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Quantitative genetic inference with GLMMs 2

Abstract1

Methods for inference and interpretation of evolutionary quantitative genetic pa-2

rameters, and for prediction of the response to selection, are best developed for traits3

with normal distributions. Many traits of evolutionary interest, including many life4

history and behavioural traits, have inherently non-normal distributions. The gen-5

eralised linear mixed model (GLMM) framework has become a widely used tool for6

estimating quantitative genetic parameters for non-normal traits. However, whereas7

GLMMs provide inference on a statistically-convenient latent scale, it will often be8

desirable to estimate quantitative genetic parameters on the scale upon which traits9

are expressed. The parameters of a fitted GLMM, despite being on a latent scale,10

fully determine all quantities of potential interest on the scale on which traits are11

expressed. We provide expressions for deriving each of such quantities, including12

population means, phenotypic (co)variances, variance components including additive13

genetic (co)variances, and parameters such as heritability. The expressions require14

integration of quantities determined by the link function, over distributions of latent15

values. In general cases, the required integrals must be solved numerically, but ef-16

ficient methods are available and we provide an implementation in an R package,17

QGglmm. We show that known formulae for quantities such as heritability of traits18

with Binomial and Poisson distributions are special cases of our expressions. Addi-19

tionally, we show how a fitted GLMM can be incorporated into existing methods for20

predicting evolutionary trajectories. We demonstrate the accuracy of the resulting21

method for evolutionary prediction by simulation, and apply our approach to data22

from a pedigreed vertebrate population.23
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Quantitative genetic inference with GLMMs 3

Introduction24

Additive genetic variances and covariances of phenotypic traits determine the response to selec-25

tion, and so are key determinants of the processes of adaptation in response to natural selection26

and of genetic improvement in response to artificial selection (Fisher, 1918; Falconer, 1960;27

Lynch and Walsh, 1998; Walsh and Lynch, forthcoming). While the concept of additive genetic28

variance (Fisher, 1918; Falconer, 1960) is very general, being applicable to any type of character29

with any arbitrary distribution, including, for example, fitness (Fisher, 1930), techniques for30

estimating additive genetic variances and covariances are best developed for Gaussian traits31

(i.e., traits with a normal distribution; Henderson 1950; Lynch and Walsh 1998). Furthermore,32

quantitative genetic theory for predicting responses to selection are also best developed and33

established for Gaussian characters (Walsh and Lynch, forthcoming), but see Morrissey (2015).34

Consequently, although many characters of potential evolutionary interest are not Gaussian35

(e.g. survival or number of offspring), they are not well-handled by existing theory and meth-36

ods. Comprehensive systems for estimating genetic parameters and predicting evolutionary37

trajectories of non-Gaussian traits will hence be very useful for quantitative genetic studies of38

adaptation.39

For Gaussian traits, a linear mixed model allows various analyses of factors that contribute to40

the mean and variance of phenotype. In particular, a formulation of a linear mixed model called41

the ‘animal model’ (Henderson, 1973; Kruuk, 2004; Wilson et al., 2010) provides a very general42

method for estimating additive genetic variances and covariances, given arbitrary pedigree43

data, and potentially accounting for a range of different types of confounding variables, such as44

environmental effects, measurement error or maternal effects. A general statement of an animal45

model analysis decomposing variation in a trait, z, into additive genetic and other components46

would be47

z = µ+ Xb + Zaa + Z1u1 + ...+ Zkuk + e, (1)

where µ is the model intercept, and b is a vector of fixed effects such as sex and age, relating48

potentially to both continuous and categorical effects to observations via the fixed effects design49

matrix X, just as in an ordinary linear model. An arbitrary number of random effects can be50

modelled, with design matrices Z, where effects (a, u1...uk) are assumed to be drawn from51
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Quantitative genetic inference with GLMMs 4

normal distributions with variances to be estimated. The key feature of the animal model is52

that it includes individual additive genetic effects, or breeding values, conventionally denoted53

a. These additive genetic effects and, critically, their variance, are estimable given arbitrary54

pedigree data, which defines the relatedness of all individuals in an analysis. The covariances55

of breeding values among individuals can be modelled according to56

a ∼ N (0,AVA) , (2)

where A is the additive genetic relatedness matrix derived from the pedigree and VA is the57

genetic additive variance.58

Many non-Gaussian traits, however, cannot be strictly additive on the scale on which they are59

expressed. Consider, for example, survival probability that is bounded at 0 and 1 so that effects60

like the substitution effect of one allele for another necessarily must be smaller when expressed61

in individuals that otherwise have expected values near zero or one. In such a scenario, it may62

be reasonable to assume that there exists an underlying scale, related to survival probability,63

upon which genetic and other effects are additive.64

In addition to inherent non-additivity, analysis of many non-Gaussian traits will have com-65

plex patterns of variation. Over and above sources of variation that can be modelled with fixed66

and random effects, as in a LMM (e.g., using Eqs. 1 and 2), residual variation may include67

both inherently stochastic components, and components that correspond to un-modelled sys-68

tematic differences among observations. In a LMM, such differences are not distinguished, but69

contribute to residual variance. However, for many non-Gaussian traits it may be desirable70

to treat the former as arising from some known statistical distribution, such as the binomial71

or Poisson distribution, and to deal with additional variation via a latent-scale residual (i.e.72

an overdispersion term). Separation of these two kinds of variation in residuals may be very73

generally useful in evolutionary quantitative genetic studies. For example, when observed data74

represent observations (e.g., calling rate), but interest is in long-run average values (e.g., call-75

ing effort over a season), it may be useful to exclude stochastic observation variance from76

assessments of differences among individuals.77

Generalised linear mixed model (GLMM) analysis can be used for inference of quantitative78
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Quantitative genetic inference with GLMMs 5

genetic parameters, and provide pragmatic ways of dealing with inherent non-additivity and79

with complex sources of variation. A latent scale is assumed (Fig. 1), on which effects on the80

propensity for expression of some trait are assumed to be additive. A function, called a ‘link81

function’, is applied that links expected values for a trait to the latent scale. For example,82

a trait that is expressed in counts, say, number of behaviours expressed in a unit time, is a83

strictly non-negative quantity. As depicted in Fig. 1, a strictly positive distribution of expected84

values may be related to latent values ranging from −∞ to +∞ by a function such as the log85

link. Finally, a distribution function is required to model the “noise” of observed values around86

expected values (Fig. 1). Different distributions are suitable for different traits. For example,87

with a count trait such as that depicted in Fig. 1, observed values may be modelled using the88

