with GLMMs 17

does not apply to a binomial model with a logit link function.362

Poisson distribution with a logarithm link363

For a log link function and a Poisson distribution, both the derivative of the inverse link function,364

and the variance of the distribution, are equal to the expected value. Consequently, analytical365

results are obtainable for a log/Poisson model for quantities such as broad- and narrow-sense366

heritabilities. Foulley and Im (1993) derived an analytical formula to compute narrow-sense367

heritability on the observed scale:368

h2obs =
λ2 VA,`

λ2 [exp(VA,` + VRE + VO)− 1] + λ
=

λVA,`

λ [exp(VA,` + VRE + VO)− 1] + 1
, (26)

where λ is the data scale phenotypic mean, computed analytically as:369

λ = exp

(
µ+

VA,` + VRE + VO
2

)
. (27)

Again, it can be shown (see SI, section B) that these formulae are exact solutions to Eq. 5 to370

21 when assuming a Poisson distribution with a log link. The inclusion of fixed effects in the371

model make the expression slightly more complicated (see SI, section B). These results can also372

be extended to the Negative-Binomial distribution with log link with slight modifications of373

the analytical expressions (see SI, section B).374

The component of the broad-sense heritability on the observed data scale that arises from375

additive genetic effects on the latent scale can be computed as an intra-class correlation coeffi-376

cient (i.e. repeatability) for this kind of model (Foulley and Im, 1993; Nakagawa and Schielzeth,377

2010):378

H2
obs =

V (E[z|a])

VP,obs
=

λ(exp(VA,`)− 1)

λ [exp(VA,` + VRE + VO)− 1] + 1
. (28)

If non-additive genetic component were fitted in the model (e.g. dominance variance), they379

should be added to VA,` in Eq. 28 to constitute the total genotypic variance, and thus obtain380

the actual broad-sense heritability. Note that the Eqs. 28 and 26 converge together for small381

values of VA,`.382
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Quantitative genetic inference with GLMMs 18

Example analysis: quantitative genetic parameters of a non-normal383

character384

We modelled the first year survival of Soay sheep (Ovis aries) lambs on St Kilda, Outer He-385

brides, Scotland. The data are comprised of 3814 individuals born between 1985 and 2011,386

and that are known to either have died in their first year, defined operationally as having died387

before the first of April in the year following their birth, or were known to have survived be-388

yond their first year. Months of mortality for sheep of all ages are generally known from direct389

observation, and day of mortality is typically known. Furthermore, every lamb included in this390

analysis had a known sex and twin status (whether or not it had a twin), and a mother of a391

known age.392

Pedigree information is available for the St Kilda Soay sheep study population. Maternal393

links are known from direct observation, with occasional inconsistencies corrected with genetic394

data. Paternal links are known from molecular data. Most paternity assignments are made395

with very high confidence, using a panel of 384 SNP markers, each with high minor allele396

frequencies, and spread evenly throughout the genome. Details of marker data and pedigree397

reconstruction are given in Bérénos et al. (2014). The pedigree information was pruned to398

include only phenotyped individuals and their ancestors. The pedigree used in our analyses399

thus included 4687 individuals with 4165 maternal links and 4054 paternal links.400

We fitted a generalised linear mixed model of survival, with a logit link function and a401

binomial distribution function. We included fixed effects of individual’s sex and twin status,402

and linear, quadratic, and cubic effects of maternal age (matAgei). Maternal age was mean-403

centred by subtracting the overall mean. We also included an interaction of sex and twin status,404

and an interaction of twin status with maternal age. We included random effects of breeding405

value (as for Eq. 2), maternal identity, and birth year. Because the overdispersion variance VO406

in a binomial GLMM is unobservable for binary data, we set its variance to one. The model was407

fitted in MCMCglmm (Hadfield, 2010), with diffuse independent normal priors on all fixed408

effects, and parameter-expanded priors for the variances of all estimated random effects.409

