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Abstract 

Increasing evidence shows that phenotypic variance is genetically controlled; the precise 

mechanisms of genetic control over the variance remain to be determined. Here, using variance 

association mapping analysis of gene expression, we show that common genetic variation 

contributes to gene expression variability via distinct modes of action—e.g., epistasis and 

decanalization. We focused on the full set of genetic loci associated with gene express variance, 

i.e., genome-wide expression variability QTLs (or evQTLs), in humans. We found that a quarter 

of evQTLs, explained by the epistasis model, could be attributed to the presence of “third-party” 

partial eQTLs that influence gene expression in a fraction, rather than the entire set, of samples. 

The other three-quarters of evQTLs, explained by the decanalization model, were attributable to 

the disruptive effect conferred by their own SNPs on transcriptional robustness—that is, these 

SNPs are responsible for modulating the stability of transcriptional machinery. To validate the 

model, we measured the discordant expression between monozygotic twins, as well as the level 

of transcriptional noise in individual cell lines. We showed that decanalizing evQTL SNPs 

indeed affect the level of transcriptional noise in individuals and contribute to gene expression 

variability at the population level. Together, our results suggest that common genetic variation 

works either interactively or independently to influence gene expression variability. These 

findings may have implications for methodology development toward a new variability-centered 

research paradigm for mapping quantitative traits. 
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Introduction 

Quantitative genetics assumes that phenotypic variation, i.e., the difference in phenotypic mean 

between individuals, is genetically controlled (1). Under such an assumption, phenotypic 

variation is explained solely by differences in phenotypic mean among genotypes. This 

deterministic view, however, has come under challenge. New studies show that phenotypic 

variance is also genetically controlled, and the variance itself is a quantitative trait (2-12). 

Increasing evidence of genetic control over the variance calls for a paradigm shift in quantitative 

genetics. Understanding the mechanism of how phenotypic variance is controlled is of great 

importance for evolutionary biology, agriculture or animal sciences, and medicine (5, 11, 13, 14). 

In evolutionary biology, for example, variability offers an adaptive solution to environmental 

changes (15-17). Genetic factors resulting in more variable phenotypes become favored when 

they enable a population to respond more effectively to environmental changes (18-21). In 

medicine, disease states emerge when the relevant phenotype of affected individuals goes 

beyond a threshold. As such, high variability genotypes will produce a larger proportion of 

individuals exceeding that threshold than will low variability genotypes, even if these genotypes 

have the same mean. By ignoring the effect of genotypes on phenotypic variance, an important 

axis of genetic variation contributing to phenotypic differences among individuals has been 

overlooked (1, 22). The lack of empirical studies in this regard has hindered the discovery of 

variance associated mutations that may contribute to modulating disease susceptibility and the 

phenotypic variability of other human health-related traits. 

Previous studies have shown the existence of substantial gene expression variability (i.e., the 

difference in gene expression variance between groups) in various systems (23-25). 

Nevertheless, our understanding of how genetic diversity control or influence gene expression 

variability remains limited. Promising new developments along this line have come from recent 

findings in complex trait analysis of gene expression. Using variance association mapping, we 

and others identified genetic loci associated with gene expression variance, called evQTLs (11, 

12) or v-eQTL (9). How evQTLs are created in the first place is not completely known. While the 

epistasis has been widely accepted as a mechanism introducing phenotypic variability, here we 

seek an alternative, more straightforward, explanation—that is, evQTL SNPs disrupt or 

destabilize the genetic architecture that buffers stochastic variation in gene expression. To 

emphasize the disruptive effect on the genetic buffering system, we borrow the concept of 

canalization (i.e., the ability of a population to produce the same phenotype, regardless of 

variability in its environment or genotype) (26) and regard the disruptive effect as 
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“decanalization” that pushes gene expression trait out of its homeostasis or equilibrium to 

become less robust. We reveal that the formation of evQTLs can be explained by using either 

the epistasis model or the decanalization model, laying down the foundation for developing a 

new analytical framework that focuses on the contributions of genetic variation to phenotypic 

variability. We anticipate that new methods derived from such a framework will allow us to 

identify novel causal loci, which would otherwise be missed by traditional mean-focused 

methods, in complex trait mapping. 