Poisson distribution, with expectations related to the latent scale via the log link function.89

The GLMM framework thus involves three scales on which we can think of variation in a90

trait occurring. More formally, these three scales of the GLMM (see also Fig. 1) can be written:91

92

` = µ+ Xb + Zaa + Z1u1 + ...+ Zkuk + o, (3a)
93

η = g−1(`), (3b)
94

z ∼ D(η,θ), (3c)

where Eq. 3a is just as for a LMM (Eq. 1), except that it describes variation on the latent95

scale `, rather than the response directly. Note that we now refer to the “residual” (noted e96

in Eq. 1) as “overdispersion” (denoted o, with a variance denoted VO), as residuals (variation97

around expected values) are defined by the distribution function, D, in this model. Eq. 3b98

formalises the idea of the link function. Any link function has an associated inverse link99

function, g−1, which is often useful for converting specific latent values to expected values. The100

level of expected values is what we call the expected value scale. For example, where the log101

link function translates expected values to the latent scale, its inverse, the exponential function,102

translates latent values to expected values. Finally, Eq. 3c specifies the distribution by which103

observations scatter around the expected values according to some distribution function, that104

may involve parameters (denoted θ) other than the expectation. We call this the observed data105
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Quantitative genetic inference with GLMMs 6

scale. Some quantities of interest, such as the mean, are the same on the expected data scale106

and on the observed data scale. When parameters are equivalent on these two scales, we will107

refer to them together as the data scale.108

As for the LMM (Eq. 1), all random effects in a GLMM are assumed to follow normal109

distributions, but on the latent scale. Particularly, the variance of additive genetic effects a110

are assumed to follow Eq. 2 on the latent scale. The expected data scale can be thought of111

as the “intrinsic” value of individuals (shaped by both genetic and environmental effects), but112

this intrinsic value can only be studied through random realisations. What matters more is a113

topic of the problem at hand. For example, individuals (given their juvenile growth and genetic114

value) might have an intrinsic annual reproductive success of 3.4, but can only produce integer115

values of offspring each year (e.g. 2, or 3, or 5).116

Linear mixed model-based inferences of genetic parameters, using the ‘animal model’, have117

become common practice, particularly in evolutionary studies on wild populations (Kruuk,118

2004; Wilson et al., 2010). The use of generalised linear mixed animal model analysis is also119

growing (e.g. Milot et al., 2011; Wilson et al., 2011; Morrissey et al., 2012; de Villemereuil120

et al., 2013; Ayers et al., 2013). However, whereas Gaussian animal model analysis directly121

estimates additive genetic parameters on the scale on which traits are expressed and selected,122

and upon which we may most naturally consider their evolution, this is not so for generalised123

analyses. Genetic variance components estimated in a generalised animal model are obtained124

on the latent scale. Hence, the “conventional” formula to compute heritability,125

h2lat =
VA,`

VA,` + VRE,+VO
(4)

where VRE is the summed variance of all random effects apart from the additive genetic variance,126

and VO is the overdispersion variance, h2lat is the heritability on the latent scale, not on the127

observed data scale. Here, and throughout this paper, VA,` stands for the additive genetic128

variance on the latent scale. Although it might sometimes be sensible to measure the heritability129

of a trait on the latent scale (for example, in animal breeding, where selection might be based130

on latent breeding values), it is natural to seek inferences on the scale upon which the trait131

is expressed, and on which we may think of selection as acting. Some expressions exist by132
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Quantitative genetic inference with GLMMs 7

which various parameters can be obtained or approximated on the observed data scale. For133

example, various expressions for the intra-class correlation coefficients on the data scale exist134

(reviewed in Nakagawa and Schielzeth, 2010), but these do not provide inferences of additive135

genetic variance on the data scale. Exact analytical expressions exist for the additive genetic136

variance and heritability on the observed data scale for two specific and important families of137

GLMMs (i.e. combinations of link functions and distribution functions): for a binomial model138

with a probit link function (i.e., the “threshold model,” Dempster and Lerner, 1950) and for139

a Poisson model with a logarithm link function (Foulley and Im, 1993). A general system for140

calculating genetic parameters on the expected and observed data scales for arbitrary GLMMs141

is currently lacking.142

In addition to handling the relationship between observed data and the latent trait via143

the link and distribution functions, any system for expected and observed scale quantitative144

genetic inference with GLMMs will have to account for complex ways in which fixed effects145

can influence quantitative genetic parameters. It is currently appreciated that fixed effects146

in LMMs explain variance, and that variance associated with fixed effects can have a large147

influence on summary statistics such as repeatability (Nakagawa and Schielzeth, 2010) and148

heritability (Wilson, 2008). This principle holds for GLMMs as well, but fixed effects cause149

additional, important complications for interpreting GLMMs. While random and fixed effects150

are independent in a GLMM on the latent scale, the non-linearity of the link function renders151

them inter-related on the expected and observed scales. Consider, for example, a GLMM with152

a log link function. Because the exponential is a convex function, the influence of fixed and153

random effects will create more variance on the expected and observed data scales for larger154

values than for smaller values.155

While it will undoubtedly be desirable to develop a comprehensive method for making data-156

scale inferences of quantitative genetic parameters with GLMMs, such an endeavour will not157

yield a system for predicting evolution in response to natural or artificial selection, even if a158

particular empirical system is very well served by the assumptions of a GLMM. This is because159

systems for evolutionary prediction, specifically the Breeder’s equation (Lush, 1937; Fisher,160