We identified important effects on individual survival probability, i.e., several fixed effects410

were substantial, and also, each of the additive genetic, maternal, and among-year random411
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Quantitative genetic inference with GLMMs 19

effects explained appreciable variance (Table 1). The model intercept corresponds to the ex-412

pected value on the latent scale of a female singleton (i.e. not a twin) lamb with an average413

age (4.8 years) mother. Males have lower survival than females, and twins have lower survival414

than singletons. There were also substantial effects of maternal age, corresponding to a rapid415

increase in lamb survival with maternal age among relatively young mothers, and a negative416

curvature, such that the maximum survival probabilities occur among offspring of mothers aged417

6 or 7 years. The trajectory of maternal age effects in the cubic model are similar to those418

obtained when maternal age is fitted as a multi-level effect.419

To illustrate the consequences of accounting for different fixed effects on expected and ob-420

served data scale inferences, we calculated several parameters under a series of different treat-421

ments of the latent scale parameters of the GLMM. We calculated the phenotypic mean, the422

additive genetic variance, the total variance of expected values, the total variance of observed423

values, and the heritability of survival on the expected and observed scales.424

First, we calculated parameters using only the model intercept (µ in Eq. 1 and 3a). This425

intercept, under default settings, is arbitrarily defined by the linear modelling software imple-426

mentation and is thus software-dependent. In the current case, due to the details of how the427

data were coded, the intercept is the latent scale prediction for female singletons with average428

aged (4.8 years) mothers. In an average year, singleton females with average aged mothers have429

a probability of survival of about 80%. The additive genetic variance VA,obs, calculated with430

Eq. 16 is about 0.005, and corresponds to heritabilities on the expected and observed scales of431

0.115 and 0.042 (Table 2).432

In contrast, if we wanted to calculate parameters using a different (but equally arbitrary)433

intercept, corresponding to twin males, we would obtain a mean survival rate of 0.32, an additive434

genetic variance that is twice as large, but similar heritabilities (Table 1). Note that we have435

not modelled any systematic differences in genetic parameters between females and males, or436

between singletons and twins. These differences in parameter estimates arise from the exact437

same estimated variance components on the latent scale, as a result of different fixed effects.438

This first comparison has illustrated a major way in which the fixed effects in a GLMM439

influence inferences on the expected and observed data scales. For linear mixed models, it440

has been noted that variance in the response is explained by the fixed predictors, and that441
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this may inappropriately reduce the phenotypic variance and inflate heritability estimates for442

some purposes (Wilson, 2008). However, in the example so far, we have simply considered two443

different intercepts (i.e. no difference in explained variance): female singletons vs male twins,444

in both cases, assuming focal groups of individuals are all born to average aged mothers. Again445

these differences in phenotypic variances and heritabilities arise from differences in intercepts,446

not any differences in variance explained by fixed effects. All parameters on the expected and447

observed value scales are dependent on the intercept, including the mean, the additive genetic448

variance and the total variance generated from random effects. Heritability is modestly affected449

by the intercept, because additive genetic and total variances are similarly, but not identically,450

influenced by the model intercept.451

Additive genetic effects are those arising from the average effect of alleles on phenotype,452

integrated over all background genetic and environmental circumstances in which alternate453

alleles might occur. Fixed effects, where they represent biologically-relevant variation, are454

part of this background. Following our framework (see Eq. 17), we can solve the issue of the455

influence of the intercept by integrating our calculation of Ψ and ultimately VA,obs over all fixed456

effects. This approach has the advantage of being consistent for any chosen intercept, as the457

value obtained after integration will not depend on that intercept. Considering all fixed and458

random effects, quantitative genetic parameters on the expected and observed scales are given459

in table 2, third column. Note that additive genetic variance is not intermediate between the460

two extremes (concerning sex and twin status), that we previously considered. The calculation461

of VA,obs now includes an average slope calculated over a wide range of the steep part of the462

inverse-link function (near 0 on the latent scale, and near 0.5 on the expected data scale), and so463

is relatively high. The observed total phenotypic variance VP,obs is also quite high. The increase464

in VP,obs has two causes. First the survival mean is closer to 0.5, so the random effects variance465

is now manifested as greater total variance on the expected and observed scales. Second, there466

is now variance arising from fixed effects that is included in the total variance.467