Results 

Widespread evQTLs in the human genome 

We obtained the expression data of 15,124 protein-coding genes measured in 462 

lymphoblastoid cell lines (LCLs) by the Geuvadis Project (27). We also obtained the genotype 

data at 2,885,326 polymorphic sites determined in the same cell lines by the 1,000 Genomes 

Project (28). After data processing, 326 LCL samples from unrelated individuals of European 

descent (EUR) were retained for this study (Materials and Methods). To identify evQTLs, we 

first applied the method based on the double generalized linear model (DGLM) (29) The method 

has been previously adopted by us (11, 12) and others (5). Owing to the computational 

complexity, we restricted the use of this method in the identification of cis-acting evQTLs. On 

average ~1800 SNPs that lay within 1-Mb radii of the transcription start site were tested per 

gene. Using a conservative Bonferroni correction cutoff P = 1.75×10-9 (= 0.05 / 28,494,473), we 

identified a total of 17,949 cis-evQTLs in 1,304 unique genes, i.e., 8.6% of all genes tested 

(Figure 1A, Table S1). Next, to identify both cis- and trans-evQTLs genome-wide, we adopted 

the method based on the squared residual value linear model (SVLM) (9, 30). It is a 

computationally efficient, two-stage method. The effect of variants on gene expression mean 

(i.e., eQLT effect) is firstly removed by regression, and the residuals are squared to give a 

measure of expression dispersion. Then the correlation between squared residuals and 

genotypes is tested. We applied SVLM to test all SNPs against all genes, without pre-filtering 

SNPs by their locational relationship with tested genes. Such an all-against-all strategy allowed 

a systematic survey of cis- and trans-evQTLs across the entire genome. We used the 

Benjamini-Hochberg procedure (31) to determine the P-value cutoff of 3×10-9 that gave the 

false-discovery rate (FDR) of 0.1. At this level, we identified 505 cis-evQTLs in 33 unique genes, 

and 1,008 trans-evQTLs in 235 unique genes (Figure 1B, Table S2). Two genes AXIN2 and 

FAM86B1 were found to have both cis- and trans-evQTLs. Applying the same FDR cutoff to 
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detect both cis- and trans-evQTL resulted in an unbiased picture of the distribution of all evQTLs 

across autosomes (Figure 1C). Comparing the positions of genes and their evQTLs, we did not 

observe a strong enrichment of data points along the diagonal of the graph, suggesting cis-

evQTLs not be particularly enriched compared to trans-evQTLs. We noticed the marked 

discrepancy in the number of cis-evQTLs detected using DGLM and SVLM. This discrepancy 

may be because that SVLM and DGLM have different detecting powerful. Computer simulations 

showed that, when the sample size was set to 300, SVLM method had only half of the power of 

DGLM (Supplementary Fig. S1). Furthermore, the huge multiple testing burden associated 

with the application of SVLM in the all-against-all tests may also contribute to the discrepancy. 

Epistatic interactions contribute to increasing gene expression variability 

Epistasis, i.e., the interaction between loci, may increase the phenotypic variability of a 

population (10, 32). The evQTLs provided source materials for studying the epistatic effect on 

gene expression variability (12). More specifically, we sought to identify “third-party” SNPs that 

interact with evQTL SNPs. Such interactions result in more variable gene expression of the 

evQTL genes. In particular, for each evQTL SNP identified by using SVLM, we applied a two-

step procedure to identify the third-party SNPs, also known as partial eQTL SNPs (see below). 

These SNPs interact (or are partially associated) with evQTL SNPs, resulting in the increased 

gene expression variance (9, 12). The process of partial eQTL SNP identification is illustrated in 

Supplementary Fig. S2. Briefly, for a given evQTL (for example, the evQTL between gene X 

and SNP Y), we extracted samples with a homozygous genotype associated with large 

expression variance. We called these L group samples. Accordingly, those related to small 

expression variance was called S group samples. Then, we conducted a genome-wide scan 

among the extracted L group samples to identify eQTL SNPs (e.g., SNP Z) that control the 

expression of the corresponding evQTL gene (i.e., gene X). The identified eQTL SNPs are 

called partial because they are detected in the sub-sampled discovery panel, and their effect on 

gene expression is restricted to L group samples. The evQTL SNP Y and its partial eQTL SNP 