1924) and the Lande equation (Lande, 1979; Lande and Arnold, 1983), assume that breeding161

values (and in most applications, phenotypes) are multivariate normal (Walsh and Lynch,162
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Quantitative genetic inference with GLMMs 8

forthcoming). Even if it is possible to estimate additive genetic variances of traits on the163

expected and observed data scales, we will show that these quantities will not strictly be usable164

for evolutionary prediction. However, the latent scale in a GLMM does, by definition, satisfy165

the assumptions of the Breeder’s and Lande equations. Thus, for the purpose of predicting166

evolution, it may be useful to be able to express selection of non-Gaussian traits, not on the167

observed scale, but rather on the latent scale. Such an approach could yield a system for168

evolutionary prediction of characters that have been modelled with a GLMM, requiring no169

more assumptions than those that are already made in applying the statistical model.170

We propose a system for making inferences of quantitative genetic parameters on the ex-171

pected and observed scales, for arbitrary GLMMs. We show how to estimate genotypic and172

additive genetic variances and covariances on the expected and observed data scale, accounting173

for fixed effects as necessary. We lay out the formal theory underlying the system, apply it to an174

empirical dataset, and provide software for implementation. The relationships between existing175

analytical formulae and our general framework are also highlighted. Next, we outline a system176

of evolutionary prediction for non-Gaussian traits that capitalises on the fact that the latent177

scale in a GLMM satisfies the assumptions of available equations for the prediction of evolution.178

We show in a simulation study that (i) evolutionary predictions using additive genetic variances179

on the observed data scale represent approximations, and can, in fact, give substantial errors,180

and (ii) that making inferences via the latent scale provides unbiased predictions, insofar as a181

GLMM may provide a pragmatic model of variation in non-Gaussian traits. We also provide182

software for making evolutionary predictions using the latent scale. Although all examples and183

most equations in this article are presented in a univariate form, all our results are applicable184

to multivariate analysis, which is implemented in our software. Together, these approaches185

provide a comprehensive treatment of the evolutionary quantitative genetics of traits that may186

be modelled with GLMMs.187

Quantitative genetic parameters in GLMMs188

Throughout this section we will refer to the additive genetic variance as defined on the latent189

scale as VA,`, the summed variance of other random effects on the latent scale as VRE and the190
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Quantitative genetic inference with GLMMs 9

overdispersion variance (i.e. the variance of o) as VO.191

Phenotypic mean and variances192

Expected population mean The expected mean phenotype on the data scale (i.e., applying to193

both the mean expected value and mean observed value) is given by194

z̄ =

∫
g−1(`)f(`)d`, (5)

where f(`) is the probability density of `. Typically, and especially in the absence of fixed195

effects, the distribution of ` will be normal with a mean µ and variance VA,` + VRE + VO.196

In the presence of fixed effects, it is necessary to average over the components of the predictive197

values marginalised over the random effects (i.e. Xb̂, where b̂ are the fixed effects estimates)198

as well as integrating over the random parts of `,199

z̄ =
1

N

N∑
i=1

∫
g−1(`)fN (`, µ+ ˆ̀

i, VA,` + VRE + VO)d`, (6)

where N is the number of predicted latent values in ˆ̀ = Xb̂. Typically, X will be the fixed200

effects design matrix used when fitting the generalised animal model (equations 1, 2, and 3),201

and N will be the number of data observations. However, X could profitably be modified to202

a general prediction matrix in some scenarios. For example, if a model included a fixed effect203

for sex, and if the population in question had an equal sex ratio but the data did not, an X204

matrix might be used that represented both sexes equally. Throughout the rest of this section,205

and for the sake of clarity, we will assume the simple case of no fixed effects, but all equations206

can easily be transformed as for Eq. 6. We will only specify versions of a few fundamental207

equations that account for fixed effects.208

Expected-scale phenotypic variance Phenotypic variance on the expected data scale can be209

obtained analogously to the data scale population mean. Having obtained z̄, the phenotypic210

variance is211

VP,exp =

∫ (
g−1(`)− z̄

)2
f(`)d`. (7)
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Quantitative genetic inference with GLMMs 10

Observed-scale phenotypic variance Phenotypic variance of observed values is the sum of the212

variance in expected values and variance arising from the distribution function. Since these213

variances are independent by construction in a GLMM, they can be added. This distribution214

variance is influenced by the latent trait value, but might also depend on additional distribution215

parameters included in θ (see Eq. 3c). Given a distribution-specific variance function v:216

VP,obs = VP,exp +

∫
v(`,θ)f(`)d`. (8)

Genotypic variance on the data scale, arising from additive genetic variance on the217

latent scale218

Because the link function is non-linear, additive genetic variance on the latent scale is manifested219

as a combination of additive and non-additive variance on the data scale. Following Falconer220

(1960) the genotypic variance, as opposed to (additive) genetic, on the data scale is the variance221

of genotypic values on that scale. Genotypic values are the expected data scale phenotypes,222

given latent scale genetic values. The expected phenotype of an individual with a given latent223

genetic value a, i.e., its genotypic value on the data scale E[z|a], is given by224

E[z|a] =

∫
g−1(`)f(`|a)d`, (9)

where f(`|a) is the density of the latent trait for a given value of a. For example, in absence of225

fixed effects, f(`|a) would be fN (`, µ+ a, VRE + VO).226

The genotypic variances on the expected and observed data scales are the same, since geno-227

typic values are expectations that do not change between the expected and observed scales.228

The genotypic variance on both the expected and observed data scales is then229

V (E[z|a]) =

∫
(E[z|a]− z̄)2 fN (a, 0, VA,`)da. (10)

This is the genotypic variance on the data scale, arising from strictly additive genetic variance230

on the latent scale. If non-additive genetic effects are modelled on the latent scale, they would231

be included in the expectations and integrals in Eqs. 9 and 10.232
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Quantitative genetic inference with GLMMs 11

Additive genetic variance on the data scale233

That part of the genotypic variance on the data scale (arising under a model that is additive on234

the latent scale) that is additive is the variance of breeding values on the data scale. Following235

Robertson (1950; see also Fisher 1918), breeding values on the data scale, i.e., aexp and aobs, are236

the part of the phenotype z that depends linearly on the latent breeding values. The breeding237

values on the data scale can then be defined as the predictions of a least-squares regression of238

the observed data on the latent breeding values,239

aobs = ẑ|a = m+ ba, (11)

where ẑ is the value of z predicted by the regression. Thus, we have VA,obs = b2VA,` and, from240

standard regression theory:241

b =
cov(z, a)