Given this, which estimates should be reported or interpreted? We have seen that when468

fixed effects are included in a GLMM, the quantitative genetic parameters calculated without469

integration are sensitive to an arbitrary parameter: the intercept. Hence integration over fixed470

effects may often be the best strategy for obtaining parameters that are not arbitrary. In471
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the case of survival analysed here, h2obs is the heritability of realised survival, whereas h2exp is472

the heritability of “intrinsic” individual survival. Since realised survival is the one “visible”473

by natural selection, h2obs might be a more relevant evolutionary parameter. Nonetheless, we474

recommend that VP,exp and VP,obs are both reported.475

Evolutionary prediction476

Systems for predicting adaptive evolution in response to phenotypic selection assume that the477

distribution of breeding values is multivariate normal, and in most applications, that the joint478

distribution of phenotypes and breeding values is multivariate normal (Lande, 1979; Lande and479

Arnold, 1983; Morrissey, 2014; Walsh and Lynch, forthcoming). The distribution of breeding480

values is assumed to be normal on the latent scale in a GLMM analysis, and therefore the481

parent-offspring regression will also be normal on that scale, but not necessarily on the data482

scale. Consequently, evolutionary change predicted directly using data-scale parameters may483

be distorted. The Breeder’s and Lande equations may hold approximately, and may perhaps be484

useful. However, having taken up the non-trivial task of pursuing GLMM-based quantitative485

genetic analysis, the investigator has at their disposal inferences on the latent scale. On this486

scale, the assumptions required to predict the evolution of quantitative traits hold. In this487

section we will first demonstrate by simulation how application of the Breeder’s equation will488

generate biased predictions of evolution. We then proceed to an exposition of some statistical489

machinery that can be used to predict evolution on the latent scale (from which evolution on490

the expected and observed scale can subsequently be calculated, using Eq. 5), given inference491

of the function relating traits to fitness.492

Direct application of the Breeder’s and Lande equations on the data scale493

In order to explore the predictions of the Breeder’s equation applied at the level of observed494

phenotype, we conducted a simulation in which phenotypes were generated according to a495

Poisson GLMM (Eq. 3a to 3c, with a Poisson distribution function and a log link function), and496

then selected the largest observed count values (positive selection) with a range of proportions497

of selected individuals (from 5% to 95%, creating a range of selection differentials), a range498
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of latent-scale heritabilities (0.1, 0.3, 0.5 and 0.8, with a latent phenotypic variance fixed to499

0.1), and a range of latent means µ (from 0 to 3). We simulated 10,000 replicates of each500

scenario, each composed of a different array of 10,000 individuals. For each simulation, we501

simulated 10,000 offspring. For each offspring, a breeding value was simulated according to502

a`,i ∼ N ((a`,d + a`,s)/2, VA,`/2), where a`,i is the focal offspring’s breeding value, a`,d and a`,s are503

the breeding values of simulated dams and sires and VA,`/2 represents the segregational variance504

assuming parents are not inbred. Dams and sires were chosen at random with replacement505

from among the pool of simulated selected individuals. For each scenario, we calculated the506

realised selection differential arising from the simulated truncation selection, Sobs, and the507

average evolutionary response across simulations, Robs. For each scenario, we calculated the508

heritability on the observed scale using Eq. 20. If the Breeder’s equation was strictly valid for509

a Poisson GLMM on the observed scale, the realised heritability Robs/Sobs would be equal to510

the observed-scale heritability h2obs.511

The correspondence between Robs/Sobs and h2obs is approximate (Fig. 2), and strongly de-512

pends on the selection differential (controlled here by the proportion of selected individuals).513