Z may be co-localized proximately on the same chromosome and partially associated as we 

showed previously (12). They may also be unlinked, for instance, located on different 

chromosomes, and interact with each other epistatically (9). Here, we focused on the 268 

evQTLs (33 cis- and 235 trans-acting ones) identified by using SVLM. In 73 out of 268 evQTL 

genes, we identified, at least, one significant interacting SNP, i.e., partial eQTL SNP with simple 

linear regression test P < 10-8 in the L group samples (Table S3). These results suggest that 
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more than one-fourth of evQTLs are attributable to partial eQTL SNPs interacting with evQTL 

SNPs. 

Decanalization contributes to increasing gene expression variability without 

genetic interactions 

We put forward the decanalization model to explain the formation of evQTLs. Unlike the 

epistasis model that concerns the epistatic interactions or associations between variants (9, 12), 

the decanalization model concerns a single SNP that perturbs stable genetic systems. We 

hypothesized that some evQTL SNPs are associated with gene expression variability because 

one of their two alleles confers the destabilizing function, causing more variable gene 

expression. These alleles cause the increased gene expression variability without interacting 

with any other SNPs. Thus, decanalizing evQTLs have such a formation mechanism involving a 

single-locus, which is different from that of epistatic evQTLs. 

To show the decanalizing effect of SNPs, by further controlling the diversity of samples’ genetic 

backgrounds, we re-visited the genotype and expression data used in our previous study (12). 

The data was derived from LCLs of a cohort of twin pairs (33). In the previous study, we used a 

single set of the twin pairs for evQTL analysis and identified cis-evQTLs in 99 unique genes (12). 

Here, we first classified the 99 evQTLs (between each gene and the most significant SNP) into 

56 epistatic and 43 decanalizing evQTLs. The classification was based on whether or not an 

interacting SNP (i.e., partial eQTL SNP) could be identified using the two-step procedure 

described above. The idea was that: if no interacting SNP can be detected for an evQTL, then 

the evQTL cannot be explained by the epistasis model but is likely to be by the decanalization 

model. Next, we extracted expression data of the 139 pairs of monozygotic (MZ) twins. We 

classified MZ twin pairs whose genotypes at evQTL SNP sites are homozygous into either MZ-L 

or MZ-S group based on whether their evQTL SNPs were associated with large or small 

variance of gene expresion. For MZ twin pairs in the same group (MZ-L or MZ-S), we estimated 

the discordant gene expression between two individuals of the same pairs. The discordant gene 

expression was calculated as the relative mean difference (RMD) in gene expression, which is 

the difference between two individual’s gene expression values normalized by the mean 

(Materials and Methods). 

We use two evQTL examples, one decanalizing evQTL and one epistatic evQTL, to illustrate 

the difference between two types in term of the discordant gene expression between L and S 

groups. The decanalizing evQTL is between TBKBP1 and rs1912483 (Fig. 2A, right), and the 
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epistatic evQTL is between PTER and rs7913889 (Fig. 2B, right). The data points of gene 

expression levels were grouped by the genotype. Within each genotype category, data points 

from the same twin pairs are displayed side-by-side. Every two individuals of the same MZ pairs 

are linked by a gray line. The slope of the lines is an indicator of discordant gene expression 

between twin pairs. In the decanalizing evQTL example, the slopes between MZ twins with 

genotypes associated with large expression variance (i.e., MZ-L group) tend to be steeper than 

those with small expression variance (i.e., MZ-S group)(Fig. 2A, right). In contrast, in the 

epistatic evQTL example, the difference in slope skewness between MZ-L and MZ-S groups is 

less pronounced (Fig. 2B, right). We pooled RMD values from different twin pairs together by 

MZ-L or MZ-S group and compared the distributions of RMD values between the two groups. 

For decanalizing evQTLs, the distributions of RMD values between L and S groups were 

significantly different (P = 1.3×10-5, Fig. 2A, left), with larger RMD values for L group. In contrast, 

for epistatic evQTLs, this difference in RMD distribution was not detected between L and S 

groups (P = 0.052, Fig. 2B, left). 