VA,`

. (12)

Because of the independence between the expected values of z (i.e. the expected data scale242

g−1(`)) and the distribution “noise” (see Eq. 8), we can obtain the result that cov(z, a) =243

cov(g−1(`), a), hence:244

b =
cov(g−1(`), a)

VA,`

. (13)

Stein’s (1973) lemma states that ifX and Y are bivariate normally distributed random variables,245

then the covariance of Y and some function of X, f(X), is equal to the expected value of f ′(X)246

times the covariance between X and Y , so,247

cov(g−1(`), a) = E

[
dg−1(`)

d`

]
cov(`, a) = E

[
dg−1(`)

d`

]
VA,`, (14)

noting that the covariance of latent breeding values and latent values is the variance of breeding248

values. Finally, combining Eq. 13 with Eq. 14, we obtain:249

b = E

[
dg−1(`)

d`

]
. (15)

To avoid confusion with various uses of b as other forms of regression coefficients, and for250

consistency with Morrissey (2015), we denote the average derivative of expected value with251
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Quantitative genetic inference with GLMMs 12

respect to latent value as Ψ. In the absence of fixed effects in the model, Ψ is252

Ψ =

∫
dg−1(`)

d`
fN (`, µ, VA,` + VRE + VO)d`. (16)

If fixed effects (other than the intercept µ) are included in the model, the equation above should253

be modified accordingly:254

Ψ =
1

N

N∑
i=1

∫
dg−1(`)

d`
fN (`, µ+ ˆ̀

i, VA,` + VRE + VO)d`. (17)

The additive genetic variance on the data scale is given by255

VA,obs = VA,exp = Ψ2VA,`. (18)

An alternative derivation of equation 17, and its associated definition of Ψ, for the general256

calculation of the additive genetic variances following a non-linear transformation, is given in257

Morrissey (2015).258

Summary statistics and multivariate extensions259

Equations 5 through 18 give the values of different parameters that are useful for deriving other260

evolutionary quantitative genetic parameters on the observed data scale. Hence, from them,261

other parameters can be computed. The narrow-sense heritability on the observed data scale262

can be written as263

h2obs =
VA,obs

VP,obs
. (19)

Replacing VP,obs by VP,exp will lead to the heritability on the expected data scale h2exp:264

h2exp =
VA,exp

VP,exp
. (20)

Parameters such as additive genetic coefficient of variance and evolvability (Houle, 1992) can265

be just as easily derived. The coefficient of variation on the expected and observed data scales266
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Quantitative genetic inference with GLMMs 13

are identical and can be computed as267

CVA,obs = CVA,exp = 100

√
VA,exp

z̄
, (21)

and the evolvability on the expected and observed data scales will be268

IA,obs = IA,exp =
VA,exp

z̄2
. (22)

The genetic basis of multivariate phenotype, especially as summarised by the G matrix is269

often of interest. For simplicity, all expressions considered to this point have been presented in270

univariate form. However, every expression has a fairly simple multivariate extension. Multi-271

variate phenotypes are typically analysed by multi-response GLMMs. For example, the vector272

of mean phenotypes in a multivariate analysis on the expected data scale is obtained by defining273

the link function to be a vector-valued function, returning a vector of expected values from a274

vector of values on the latent scale. The phenotypic variance is then obtained by integrating275

the vector-valued link function times the multivariate normal distribution total variance on276

the latent scale, as in Eq. 5 and Eq. 8. Integration over fixed effects for calculation of the277

multivariate mean is directly analogous to the extension of Eq. 5 given in Eq. 6. Calculation of278

other parameters, such as multivariate genotypic values, additive-derived covariance matrices,279

and phenotypic covariance matrices, have directly equivalent multivariate versions as well. The280

additive genetic variance-covariance matrix (the G matrix) on the observed scale is simply the281

multivariate extension of equation 18, i.e., Gobs = ΨG`Ψ
T . Here, G` is the latent G matrix and282

Ψ is the average gradient matrix of the vector-valued link function, which is a diagonal matrix283

of Ψ values for each trait (simultaneously computed from a multivariate version of Eq. 16).284

Relationships with existing analytical formulae285

Binomial distribution and the threshold model286

Heritabilities of binary traits have a long history of analysis with a threshold model (Wright,287

1934; Dempster and Lerner, 1950), whereby an alternate trait category is expressed when a288

trait on a latent “liability scale” exceeds a threshold. It can be shown (see Supplementary289

Information, section A) that a GLMM with a binomial distribution and a probit link function290
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Quantitative genetic inference with GLMMs 14

is exactly equivalent to such a model. Heritability can then be computed on this “liability”291

scale (different from the expected data scale!) by adding a so-called “link variance” VL to the292

denominator (see, for example, Nakagawa and Schielzeth, 2010; de Villemereuil et al., 2013):293

h2thres =
VA,`

VA,` + VRE + VO + VL
. (23)

Because the probit link function is the inverse of the cumulative standard normal distribution294

function, the “link variance” VL is equal to one in this case.295

When the heritability is computed using the threshold model, Dempster and Lerner (1950)296

and Robertson (1950) derived an exact analytical formula relating this estimate to the observed297

data scale:298

h2obs =
t2

p(1− p)
h2thres, (24)

where p is the probability of occurrence of the minor phenotype and t is the density of a299

standard normal distribution at the pth quantile (see also Roff, 1997). It can be shown (see300

SI, section A) that this formula is an exact analytical solution to Eqs. 5 to 20 in the case of301

a GLMM with binomial distribution and a probit link. When fixed effects are included in the302

model, it is still possible to use these formulae by integration over the marginalised predictions303