Note that, although the results presented here depict a situation where the ratio Robs/Sobs is514

very often larger than h2obs, this is not a general result (e.g. this is not the case when using515

negative instead of positive selection, data not shown). In particular, evolutionary predictions516

are poorest in absolute terms for large µ and large (latent) heritabilities. However, because517

we were analysing simulation data, we could track the selection differential of latent value (by518

calculating the difference in its mean between simulated survivors and the mean simulated be-519

fore selection). We can also calculate the mean latent breeding value after selection. Across all520

simulation scenarios, the ratio of the change in breeding value after selection, to the change in521

breeding value before selection was equal to the latent heritability (see Fig. 2), showing that522

evolutionary changes could be accurately predicted on the latent scale.523

Evolutionary change on the latent scale, and associated change on the expected524

and observed scales525

In an analysis of real data, latent (breeding) values are, of course, not measured. However,526

given an estimate of the effect of traits on fitness, say via regression analysis, we can derive527
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the parameters necessary to predict evolution on the latent scale. The idea is thus to relate528

measured fitness on the observed data scale to the latent scale, compute the evolutionary529

response on the latent scale and finally compute the evolutionary response on the observed530

data scale.531

To relate the measured fitness on the observed scale to the latent scale, we need to compute532

the expected fitness Wexp given latent trait value `, which is533

Wexp(`) =
∑
k

WP (k)P (Z = k|`), (29)

where WP (k) is the measure of fitness for the kth data scale category (assuming the observed534

data scale is discrete as in most GLMMs). Population mean fitness, can then be calculated in535

an analogous way to Eq. 5:536

W̄ =

∫
Wexp(`)fN (`, µ, VA,` + VRE + VO)d`. (30)

These expressions comprise the basic functions necessary to predict evolution. Given a fitted537

GLMM, and a given estimate of the fitness function WP (k), each of several approaches could538

give equivalent results. For simplicity, we proceed via application of the breeder’s equation at539

the level of the latent scale.540

The change in the mean genetic value of any character due to selection is equal to the541

covariance of breeding value with relative fitness (Robertson, 1966, 1968). Using Stein’s (1973)542

lemma once more, this covariance can be obtained as the product of the additive genetic variance543

of latent values and the average derivative of expected fitness with respect to latent value, i.e.,544

E
[
dWexp

d`

]
. Evolution on the latent scale can therefore be predicted by545

∆µ = VAE

[
dWexp

d`

]
1

W̄
. (31)

In the case of a multivariate analysis, note that the derivative above should be a vector of546

partial derivatives (partial first order derivative with respect to latent value for each trait) of547

fitness.548

If fixed effects need to be considered, the approach can be modified in the same way as549
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integration over fixed effects is accomplished for calculating other quantities, i.e. the expression550

W̄ =
1

N

N∑
i=1

∫
Wexp(`)fN (`, µ+ ˆ̀

i, VA,` + VRE + VO)d` (32)

would be used in calculations of mean fitness and the average derivative of expected fitness551

with respect to latent value.552

Phenotypic change caused by changes in allele frequencies in response to selection is calcu-553

lated as554

∆z̄ =

∫
g−1(`)fN (`, µ+ ∆µ, VA,` + VRE + VO)d`− z̄. (33)

Or, if fixed effects are included in the model:555

∆z̄ =
1

N

N∑
i=1

∫
g−1(`)fN (`, µ+ ˆ̀

i + ∆µ, VA,` + VRE + VO)d`− z̄. (34)

Note that, in this second equation, z̄ must be computed as in Eq. 17 and that this equation556

assumes that the distribution of fixed effects for the offspring generation is the same as for the557

parental one.558

Another derivation of the expected evolutionary response using the Price-Robertson identity559