Decanalizing evQTL SNPs are associated with gene expression noise 

Our decanalization model works by the action of a single genetic variant that confers the 

decanalizing effect on gene expression. One of the underlying sources of the gene expression 

variability is stochastic noise in gene expression (34). We hypothesized that different alleles of a 

decanalizing evQTL SNP might be associated with different levels of expression noise for the 

corresponding evQTL gene. To test this hypothesis, we set out to estimate the expression noise 

using RT-qPCR by repeatedly measuring gene expression level in the same cell line multiple 

times. If our hypothesis is valid, then the expression variance of individual with an evQTL 

genotype associated with larger variance should be more pronounced than the expression 

variance in individual with genotype with smaller variance. 

We selected two decanalizing evQTLs: ATMIN-rs1018804 and BEND4-rs7659929, for testing. 

ATMIN is an essential cofactor for checkpoint kinase ATM, which transduces genomic stress 

signals to halt cell cycle progression and promote DNA repair (35). We picked two LCLs: 

HG00097 and HG00364, which have the similar ATMIN expression level. Both were derived 

from female individuals of European descendant. The difference is that HG00097’s genotype 

CC at rs1018804 is associated with larger variance while HG00364’s genotype AA at rs1018804 

is associated with smaller variance. Thus, HG00097 and HG00364 belonged to L and S groups, 

respectively. We measured the evQTL gene expression level using RT-qPCR with three 

technical replicates each at ten different sampling time points. The same assay was repeated 
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three times independently. Our results showed that, under the same controlled experimental 

condition, the variance of gene expression (i.e., the variance in ΔCt values) in HG00097 was 

greater than HG00364. The same trend was observed from all three biological replicates (Fig. 

3A). In all three replicates, the difference was statistically significant (Brown-Forsythe test, P = 

0.034, 0.019, and 0.0096, respectively). 

We repeated the experiment with two biological replicates on the same evQTL ATMIN-

rs1018804 using a different pair of LCLs (NA12144 and NA12736 from L and S group, 

respectively) to replace HG00097 and HG00364. We obtained the similar results showing a 

consistent pattern, that is, the gene expression in the cell line of L group is more variable than 

that of S group (Supplementary Fig. S3). Furthermore, we repeated the experiment on a 

different decanalizing evQTL (BEND4-rs7659929) with another pair of LCLs (NA12889 and 

NA18858). Again, we obtained the consistent pattern that supports the correlation between 

gene expression variability and stochastic noise (Supplementary Fig. S3). 

We hypothesized that the correlation between gene expression variability and noise exists 

exclusively in decanalizing evQTLs. We did not expect such a relationship could be 

recapitulated in epistatic evQTLs. This is because the two kinds of evQTLs work through 

different modes of action. To test this, we repeated the same RT-qPCR experiment with an 

epistatic evQTL ZNF10-rs7972363 using the same cell lines HG00097 and HG00364 (Fig. 3B). 

The genotype AA of HG00097 at rs7972363 is associated with larger variance while the 

genotype GG of HG00364 is associated with smaller variance. As an epistatic evQTL, the 

interacting SNP rs1567910, which interacts with rs7972363 and helps the creation of the evQTL, 

has been identified by using the two-step partial eQTL detection method. Samples with AA 

genotype at rs7972363 can be further broken down by rs1567910 into three subgenotype 

groups associated with different levels of gene expression mean. Consistent with our 

expectation, the gene expression variance in ∆Ct values was similar between HG00097 and 

HG00364 (Fig. 3B, Brown-Forsythe test, P = 0.96, 0.83, and 0.73, for the three replicates, 

respectively). Together, our results suggest that the level of gene expression noise—the 

random fluctuation of gene expression—is associated with decanalizing evQTL, but not epistatic, 

SNPs. 
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Differences in cell cycle status and alternative splicing do not account for 

the decanalizing function conferred by decanalizing evQTL SNPs 

Finally, we controlled for two additional confounding factors that might account for the increased 

gene expression variability associated with evQTLs. The first one is the cell cycle status of cell 

lines. At the same sampling time, cell lines may differ in the percentage or number of cells in 

different cell cycle phases. Could the difference in cell cycle status explain the difference in 

gene expression variability or noise between cell lines? To test this, we performed the cell cycle 

analysis by flow cytometry with HG00097 and HG00364 at 36 h after incubation (Materials and 