(see SI, section A). Note that this expression applies only to analyses conducted with a probit304

link; it does not apply to a binomial model with a logit link function.305

Poisson distribution with a logarithm link306

For a log link function and a Poisson distribution, both the derivative of the inverse link function,307

and the variance of the distribution function, are equal to the expected value. Consequently,308

analytical results are obtainable for a log/Poisson model for quantities such as broad- and309

narrow-sense heritabilities. Foulley and Im (1993) derived an analytical formula to compute310

narrow-sense heritability on the observed scale:311

h2obs =
λ2 VA,`

λ2 [exp(VA,` + VRE + VO)− 1] + λ
=

λVA,`

λ [exp(VA,` + VRE + VO)− 1] + 1
, (25)
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where λ is the data scale phenotypic mean, computed analytically as:312

λ = exp

(
µ+

VA,` + VRE + VO
2

)
. (26)

Again, it can be shown (see SI, section B) that these formulae are exact solutions to Eq. 5 to313

20 when assuming a Poisson distribution with a log link. The inclusion of fixed effects in the314

model make the expression slightly more complicated (see SI, section B). These results can also315

be extended to the Negative-Binomial distribution with log link with slight modifications of316

the analytical expressions (see SI, section B).317

The component of the broad-sense heritability on the observed data scale that arises from318

additive genetic effects on the latent scale can be computed as an intra-class correlation coeffi-319

cient (i.e. repeatability) for this kind of model (Foulley and Im, 1993; Nakagawa and Schielzeth,320

2010):321

H2
obs =

V (E[z|a])

VP,obs
=

λ(exp(VA,`)− 1)

λ [exp(VA,` + VRE + VO)− 1] + 1
. (27)

If non-additive genetic component were fitted in the model (e.g. dominance variance), they322

should be added to VA,` in Eq. 27 to constitute the total genotypic variance, and thus obtain323

the actual broad-sense heritability. Note that Eqs. 27 and 25 converge for small values of VA,`.324

Example analysis: quantitative genetic parameters of a non-normal325

character326

We modelled the first year survival of Soay sheep (Ovis aries) lambs on St Kilda, Outer He-327

brides, Scotland. The data are comprised of 3814 individuals born between 1985 and 2011,328

and that are known to either have died in their first year, defined operationally as having died329

before the first of April in the year following their birth, or were known to have survived be-330

yond their first year. Months of mortality for sheep of all ages are generally known from direct331

observation, and day of mortality is typically known. Furthermore, every lamb included in this332

analysis had a known sex and twin status (whether or not it had a twin), and a mother of a333

known age.334

Pedigree information is available for the St Kilda Soay sheep study population. Maternal335
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links are known from direct observation, with occasional inconsistencies corrected with genetic336

data. Paternal links are known from molecular data. Most paternity assignments are made337

with very high confidence, using a panel of 384 SNP markers, each with high minor allele338

frequencies, and spread evenly throughout the genome. Details of marker data and pedigree339

reconstruction are given in Bérénos et al. (2014). The pedigree information was pruned to340

include only phenotyped individuals and their ancestors. The pedigree used in our analyses341

thus included 4687 individuals with 4165 maternal links and 4054 paternal links.342

We fitted a generalised linear mixed model of survival, with a logit link function and a343

binomial distribution function. We modelled fixed effects sex and twin status, and linear,344

quadratic, and cubic effects of maternal age (matAgei). Maternal age was mean-centred by345

subtracting the overall mean. We also included an interaction of sex and twin status, and an346

interaction of twin status with maternal age. We included random effects of breeding value (as347

for equation 2), maternal identity, and birth year. Because the overdispersion variance VO in348

a binomial GLMM is unobservable for binary data, we set its variance to one. The model was349

fitted in MCMCglmm (Hadfield, 2010), with diffuse independent normal priors on all fixed350

effects, and parameter-expanded priors for the variances of all estimated random effects.351

We identified important effects on individual survival probability, i.e., several fixed effects352

were substantial, and also, each of the additive genetic, maternal, and among-year random353

effects explained appreciable variances (Table 1). The model intercept corresponds to the354

expected value on the latent scale of a female singleton (i.e. not a twin) lamb with an average355

age (4.8 years) mother. Males have lower survival than females, and twins have lower survival356

than singletons. There were also substantial effects of maternal age, corresponding to a rapid357

increase in lamb survival with maternal age among relatively young mothers, and a negative358

curvature, such that the maximum survival probabilities occur among offspring of mothers aged359

6 or 7 years. The trajectory of maternal age effects in the cubic model are similar to those360

obtained when maternal age is fitted as a multi-level effect.361

To illustrate the consequences of accounting for different fixed effects in expected and ob-362

served data scale inferences, we calculated several parameters under a series of different treat-363

ments of the latent scale parameters of the GLMM. We calculated the phenotypic mean, the364

additive genetic variance, the total variance of expected values, the total variance of observed365
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Quantitative genetic inference with GLMMs 17

values, and the heritability of survival on the expected and observed scales.366

First, we calculated parameters using only the model intercept (µ in Eq. 1 and 3a). In367

general, linear modelling software will essentially arbitrarily define a model’s intercept. In the368

current case, due to the details of how the data were coded, the intercept is the latent scale369

prediction for female singletons with average aged (4.8 years) mothers. In an average year,370

singleton females with average aged mothers have a probability of survival of about 80%. The371

additive genetic variance VA,obs, calculated with Eq. 18 is about 0.005, and corresponds to372

heritabilities on the expected and observed scales of 0.115 and 0.042 (Table 2).373

In contrast, if we wanted to calculate parameters using a different (but potentially equally374

arbitrary) intercept, corresponding to twin males, we would obtain a mean survival rate of 0.32,375

an additive genetic variance that is twice as large, but similar heritabilities (Table 1). Note376

that we have not modelled any systematic differences in genetic parameters between females377

and males, or between singletons and twins. These differences in parameter estimates arise378

from the exact same estimated variance components on the latent scale, as a result of different379

fixed effects.380

This first comparison has illustrated a major way in which the fixed effects in a GLMM381

influence inferences on the expected and observed value scales. For linear mixed models, it382

has been noted that variance in the response is explained by the fixed predictors, and that383

this may inappropriately reduce the phenotypic variance and inflate heritability estimates for384

some purposes (Wilson, 2008). However, in the example so far, we have simply considered two385

different intercepts (i.e. no difference in explained variance): female singletons vs male twins,386

in both cases, assuming focal groups of individuals are all born to average aged mothers. Again387

these differences in phenotypic variances and heritabilities arise from differences in intercepts,388

not from any differences in variance explained by fixed effects. All parameters on the expected389

and observed value scales, including the mean, the additive genetic variance and the total390

variance, are dependent on the intercept. Heritability is modestly affected by the intercept,391

because additive genetic and total variances are similarly, but not identically, influenced by the392

model intercept.393

Additive genetic effects are those arising from the average effect of alleles on phenotype,394

integrated over all background genetic and environmental circumstances in which alternate395