(Robertson, 1966; Price, 1970) is given in the Supplementary Information (section C).560

The simulation study revisited561

Using the same replicates as in the simulation study above, we used Eqs. 29 to 34 to predict562

phenotypic evolution. This procedure provides greatly improved predictions of evolutionary563

change on the observed scale (Fig. 3, top row). However, somewhat less response to selection is564

observed than is predicted. This deviation occurs because, in addition to producing a perma-565

nent evolutionary response in the mean value on the latent scale, directional selection creates566

a transient reduction of additive genetic variance due to linkage disequilibrium. Because the567

link function is non-linear, this transient change in the variance on the latent scale generates568

a transient change in the mean on the expected and observed scales. Following several genera-569

tions of random mating, the evolutionary change on the observed scale would converge on the570

predicted values. We simulated such a generation at equilibrium by simply drawing breeding571
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values for the post-selection sample from a distribution with the same variance as in the parental572

generation. This procedure necessarily generated a strong match between predicted and simu-573

lated evolution (Fig. 3, bottom row). Additionally, the effects of transient reduction in genetic574

variance on the latent scale could be directly modelled, for example, using Bulmer’s (1971)575

approximations for the transient dynamics of the genetic variance in response to selection.576

Discussion577

The general approach outlined here for quantitative genetic inference with GLMMs has several578

desirable features: (i) it is a general framework, which should work with any given GLMM579

and especially, any link and distribution function, (ii) provides mechanisms for rigorously han-580

dling fixed effects, which can be especially important in GLMMs, and (iii) it can be used for581

evolutionary prediction under standard GLMM assumptions about the genetic architecture of582

traits.583

Currently, with the increasing applicability of GLMMs, investigators seem eager to convert584

to the observed data scale. It seems clear that conversions between scales are generally useful.585

However, it is of note that the underlying assumption when using GLMMs for evolutionary586

prediction is that predictions hold on the latent scale. Hence, some properties of heritabilities587

for additive Gaussian traits, particularly the manner in which they can be used to predict588

evolution, do not hold on the data scale for non-Gaussian traits, even when expressed on the589

data scale. Yet, given an estimate of a fitness function, no further assumptions are necessary to590

predict evolution on the data scale, via the latent scale (as with Eqs. 29, 31, and 33), over and591

above those that are made in the first place upon deciding to pursue GLMM-based quantitative592

genetic analysis. Hence we recommend using this framework to produce accurate predictions593

about evolutionary scenarios.594

We have highlighted important ways in which fixed effects influence quantitative genetic in-595

ferences with GLMMs, and developed an approach for handling these complexities. In LMMs,596

the main consideration pertaining to fixed effects is that they explain variance, and some or all597

of this variance might be inappropriate to exclude from an assessment of VP when calculating598

heritabilities (Wilson, 2008). This aspect of fixed effects is relevant to GLMMs, but further-599
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more, all parameters on the expected and observed scales, not just means, are influenced by600

fixed effects in GLMMs; this includes additive genetic and phenotypic variances. This fact601

necessitates particular care in interpreting GLMMs. Our work clearly demonstrates that con-602

sideration of fixed effects is essential, and the exact course of action needs to be considered603

on a case-by-case basis. Integrating over fixed effects would solve, in particular, the issue of604

intercept arbitrariness illustrated with the Soay sheep example. Yet cases may often arise where605

fixed effects are fitted, but where one would not want to integrate over them (e.g. because they606

represent experimental rather than natural variability). In such cases, it will be important to607

work with a biologically meaningful intercept, which can be achieved for example by centring608

covariates on relevant values (Schielzeth, 2010). Finally, note that this is not an all-or-none609

alternative: in some situations, it could be relevant to integrate over some fixed effects (e.g. of610

biological importance) while some other fixed effects (e.g. those of experimental origins) would611

be left aside.612

One of the most difficult concepts in GLMMs seen as a non-linear developmental model613