Methods). The results showed no difference in the percentage of cells in G0/G1, S and G2/M 

phases between the two cell lines (Supplementary Fig. S4). The second confounding factor we 

considered is the alternative splicing pattern. Different splicing patterns between cell lines might 

result in different gene-level expression measurements. We used the Integrative Genomics 

Viewer (36) to visualize the alternatively spliced mRNA of ATMIN and compared the pattern of 

splicing between HG00097 and HG00364, as well as that of BEND4 between NA12889 and 

NA18858. In either case, we observed no difference in splicing patterns (Supplementary Fig. 

S5). 

Discussion 

Variability, which refers to the potential of a population to vary, is a central concept in biology 

(37). Emerging experimental and statistical techniques have allowed the variability regarding 

various phenotypes to be rigorously analyzed (13). Focusing on the variability QTLs of gene 

expression, we found that evQTLs are abundant and widespread across the human genome (11, 

12). In the light of evQTLs, the present study reveals two distinct modes of action: epistasis and 

decanalization, through which common genetic variation control or influence gene expression 

variability. The epistasis model concerns two or more variants, which interact in non-additive 

fashion (9, 38) or link to each other through incomplete linkage disequilibrium (12, 39). In line 

with this model, a number of methods for identifying epistasis have been proposed, based on 

detecting the increased variability (10, 32, 40). The decanalization model is simpler and more 

direct, concerning single variants that work alone to destabilize the phenotypic expression and 

pushing a proportion of individuals away from the robust optimum. 

Dissecting the epistatic and decanalizing effects, respectively underlying the epistatic and 

decanalizing modes of action, in the context of variability QTLs is technically challenging. Here 

we have taken advantage of the identical genetic background of MZ twins and showed that 
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different genotypes are associated with varying degrees of transcriptional stability. We also 

detected the link between the population-level gene expression variability and the stochastic 

gene expression noise measured in single individuals. It suggests that variable gene expression 

in each sample may be synthesized and aggregated together and eventually contribute to the 

gene expression variability of the population as a whole. In other words, the same underlying 

force destabilizing gene expression might be proposed to be a unified explanation for gene 

expression variability at different scales (i.e., from the individual level to the population level). To 

the other end of the spectrum, the cell-to-cell variability in gene expression could be examined, 

thanks to the rapid development of single-cell based technologies (41). For example, the 

genetic control of the variability in burst size and frequency of single-cell transcription may not 

be too different from that of the population and individual levels. 

We were unable to provide the precise mechanism of the decanalizing function conferred by 

evQTL SNPs. However, we were able to utilize bioinformatics analysis to provide a rationale to 

substantiate the link between the variants, the possible genetic mechanisms, and the phenotype, 

i.e., expression variability of the corresponding gene. By synthesizing different sources of 

information, we attempted to build working models for evQTLs, explaining how evQTL SNPs 

can influence gene expression variability. Here we use the decanalizing evQTL ATMIN-

rs1018804 as an example to illustrate one of the tentative models. Rs1018804 is associated 

with WDR24 that encodes WD repeat-containing protein 24, a key component of Rag-

interacting complex essential for the activation of mTORC1 (42). The intronic rs1018804, 43-bp 

downstream from the nearest exon-intron boundary, may play a role in regulating the splicing of 

WDR24 mRNA. The WDR24 protein is predicted (43) to interact with Hsp70 and DNAJ proteins 

(44). The latter two interact with the dynein light chain DYNLL1 (45). Finally, DYNLL1 and 

ATMIN form a loop of regulatory feedback—one of few known examples of negative 

autoregulation of gene expression where a gene product directly inhibits the main transcriptional 

activator while bound at its own promoter (46). Taken together, the working model can be 

represented as rs1018804 → WDR24 → Hsp70/DNAJ → DYNLL1 ↔ ATMIN. This working 

model offers a workable blueprint for functional dissection of all components involved. The 

information flow provides new insights into the potential mechanisms of evQTL SNPs 

influencing gene expression variability. 