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 8, 2016. ; https://doi.org/10.1101/026377doi: bioRxiv preprint 

https://doi.org/10.1101/026377
http://creativecommons.org/licenses/by/4.0/


Quantitative genetic inference with GLMMs 18

alleles might occur. Fixed effects are part of this background. Following, for example, Eq. 6 and396

17, we can integrate our calculation of Ψ and ultimately VA,obs over all fixed effects. Considering397

all fixed and random effects, quantitative genetic parameters on the expected and observed398

scales are given in table 2, 3rd column. The calculation of VA,obs now includes an average slope399

calculated over a wide range of the steep part of the inverse-link function (near 0 on the latent400

scale, and near 0.5 on the expected value scale), and so is relatively high. The observed total401

phenotypic variance VP,obs is also quite high. The increase in VP,obs has two causes. First the402

survival mean is closer to 0.5, so the random effects variance is now manifested as greater total403

variance on the expected and observed scales. Second, there is now variance arising from fixed404

effects that is included in the total variance.405

Evolutionary prediction406

Systems for predicting adaptive evolution in response to phenotypic selection assume that the407

distribution of breeding values is multivariate normal, and in most applications, that the joint408

distribution of phenotypes and breeding values is multivariate normal (Lande, 1979; Lande409

and Arnold, 1983; Morrissey, 2014; Walsh and Lynch, forthcoming). Breeding values on the410

expected and observed scales will not be normal in GLMMs. Breeding values are normal by411

construction on the latent scale, and the non-linear (inverse) link functions cause the corre-412

sponding distributions on the expected and observed scales to be non-normal. Consequently,413

even with quantities such as additive genetic variances, heritabilities, etc., calculated on the414

expected and observed data scales, evolutionary predictions using statistical genetic machinery415

developed assuming normality will not hold. The Breeder’s and Lande equations may hold416

approximately, and may perhaps be useful. However, having taken up the non-trivial task417

of pursuing GLMM-based quantitative genetic analysis, the investigator has at their disposal418

inferences on the latent scale. On this scale, the assumptions required to predict the evolution419

of quantitative traits hold. In this section we first demonstrate by simulation how application420

of the Breeder’s equation on the expected and observed scales represents an approximation.421

We then proceed to an exposition of some statistical machinery that can be used to generate422

predictions of evolution on the latent scale (from which evolutionary predictions on the ex-423
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pected and observed scale can subsequently be derived, using Eq. 5), given inference of the424

function relating traits to fitness. Insofar as as the assumptions of a GLMM may represent a425

useful model of a given non-normal trait, this latter approach to evolutionary prediction can426

outperform application of the Breeder’s equation on the data scale.427

Direct application of the Breeder’s and Lande equations on the data scale428

In order to explore the predictions of the Breeder’s equation applied at the level of observed429

phenotype, we conducted a simulation in which phenotypes were generated according to a430

Poisson GLMM (Eqs. 3a to 3c, with a Poisson distribution function and a log link function), and431

then selected the largest observed count values (positive selection) with a range of proportions432

of selected individuals (from 5% to 95%, creating a range of selection differentials), a range433

of latent-scale heritabilities (0.1, 0.3, 0.5 and 0.8, with a latent phenotypic variance fixed to434

0.1), and a range of latent means µ (from 0 to 3). We simulated 10,000 replicates of each435

scenario, each composed of a different array of 10,000 individuals. For each simulation, we436

simulated 10,000 offspring. For each offspring, a breeding value was simulated according to437

a`,i ∼ N ((a`,d + a`,s)/2, VA,`/2), where a`,i is the focal offspring’s breeding value, a`,d and a`,s are438

the breeding values of simulated dams and sires and VA,`/2 represents the segregational variance439

assuming parents are not inbred. Dams and sires were chosen at random with replacement440

from among the pool of simulated selected individuals. For each scenario, we calculated the441

realised selection differential arising from the simulated truncation selection, Sobs, and the442

average evolutionary response across simulations, Robs. For each scenario, we calculated the443

heritability on the observed scale using Eq. 19. If the Breeder’s equation was strictly valid for444

a Poisson GLMM on the observed scale, the realised heritability Robs/Sobs would be equal to445

the observed-scale heritability h2obs.446

The correspondence between Robs/Sobs and h2obs is approximate (Fig. 2), and strongly de-447

pends on the selection differential (controlled here by the proportion of selected individuals).448

Note that, although the results presented here depict a situation where the ratio Robs/Sobs is449

very often larger than h2obs, this is not a general result (e.g. this is not the case when using450

negative instead of positive selection, data not shown). In particular, evolutionary predictions451

are poorest in absolute terms for large µ and large (latent) heritabilities. However, because452
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we were analysing simulation data, we could track the selection differential of latent value (by453

calculating the difference in its mean between simulated survivors and the mean simulated be-454

fore selection). We can also calculate the mean latent breeding value after selection. Across all455

simulation scenarios, the ratio of the change in breeding value after selection, to the change in456

breeding value before selection was equal to the latent heritability (see Fig. 2), showing that457

evolutionary changes could be accurately predicted on the latent scale.458

Evolutionary change on the latent scale, and associated change on the expected459

and observed scales460

In an analysis of real data, latent breeding values are, of course, not measured. However,461

given an estimate of the effect of traits on fitness, say via regression analysis, we can derive462

the parameters necessary to predict evolution on the latent scale. The idea is thus to relate463

measured fitness on the observed data scale to the latent scale, compute the evolutionary464

response on the latent scale and finally compute the evolutionary response on the observed465

data scale.466

To relate the measured fitness on the observed scale to the latent scale, we need to compute467

the expected fitness Wexp given latent trait value `, which is468

Wexp(`) =
∑
k

WP (k)P (Z = k|`), (28)

where WP (k) is the measure of fitness for the kth data scale category (assuming the observed469

data scale is discrete). Population mean fitness can then be calculated in an analogous way to470

equation 5:471

W̄ =

∫
Wexp(`)fN (`, µ, VA,` + VRE + VO)d`. (29)