(Morrissey, 2015) is that an irreducible noise is attached to the observed data. This is the614

reason why we believe that distinguishing between expected and observed data scale does have615

a biological meaning. Researchers using GLMMs need to realise that this kind of model can616

assume a large variance in the observed data with very little variance on the latent and expected617

data scales. For example, a Poisson/log GLMM with a latent mean µ = 0 and a total latent618

variance of 0.5 will result in observed data with a variance VP,obs = 2.35. Less than half of this619

variance lies in the expected data scale (VP,exp = 1.07), the rest is residual Poisson variation.620

Our model hence assumes that more than half of the measured variance comes from totally621

random noise. Hence, even assuming that the whole latent variance is composed of additive622

genetic variance, the heritability will never reach a value above 0.5. Whether this random noise623

should be accounted for when computing heritabilities (i.e. whether we should compute h2exp624

or h2obs) depends on the evolutionary question under study. In many instances, it is likely that625

natural selection will act directly on realised values rather than their expectations, in which case626

h2obs should be preferred. We recommend however, that, along with VA,obs, all other variances627

(including VO, VP,exp and VP,obs) are reported by researchers.628

The expressions given here for quantitative genetic parameters on the expected and ob-629
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served data scales are exact, given the GLMM model assumptions, in two senses. First, they630

are not approximations, such as might be obtained by linear approximations (Browne et al.,631

2005). Second, they are expressions for the parameters of direct interest, rather than convenient632

substitutes. For example, the calculation (also suggested by Browne et al. 2005) of variance633

partition coefficients (i.e. intraclass correlations) on an underlying scale only provides a value634

of the broad-sense heritability (e.g. using the genotypic variance arising from additive genetic635

effects on the latent scale).636

The framework developed here (including univariate and multivariate parameters computa-637

tion and evolutionary predictions on the observed data scale) is implemented in the R package638

QGglmm available at https://github.com/devillemereuil/qgglmm. Note that the package639

does not perform any GLMM inference but only implements the hereby introduced framework640

for analysis posterior to a GLMM inference. While the calculations we provide will often (i.e.641

when no analytical formula exists) be more computationally demanding than calculations on642

the latent scale, they will be direct ascertainments of specific parameters of interest, since the643

scale of evolutionary interest is likely to be the observed data scale, rather than the latent644

scale (unless some artificial selection is applied to predicted latent breeding values as in mod-645

ern animal breeding). Most applications should not be onerous. Computations of means and646

(additive genetic) variances took less than a second on a 1.7 GHz processor when using our647

R functions on the Soay sheep data set. Summation over fixed effects, and integration over648

1000 posterior samples of the fitted model took several minutes. When analytical expressions649

are available (e.g. for Poisson/log, Binomial/probit and Negative-Binomial/log, see the sup-650

plementary information and R package documentation), these computations are considerably651

accelerated.652
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Table 1: Parameters from the GLMM-based quantitative genetic analysis of Soay sheep (Ovis aries) lamb first-
year survival. All estimates are reported as posterior modes with 95% credible intervals. The intercept in this
model is arbitrarily defined for female lambs without twins, born to average age (4.8 years) mothers.

Parameter Posterior mode with 95% CI
(a) Fixed effects
Intercept 2.686 (1.631 – 3.299)
Sex (male vs. female) -1.185 (-1.436 – -0.932)
Twin (twin vs. singleton) -2.383 (-3.315 – -1.760)
Maternal age, linear term 0.238 (0.092 – 0.384)
Maternal age, quadratic term -0.169 (-0.196 – -0.148)
Maternal age, cubic term 0.014 (0.010 – 0.019)
Sex-twin interaction 0.497 (0.016 – 1.016)
Sex-maternal age interaction -0.020 (-0.103 – 0.070)
(b) Random effects
VA,` 0.882 (0.256 – 1.542)
Vmother 0.467 (0.213 – 0.876)
Vyear 3.062 (1.814 – 5.635)

Table 2: Estimates of expected and observed scale phenotypic mean and variances, and additive genetic variance,
for three different treatments of the fixed effects, as modelled on the linear scale with a GLMM, and reported in
table 1. Additive genetic variance and heritability on the latent scales are also reported for comparison. Note
that h2lat is slightly lower when averaging over fixed effects, since the variance they explain is then accounted
for.

