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Cells that mutate or commit to a specialized function (differentiate) often undergo conversions that
are effectively irreversible. Slowed growth of converted cells can act as a form of selection, balancing
unidirectional conversion to maintain both cell types at a steady-state ratio. When conversion
is insufficiently counterbalanced by selection, the original cell type will ultimately be lost, often
with negative impacts on the population’s fitness. The critical relationship between selection and
conversion for maintenance of unconverted cells and the ratio between cell types at steady state (if
one exists) depend on the spatial circumstances under which cells proliferate. We present analytical
predictions for growth in several biologically-relevant geometries — well-mixed liquid media, radially-
expanding colonies on flat surfaces, and linear fronts — by employing analogies to the directed
percolation transition from non-equilibrium statistical physics. We test these predictions in vivo
using a yeast strain engineered to undergo irreversible conversion: this synthetic system permits
cell type-specific fluorescent labeling and exogenous variation of the relative growth and conversion
rates. We find that populations confined to grow on a surface are more susceptible to fitness loss

via a conversion-induced “meltdown.”

INTRODUCTION

Irreversible change is an important aspect of both de-
velopment [1] and evolution [2]. Many mature tissues
retain stem cells that replenish specialized cells lost to
damage or aging. Proliferation counterpoised by irre-
versible differentiation can maintain stem and specialized
cells in a dynamic steady-state [3], but an imbalance be-
tween these forces can eliminate the stem cell popula-
tion, with dire health consequences [4]. Like differenti-
ation, harmful mutations can be effectively irreversible;
natural selection may check their spread due mutant or-
ganisms’ slower reproduction, but if the mutation rate is
too great or selection ineffectual, these mutations can fix
permanently as described for mutational meltdown via
Muller’s ratchet [5, 6]. We will employ the generic term
“conversional meltdown” to describe the loss of an uncon-
verted cell type due to improper balance between muta-
tion and selection, differentiation and proliferation, and,
more generally, any form of irreversible conversion and
differential growth. The abrupt shift from maintenance
to extinction of the unconverted cell type as conversion
rate increases is analogous to the well-studied directed
percolation phase transition in statistical physics [7, §].

Though most analyses of this phase transition have fo-
cussed on well-mixed populations, it is becoming clear
that spatial structure plays a crucial role [9, 10]. Here,
we investigate the phase transition for one-dimensional
growth without migration, a geometry relevant in natural
circumstances such as population expansion and growth
of plant meristem, as well as in experimentally-tractable
systems such as microbial range expansions [11, 12].
Yeast [12] and immotile bacteria [11] on Petri dishes grow
in colonies that remain relatively flat, proliferating pri-

marily at the edges [13] due to nutrient depletion in the
core: the thin region of dividing cells at the frontier can
thus be treated as a one-dimensional population. The
interior of the colony accurately reflects the appearance
of this population in the past; its composition can be
studied using fluorescence detection techniques. When a
particular cell type has locally fixed at the colony fron-
tier, its descendants form a “sector” as shown in blue in
Fig. 1(a). The geometric properties of the spatial sectors
reflect the underlying evolutionary dynamics: for exam-
ple, the sector opening angle 6 provides an estimate of
the selective advantage of cells in the sector relative to
their neighbors [12].

Here we investigate the effect of spatial population
structure on the conversional meltdown phase transi-
tion. We complement analytical and simulation-based
approaches with in vivo validation of our predictions. We
employ a strain of budding yeast engineered to undergo
irreversible conversions with tunable frequency and fit-
ness cost to study population dynamics in well-mixed
liquid media, as well as microbial range expansions on
Petri dishes. We find that the spatial distribution of the
cells qualitatively changes the dynamics. Only adjacent
individuals in spatially distributed populations will com-
pete and the local effective population size will be small
relative to the total population. The small number of
competing individuals induces small number fluctuations
or genetic drift. We will show through experiments, sim-
ulation, and theory that the enhanced genetic drift drives
extinction. This has important consequences for diverse
processes including tissue renewal, meristematic growth,
and mutation-selection balance, where proliferation must
occur faster than expected to prevent extinction of the
unconverted population.
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FIG. 1. (a) A micrograph of the edge of a budding yeast S.
cerevisiae cell colony grown on a Petri dish. In this yeast
range expansion, the blue unconverted cells form a spatial
sector with an opening angle 6 marked with overlayed black
lines. The blue cells may convert to the yellow ones at a
rate p, which leaves yellow patches within the blue sector.
The growth, or time-like, direction is indicated. (b) A phase
diagram indicating where we expect the extinction of the blue
strain as a function of its selective advantage s and conversion
rate p. In the inactive phase, a genetic sector formed by a blue
cell always dies out. In the active phase, there is a non-zero
probability of forming a surviving cluster. The insets show
examples of simulated sectors. Note the resemblance between
the sector in the active phase and the experimental sector in

part (a).