We anticipate that our findings have implications for studying human diseases, in which the 

regulatory variation plays critical roles (47). Decanalization effect has been proposed to 

influence brain development and contribute to the risk of psychological disorders like 
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schizophrenia (48, 49) and other complex diseases (14). Increased gene expression variability 

was found to be associated with the aging in a mouse model (50), and the aggressiveness of 

lymphocytic leukemia (51). Understanding how genetic variation contributes to increasing gene 

expression variability or variability of other phenotypic traits will facilitate the identification of 

causal variants. This is especially true when gene expression heterogeneity characterizes the 

disease under consideration. Indeed, many human diseases are characterized by etiological 

and phenotypic heterogeneity, echoing the so-called “Anna Karenina principle,” that is, each 

sick person is sick in his or her own way. Even merely a small fraction of the increased 

phenotypic variability among patients is due to the variability-controlling mutations (such as 

evQTL SNPs), understanding how these mutations influence the variability is still of importance. 

The better understanding of the control may bring us close to causal mutations underlying 

individual’s predisposition to disease. This strategy, if combined with other methods for 

estimating the impact of rare mutations, such as aberrant gene expression analysis for private 

mutations (52), would be more powerful for personalized medicine. Furthermore, we suggest 

that variability-controlling mutations are potential targets for genomic editing or drug 

development. Drug targeting these mutations might bring the dysregulated and dysfunctional 

gene expression in patients back to normal. 

Materials and Methods 

Gene expression and genotype data for evQTL analysis 

The gene expression data generated by the Geuvadis project RNA-seq study (27) was 

downloaded from the website of EBI ArrayExpress using accession E-GEUV-1. The 

downloaded data matrix contained the expression values of Gencode (v12)-annotated genes 

measured in 462 unique LCL samples. The data had been quantile normalized and further 

processed by using the method of probabilistic estimation of expression residuals (PEER) (53). 

From the downloaded data matrix, we extracted the expression values of autosomal protein-

coding genes of 345 EUR samples, whose genotype data is available from the website of the 

1,000 Genomes Project (28). Based on the result of principal component analysis, we excluded 

19 samples whose global expression profiles deviated most from those of the rest of samples. 

The final expression matrix contained the data of 15,124 protein-coding genes for 326 EUR 

samples. We also obtained the genotype and LCL expression data from a cohort of female twin 

pairs (33) from the TwinsUK adult twin registry (54). The expression data from 139 pairs of MZ 

twins was extracted and used in this study. 
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Identification of evQTLs 

We adopted the DGLM method to test for inequality in expression variances and measure the 

contribution of genetic variants to the expression heteroscedasticity. As did before, we 

considered the following model: iiii gxy εαβμ +++=  ))exp(,0(~ 2 θσε ii gN , where yi 

indicates a gene expression trait of individual i, gi is the genotype at the given SNP (encoded as 

0, 1, or 2 for homozygous rare, heterozygous and homozygous common alleles, respectively), εi 

is the residual with variance σ2, and θ is the corresponding vector of coefficients of genotype gi 

on the residual variance. Age of subjects and the batch of data collection were modeled as 

covariates xi. With this full model, both mean and variance of expression yi were controlled by 

SNP genotype gi. We also used the SVLM procedure (30) to detect evQTLs. The SVLM method 

consists of two steps. First, a regression analysis is applied where the gene expression trait is 

adjusted for a possible SNP effect and the effect of other covariates is also regressed out. 

Second, another regression analysis is applied to the squared values of residuals obtained from 

the first stage, using the SNP as the predictor to capture the effect of the SNP on the expression 

residuals. 

Identification of partial eQTL SNPs that interact with evQTL SNPs 

We used a two-step procedure to identify partial eQTL SNPs that interact with evQTLs. We first 

partitioned individuals into L and S groups according to whether genotypes of the evQTL SNP 

are associated with large (L) and small (S) variance of gene expression. Then we scanned 

genome-wide SNPs. For each SNP, the eQTL analysis by linear regression model was 

conducted among individuals of the L group. For each top SNP with high genotype 

heterozygosity difference, a linear regression (55) was performed on the SNP’s genotypes and 

gene expression. The most significant SNPs were retained after applying an arbitrary P-value = 

0.0005 as cutoff and were reported as candidate interacting SNPs. 