Quantity Arbitrary intercept Arbitrary intercept Averaging over all fixed effects
(singleton female) (twin male)

VA,` 0.915 (0.275 – 1.66) 0.915 (0.275 – 1.66) 0.915 (0.275 – 1.66)
h2lat 0.159 (0.056 – 0.27) 0.159 (0.056 – 0.27) 0.117 (0.0417 – 0.194)
z̄ 0.838 (0.721 – 0.887) 0.352 (0.220 – 0.474) 0.446 (0.334 – 0.511)
VA, obs 0.006 (0.002 – 0.015) 0.011 (0.005 – 0.023) 0.013 (0.005 – 0.021)
VP, exp 0.060 (0.034 – 0.095) 0.098 (0.072 – 0.124) 0.123 (0.106 – 0.137)
VP, obs 0.136 (0.108 – 0.206) 0.250 (0.183 – 0.250) 0.250 (0.227 – 0.250)
h2exp 0.109 (0.043 – 0.201) 0.122 (0.054 – 0.227) 0.102 (0.039 – 0.166)
h2obs 0.047 (0.017 – 0.085) 0.051 (0.022 – 0.101) 0.043 (0.020 – 0.087)

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 8, 2015. ; https://doi.org/10.1101/026377doi: bioRxiv preprint 

https://doi.org/10.1101/026377
http://creativecommons.org/licenses/by/4.0/


Quantitative genetic inference with GLMMs 33

Latent scale

Expected data
scale

Observed data
scale

0

0

Figure 1: Example of the relationships between the three scales of the GLMM using a Poisson distribution and
a logarithm link function. Deterministic relationships are denoted using grey plain arrows, whereas stochastic
relationships are denoted using grey dashed arrows. Note that the latent scale is depicted as a simple Gaussian
distribution for the sake of simplicity, whereas it is a mixture of Gaussian distributions in reality.
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Figure 2: Simulated R/S (evolutionary response over selection differential, or the realised heritability) on the
latent (upper panels) or observed data (lower panels) scales against the corresponding-scale heritabilities. Each
data point is the average over 10,000 replicates of 10,000 individuals for various latent heritabilities h2lat (0.1,
0.3, 0.5, 0.8), latent population mean (µ from 0 to 3, from left to right) and proportion of selected individuals
(5%, 10%, 20%, 30%, 50%, 70%, 80%, 90%, 95%, varying from black to blue). The 1:1 line is plotted in black.
The breeder’s equation is predictive on the latent scale (upper panels), but approximate on the observed data
scale (lower panels), because phenotypes and breeding values are not jointly multivariate normal on that scale.
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Figure 3: Predicted Robs (phenotypic evolutionary response on the observed scale, see Eq. 34) against the
simulated Robs, via evolutionary predictions applied on the latent scale. Each data point is the average over
10,000 replicates of 10,000 individuals for various latent heritabilities h2lat (0.1, 0.3, 0.5, 0.8), latent population
mean (µ from 0 to 3) and proportion of selected individuals (5%, 10%, 20%, 30%, 50%, 70%, 80%, 90%, 95%,
varying from black to blue). The 1:1 line is plotted in black. The upper panels (“Immediate”) show simulations
for the response after a single generation, which include both a permanent and transient response to selection
arising from linkage disequilibrium. The bottom panels (“permanent”) show simulation results modified to
reflect only the permanent response to selection.
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