EXPERIMENTAL SETUP

Microbes such as the budding yeast, S. cerevisiae,
are easily cultured in both test tubes and on Petri
dishes. This makes them excellent candidates for com-
paring well-mixed and spatial dynamics. Construction
of a yeast strain which undergoes irreversible conversion
events with exogenously-tunable conversion rates and fit-
ness cost was described in Ref. [14]. Briefly, we geneti-
cally engineered an S. cerevisiae strain to lose a cyclo-
heximide resistant ribosomal protein coding sequence via
a (-estradiol-dependent Cre recombinase mechanism de-
veloped by Lindstrom et al. [15]. This irreversible con-
version event occurs once per cell division (during mi-
totic exit) with a probability p, which we will call the
conversion or mutation rate (per division). The proba-
bility u depends on the ambient S-estradiol concentra-
tion. The cycloheximide resistant sequence (the cyh2”
allele of the ribosomal protein L28 [16]) confers a mea-

surable selective advantage for the unconverted strain rel-
ative to the converted strain when the strains are grown
in the presence of cycloheximide. The selection coeffi-
cient s > 0 associated with this advantage is tunable
by varying the cycloheximide concentration. Both the
conversion rate p and selection coefficient s can be di-
rectly measured in well-mixed media and tuned over more
than an order of magnitude by selecting appropriate (-
estradiol and cycloheximide concentrations. Since these
compounds are not consumed by the cells and diffuse
readily through agar, and because yeast colonies are not
particularly thick, these measurements also reflect u and
s for populations grown on agar media.

To measure the fraction of converted versus un-
converted cells in the population over time, we la-
beled the two types with fluorescent markers. Specif-
ically, the coding sequence for the fluorescent protein
mCherry is excised along with cyh2" via the Cre re-
combinase mechanism. After the recombination event,
an mCitrine fluorescent protein is expressed, instead.
This allows us to monitor the unconverted and con-
verted cells using two different fluorescence channels.
Throughout this manuscript, we will color the uncon-
verted, mCherry-expressing cells blue and the converted,
mCitrine-expressing cells yellow (Fig. 1(a), for example).

—
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FIG. 2. Edges of linear range expansions under different
growth conditions. In (a), the (-estradiol concentration in
the agar is varied with a fixed cycloheximide concentration.
The corresponding conversion rates p are indicated. In the
top-most panel, we indicate an opening sector angle. In (b),
the cycloheximide concentration is varied instead, tuning the
selective advantage s of the blue strain over the yellow over
a broad range. Note that the sector angles get smaller as
we either increase p or decrease s and approach the directed
percolation (conversional meltdown) transition.
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To visualize the directed percolation phase transition
or conversional meltdown, we produced linear range ex-
pansions on 1% agar media with judiciously-chosen (-
estradiol and cycloheximide concentrations. To initiate
the expansion, a thin strip of Whatman filter paper was
submerged in a mixture of unconverted and converted
cells, then placed in the center of the Petri dish; the lin-
ear colonies were then imaged after seven days’ growth
(= 1 cm) at 30 °C. The ratio of unconverted to converted
cells in the inoculum was chosen to be small enough so
that resulting sectors of unconverted cells would typically
be sufficiently separated for analysis. Fig. 2 displays rep-
resentative images for colonies grown in a variety of agar
media, the concentrations of (-estradiol and cyclohex-
imide used in each, and the corresponding p and s values.
The different preparations influence the range expansion
dynamics: we see that either increasing (-estradiol con-
centrations or decreasing cycloheximide will yield smaller
blue sectors in Fig. 2, indicating an approach to extinc-
tion of the unconverted blue strain. We will also consider
range expansions in which we place a droplet of the yeast
cell solution at the center of the Petri dish, which then
forms a circular colony that spreads out radially.