These expressions comprise the basic functions necessary to predict evolution. Given a fitted472

GLMM, and a given estimate of the fitness function WP (k), each of several approaches could473

give equivalent results. For simplicity, we proceed via application of the breeder’s equation at474

the level of the latent scale.475

The change in the mean genetic value of any character due to selection is equal to the476

covariance of breeding value with relative fitness (Robertson, 1966, 1968). Using Stein’s (1973)477
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lemma once more, this covariance can be obtained as the product of the additive genetic variance478

of latent values and the average derivative of expected fitness with respect to latent value, i.e.,479

E
[
dWexp

d`

]
. Evolution on the latent scale can therefore be predicted by480

∆µ = VAE

[
dWexp

d`

]
1

W̄
. (30)

In the case of a multivariate analysis, note that the derivative above should be a vector of481

partial derivatives (first order partial derivative for each trait).482

If fixed effects need to be considered, the approach can be modified in the same way as483

integration over fixed effects is accomplished for calculating other quantities, i.e. the expression484

W̄ =
1

N

N∑
i=1

∫
Wexp(`)fN (`, µ+ ˆ̀

i, VA,` + VRE + VO)d` (31)

would be used in calculations of mean fitness and the average derivative of expected fitness485

with respect to latent value.486

Phenotypic change caused by changes in allele frequencies in response to selection is calcu-487

lated as488

∆z̄ =

∫
g−1(`)fN (`, µ+ ∆µ, VA,` + VRE + VO)d`− z̄. (32)

Or, if fixed effects are included in the model:489

∆z̄ =
1

N

N∑
i=1

∫
g−1(`)fN (`, µ+ ˆ̀

i + ∆µ, VA,` + VRE + VO)d`− z̄. (33)

Note that, in this second equation, z̄ must be computed as in Eq. 6 and that this equation490

assumes that the distribution of fixed effects for the offspring generation is the same as for the491

parental one.492

Another derivation of the expected evolutionary response using the Price-Robertson identity493

(Robertson, 1966; Price, 1970) is given in the Supplementary Information (section C).494
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The simulation study revisited495

Using the same replicates as in the simulation study above (Fig. 2, top row), we used Eqs. 28496

to 33 to predict phenotypic evolution. This procedure provides greatly improved predictions497

of evolutionary change on the observed scale. However, somewhat less response to selection is498

observed than is predicted. This behaviour occurs because, in addition to producing a perma-499

nent evolutionary response in the mean value on the latent scale, directional selection creates500

a transient reduction of additive genetic variance due to linkage disequilibrium. Because the501

link function is non-linear, this transient change in the variance on the latent scale generates502

a transient change in the mean on the expected and observed scales. Following several genera-503

tions of random mating, the evolutionary change on the observed scale would converge on the504

predicted values. We simulated such a generation at equilibrium by simply drawing breeding505

values for the post-selection sample from a distribution with the same variance as in the parental506

generation. This procedure necessarily generated a strong match between predicted and simu-507

lated evolution (Fig. 2, bottom row). Additionally, the effects of transient reduction in genetic508

variance on the latent scale could be directly modelled, for example, using Bulmer’s (1971)509

approximations for the transient dynamics of the genetic variance in response to selection.510

Discussion511

The expressions given here for quantitative genetic parameters on the expected and observed512

data scales are exact, given the GLMM model assumptions, in two senses. First, they are not513

approximations, such as might be obtained by linear approximations (Browne et al., 2005).514

Second, they are expressions for the parameters of direct interest, rather than convenient sub-515

stitutes. For example, the common calculation of variance partition coefficients (intraclass516

correlations) on an underlying scale with a logistic distribution, (as also suggested by Browne517

et al. 2005) provides a value of the broad-sense heritability (e.g. using the genotypic variance518

arising from additive genetic effects on the latent scale) when applied to genetic parameters519

estimated in a logistic GLMM. The expressions given here can provide quantitative genetic520

inferences of the additive genetic parameters, and on the scale on which the traits are observed.521

The whole framework developed here (including univariate and multivariate parameters com-522
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putation and evolutionary predictions on the observed data scale) is implemented in the R523

package QGglmm available at https://github.com/devillemereuil/qgglmm.524

While the calculations we provide will often (i.e. when no analytical formulae exist) be525

more computationally demanding than calculations on the latent scale, they will be direct526

ascertainments of specific parameters of interest, since the scale of evolutionary interest is likely527

to be the observed data scale, rather than the latent scale (unless some artificial selection is528

applied to predicted latent breeding values as in modern animal breeding). Most applications529

should not be onerous. Computations of means and (additive genetic) variances took less530

than a second on a 1.7 GHz processor when using our R functions on the Soay sheep data531

set. Summation over fixed effects, and integration over 1000 posterior samples of the fitted532

model took several minutes. When analytical expressions are available (e.g. for Poisson/log,533

Binomial/probit and Negative-Binomial/log; see the supplementary information and R package534

documentation), these computations are considerably accelerated.535

We have highlighted additional and important ways in which fixed effects influence quan-536

titative genetic inferences with GLMMs, and developed an approach for handling these com-537

plexities. In LMMs, the main consideration pertaining to fixed effects is that they explain538

variance, and some or all of this variance might be inappropriate to exclude from an assessment539

of VP when calculating heritabilities (Wilson, 2008). This aspect of fixed effects is relevant540

to GLMMs, but furthermore, all parameters on the expected and observed scales, not just541

means, are influenced by fixed effects in GLMMs; this includes additive genetic and phenotypic542

variances. This fact necessitates particular care in interpreting GLMMs.543

In our example analysis in Soay sheep, VA,` and VP changed substantially depending on544

different treatments of the fixed effects (especially, arbitrary different definitions of the model’s545

latent intercept). We do not intend to suggest that any of these treatments of the fixed effects546

is correct or wrong. Rather, any of the analyses we presented (and many other conceivable547

variations) may be appropriate to any particular purpose. For this particular case, different548

treatments of fixed effects changed VA,` and VP in roughly, but not exactly, similar proportions.549