Estimation of gene expression noise using repeated RT-qPCR assay 

LCLs were purchased from the Coriell Institute (https://catalog.coriell.org/). The cells were 

maintained in Roswell Park Memorial Institute Medium 1640 with 2mM L-glutamine and 15% 

FBS (Seradigm) at 37°C in a humidified atmosphere containing 5% CO2 (v/v). For the time 

course experiment, cell lines were seeded at 1 × 106 cells per 10 cm dish and then incubated in 

the culture medium. Cell lines were screened to ensure to be mycoplasma free by using the 

MycoFluor mycoplasma detection kit (Invitrogen). Cells were collected at ten different time 

points from 12 to 72 h after growth. Total RNA was extracted using Trizol reagent (Invitrogen). 
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RNase-free DNase (Ambion) was used to remove potential contaminating DNA from RNA 

samples. RNA purity and concentration were determined using Nanodrop ND-100 

Spectrophotometer. The concentrations of total RNA were adjusted to 100 µg/ml. Real-time RT-

PCR assays were performed using iTaq Universal SYBR Green One-Step Kit (Bio-Rad 

Laboratories) with primers shown in Table S4. Template total RNA was reverse transcribed and 

amplified in a Bio-Rad CFX96 Real-Time PCR Detection System (Bio-Rad Laboratories) in 20-µl 

reaction mixtures containing 10 µl of iTaq universal SYBR Green reaction mix (2×), 0.25 µl of 

iScript reverse transcriptase, 2 µl of 100 nM of forward and reverse primers mix, 1 µl of total 

RNA template, and 6.75 µl of nuclease-free water, at 50°C for 10 min, 95°C for 1 min, followed 

by 30 cycles of 95°C for 10 s and 58°C for 30 seconds. Melting curves were measured from 

65°C to 95°C with 0.5°C of increment. The average expression of two housekeeping genes, 

CHMP2A and C1orf43, was used for normalization. The choice of using these two genes as 

reference was based on a recent RNA-seq study for constantly expressed human genes (56). 

The expression stability of the two genes was further confirmed by using geNorm and 

NormFinder programs (57, 58). 

Flow cytometric analysis of cells in different phases of the cell cycle 

Cell cycle distribution was evaluated by using flow cytometry. This determination was based on 

the measurement of the DNA content of nuclei labeled with propidium iodide (PI). Cells were 

harvested at 24, 36, 48, 60, and 72 h after treatment. The cells were resuspended at a 

concentration of 1×106/ml in cold PBS. After 1ml of ice-cold 100% ethanol had been added 

dropwise, the cells were fixed at 4°C for at least 16 hours. The fixed cells were pelleted, 

resuspended in 1ml of PI staining solution (50 mg/ml propidium iodide, 100 units/ml RNase A in 

PBS) for at least 1 hour at room temperature and analyzed on an FACS flow cytometer (BD). By 

using red propidium-DNA fluorescence, 30,000 events were acquired. The percentage of cells 

in G0/G1, S and G2/M phases of the cell cycle was calculated using the Flowjo software v10 

(Tree Star). 
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Figure Legends 

Fig. 1. Overview of evQTL detections and the distribution of cis- and trans-evQTLs in 

autosomes. (A) Flowchart of cis-evQTLs identification using DGLM method. (B) Flowchart of 

cis- and trans-evQTL identification using SVLM method. (C) Distribution of SVLM-identified cis- 

and trans-evQTLs in autosomes. 

Fig. 2. Dissection of decanalizing and epistatic effects of evQTLs using twins data. (A) The left 

panel shows the cumulative distribution function (CDF) curves of normalized discordant gene 

expression (measured using RMD) between MZ pairs in S and L groups. The right panel shows 

an example of decanalizing evQTL, TBKBP1-rs1912483. The expression data points for each of 

two individuals from the same pairs of MZ twins are linked. Twin pairs are grouped as MZ-L and 

MZ-S based on whether the homozygous genotype at rs1912483 is associated with large or 

small gene expression variance. (B) Same as (A) but showing an example of epistatic evQTL, 

PTER-rs7913889. 