Consequently, heritabilities on the data scales were not greatly different among treatments. This550

need not necessarily be the case in all quantitative genetic analyses using GLMMs, although it551

is likely to be common in binomial response models.552
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Consequently, users of GLMM-based quantitative genetic analyses should take great care in553

defining intercepts. When a clear biological motivation for the definition of a model intercept is554

not available, any data-scale GLMM-based inferences of quantitative genetic parameters should555

be assessed for sensitivity to arbitrary choices about model intercepts. For many situations in556

which the definition of the model intercept seems arbitrary, integrating over biologically-relevant557

distributions of fixed effects (e.g., as in equations 6, 17, etc.) will probably be the best solution.558

In some cases, there will be multiple meaningful values of parameters such as VA on the data559

scale, associated with a single value on the latent scale. For example, if the sexes have different560

intercepts, but are modelled as having a common value of VA on the latent scale, then there561

are different sex-specific data scale values of VA on the data scale, resulting from the different562

intercepts.563

Currently, with the increasing applicability of GLMMs, investigators seem eager to convert564

to the observed data scale. It seems clear that conversions between scales are generally useful.565

However, it is of note that the underlying assumption when using GLMMs for evolutionary566

prediction is that predictions hold on the latent scale. Therefore, given an estimate of a fitness567

function, no further assumptions are necessary to predict evolution via the latent scale (as568

with equations 28, 30, and 32), over and above those that are made in the first place upon569

deciding to pursue GLMM-based quantitative genetic analysis. The approach we suggest treats570

the relationships between the levels of a GLMM as a simple developmental system, and the571

approach described here is essentially the general theory laid out in Morrissey (2015), with572

specific extensions to handle distribution functions and integration over fixed effects.573
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Table 1: Parameters from the GLMM-based quantitative genetic analysis of Soay sheep (Ovis aries) lamb first-
year survival. All estimates are reported as posterior modes with 95% credible intervals. The intercept in this
model is arbitrarily defined for female lambs without twins, born to average age (4.8 years) mothers.

Parameter Posterior mode with 95% CI
(a) Fixed effects
Intercept 2.555 (1.755 – 3.514)
Sex (male vs. female) -1.141 (-1.441 – -0.943)
Twin (twin vs. singleton) -2.434 (-3.377 – -1.755)
Maternal age, linear term 0.228 (0.089 – 0.390)
Maternal age, quadratic term -0.169 (-0.194 – -0.148)
Maternal age, cubic term 0.015 (0.011 – 0.02)
Sex-twin interaction 0.652 (0.015 – 1.068)
Sex-maternal age interaction -0.027 (-0.115 – 0.054)
(b) Random effects
VA,` 0.831 (0.275 – 1.664)
Vmother 0.408 (0.177 – 0.887)
Vyear 3.025 (1.452 – 5.551)

Table 2: Estimates of expected and observed scale phenotypic mean and variances, and additive genetic variance,
for three different treatments of the fixed effects, as modelled on the linear scale with a GLMM, and reported
in table 1.

Quantity Arbitrary intercept Arbitrary intercept Averaging over all fixed effects
(singleton female) (twin male)

z̄ 0.788 (0.718 – 0.886) 0.371 (0.212 – 0.471) 0.430 (0.336 – 0.517)
VA, data 0.006 (0.002 – 0.015) 0.011 (0.005 – 0.024) 0.014 (0.005 – 0.021)
VP, exp 0.062 (0.033 – 0.096) 0.104 (0.069 – 0.123) 0.120 (0.106 – 0.138)
VP, obs 0.167 (0.107 – 0.206) 0.241 (0.183 – 0.250) 0.250 (0.226 – 0.250)
h2exp 0.096 (0.036 – 0.202) 0.125 (0.045 – 0.227) 0.112 (0.036 – 0.170)
h2obs 0.051 (0.015 – 0.085) 0.048 (0.023 – 0.106) 0.047 (0.019 – 0.089)
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Observed data
scale

0

0

Figure 1: Example of the relationships between the three scales of the GLMM using a Poisson distribution and
a logarithm link function. Deterministic relationships are denoted using grey plain arrows, whereas stochastic
relationships are denoted using grey dashed arrows. Note that the latent scale is depicted as a simple Gaussian
distribution for the sake of simplicity, whereas it is a mixture of Gaussian distributions in reality.
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Figure 2: Simulated R/S (evolutionary response over selection differential, or the realised heritability) on the
latent (upper panels) or observed date (lower panels) scales against the corresponding-scale heritabilities. Each
data point is the average over 10,000 replicates of 10,000 individuals for various latent heritabilities h2lat (0.1,
0.3, 0.5, 0.8), latent population mean (µ from 0 to 3, from left to right) and proportion of selected individuals
(5%, 10%, 20%, 30%, 50%, 70%, 80%, 90%, 95%, varying from black to blue). The 1:1 line is plotted in black.
The breeder’s equation is predictive on the latent scale (upper panels), but approximate on the observed data
scale (lower panels), because phenotypes and breeding values are not jointly multivariate normal on that scale.
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Figure 3: Predicted Robs (phenotypic evolutionary response on the observed scale, see Eq. 33) against the
simulated Robs, via evolutionary predictions applied on the latent scale. Each data point is the average over
10,000 replicates of 10,000 individuals for various latent heritabilities h2lat (0.1, 0.3, 0.5, 0.8), latent population
mean (µ from 0 to 3) and proportion of selected individuals (5%, 10%, 20%, 30%, 50%, 70%, 80%, 90%, 95%,
varying from black to blue). The 1:1 line is plotted in black. The upper panels (“Immediate”) show simulations
for the response after a single generation, which include both a permanent and transient response to selection
arising from linkage disequilibrium. The bottom panels (“permanent”) show simulation results modified to
reflect only the permanent response to selection.
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