Fig. 3. The correlation between gene expression variability and transcriptional noise presents in 

the decanalizing evQTL, ATMIN-rs1018804, but not in the epistatic evQTL, ZNF10-rs7972363, 

in the same cell line pair (HG00097 and HG00364). (A) The most left panel shows the 

distribution of gene expression levels of ATMIN among three different genotypes defined by two 

alleles of rs1018804. Red arrows indicate the genotype and expression level of HG00097 and 

HG00364. Right panels show the results of three biological replicates of repeated RT-qPCR 

analysis for ATMIN at ten different time points after incubation. At each time point of each 

biological replicate, three technical replicates are performed to obtain ΔCt values. Red circles 

indicate the average ΔCt values. (B) Same as (A) but showing the results of epistatic evQTL 

ZNF10-rs7972363. 
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Supplementary Figure Legends 

Fig. S1. Comparison of statistical power of two evQTL detection methods: DGLM and SVLM, 

using computer simulations with different sample sizes. For simulations, a population of 10,000 

individuals were generated, and the MAF of an evQTL SNP was set to 0.4. The genotypes of 

SNP were encoded to 0, 1, 2 for homozygous minor, heterozygous, and homozygous major 

alleles, respectively. The gene expression of each genotype was generated from a normal 

distribution with the same mean but different variances, 1.0, 2.0, and 4.0, respectively. Before 

testing a method, the population was subsampled to the designated sample size, ranging from 

300 to 1,000. For each sample size, the tested method was applied to the subsamples. The 

whole procedure was repeated 1,000 times, and the power was computed as the ratio of the 

times of P-value being smaller than 5×10-5 (i.e., 0.05/1000). 

Fig. S2. Schematic illustration of the method for identifying partial eQTLs. After the identification 

of evQTL, the partial eQTL method involves two steps: (1) extraction of homozygous individuals 

whose genotype of the evQTL SNP is associated with increased expression variability, and (2) 

identification of the eQTL between the gene and third-party variant among extracted individuals. 

Fig. S3. The correlation between gene expression variability and noise presents in two 

additional decanalizing evQTLs. (A) Decanalizing evQTL ATMIN-rs1018804 gene expression in 

the cell line pair NA12144 and NA12763. The most left panel shows the distribution of gene 

expression levels of ATMIN among three different genotypes defined by two alleles of 

rs1018804. Red arrows indicate the expression levels of NA12144 and NA12736 and their 

genotypes. Right panels show the results of two biological replicates of repeated RT-qPCR 

analysis for ATMIN at five different time points at 24, 36, 48, 60, and 72 h after incubation. At 

each time point of each biological replicate, three technical replicates were performed to obtain 

ΔCt values, and the average is presented by the red circle. (B) Same as (A) but showing the 

results of evQTL BEND4-rs7659929 using cell line pair NA12889 and NA18858. 

Fig. S4. Cell cycle analysis to determine the relative abundance of cells in different phases. (A) 

Representative flow cytometric dot plots. (B) Representative histograms obtained using TUNEL 

assay. (C) Relative frequencies of cells in G1, S, and G2 phases. (D) Principal component 

analysis of cell cycle profiles. (E) Relative frequencies of cells in different phases of HG00097 

(red) and HG00364 (blue). 

Fig. S5. IGV view of RNA-seq read alignments and sashimi plot of mRNA splicing patterns of 

evQTL genes in different cell lines. (A) IGV view of RNA-seq read alignment of ATMIN in 
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HG00097 and HG00364. (B) Sashimi plots of ATMIN mRNA in HG00097 and HG00364. (C) 

IGV view of RNA-seq read alignment of BEND4 in NA12889 and NA18858. (D) Sashimi plots of 

BEND4 mRNA in NA12889 and NA18858. 

Supplementary Table Legends. 

Table S1. The list of cis-evQTLs identified using the DGLM method. 

Table S2. The list of cis- and trans-evQTLs identified using the SVLM method. 

Table S3. The list of partial eQTLs and the corresponding evQTLs. 

Table S4. Sequences for primers using in the qRT-PCR assay.
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