Thus, we are able to manipulate © and s in experiment
by varying the concentrations of [-estradiol and cyclo-
heximide, respectively, in either the nutrient medium for
well-mixed populations grown in test-tube, or in the agar
for populations grown on plates. Note that it is possible
to vary p and s over a large range, covering the range
of values in the simulated phase diagram in Fig. 1(b):
in particular, we are able to tune through the transition
line and see extinction of the unconverted strain. We
will now theoretically analyze this transition line and the
extinction in more detail.

THEORY AND SIMULATION

The interior of the yeast colony or range expansion
will be shielded from nutrients [13] and the frontier
will be relatively thin, allowing us to approximate it as
a one-dimensional population [8]. Then, provided the
yeast colony experiences an effective surface tension that
forces the colony boundary to remain uniform, we may
consider the dynamics along a uniform, effectively one-
dimensional flat front. Consider the fraction f(x,t) of
blue cells along the frontier at position z and time t. Ev-
ery generation time 7,, the fraction f(x,¢) will change
due to the conversion probability p and the competition
at the frontier (which will depend on the selection co-
efficient s). For small s and p, the fraction f(z,t) will
evolve according to the stochastic differential equation

Of =Ds0f +5f(1—f)—iif +/Dgf(1—f)& (1)

where 5 = s/74, L = /7y, and £ = £(x, 1) is a Gaussian,
white spatio-temporal noise with zero mean, (£(z,t)) =
0, and unit variance: ({(z,t)E(2’, ")) = §(t' —t)d(a’ — x).
The noise is interpreted in the It6 sense [17] and describes
the stochastic birth-death processes of the cells at the
frontier, which have some effective genetic drift strength
D,. We have the scaling D, ~ {/Nt,, where ¢ is the
linear size of the frontier over which cells compete to di-
vide into virgin territory (approximately a cell diameter),
and N is the number of these competing cells. The dif-
fusion term D402 f describes cell rearrangements at the
frontier with an effective spatial diffusion constant Dj.
The parameters Dy and Dy will depend on the details of
the microbial colony structure such as the nutrient pen-
etration depth. They are measured for various microbial
colonies in Refs. [11, 18]. We will be primarily interested
in how various solutions to Eq. (1) depend on p and s,
which we can control in the experiment.

Equation (1) belongs to the directed percolation
universality class and exhibits the associated non-
equilibrium phase transition [7]. The transition can be
found by examining sectors of unconverted cells as in
Fig. 1(b) (i.e., by using Eq. (1) to evolve an initial
f(x,t = 0) with a localized “spike” of blue cells at the
origin), but a uniform initial condition also exhibits a
phase transition along the same phase boundary [8, 19].
Namely, if we start with all blue cells at the initial fron-
tier (f(z,t = 0) = 1), the average fraction of blue cells
(f(z,1)), (averaged over the noise £ in Eq. (1) and posi-
tions x along the frontier), will approach a non-zero con-
stant (f(x,t))s — foo > 0 as t — oo in the active phase
and (f(z,t)); — 0 in the inactive phase. We will explore
this initial condition using yeast range expansions in the
next section.

The directed percolation phase transition line occurs
at approximately pu ~ As? for the range expansions,
compared to u ~ s for well-mixed populations, where
A is a constant of proportionality that will depend on
D, and D,. We expect the noise term Dy to be impor-
tant near the conversional meltdown transition. Then, in
the strong noise limit, the following scaling should hold:
A~ Dy/(D27y) 8, 20]. Using the results of Ref. [18], we
expect A =~ 6. However, our growth conditions and yeast
strains are different and a detailed check of the scaling of
A with Dy and D, is beyond the scope of this paper. So,
we will use A as a fitting parameter in the experimental
results.

It is also possible to make some predictions for the
sector angles illustrated in Fig. 1(a) using properties of
the directed percolation universality class. First, note
that a genetic sector formed from an unconverted (blue)
cell at the frontier will have an opening angle 6 given by

6 = 2arctan FJ‘} , (2)
{

where £ /§)| is the slope of the sector boundaries. The
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FIG. 3. Average sector angles measured from 25600 simula-
tions of two-dimensional range expansions as a function of the
distance A away from the critical line separating the active
and inactive phases shown in Fig. 1(b). The inset illustrates
the distance A and the critical line. In the simulations, the
distance A is varied by fixing s = 0.3 and varying the muta-
tion rate p. The range expansion has a flat frontier of 4000
cells and is evolved for 4 x 10* generations. We initialize the
populations with a single unconverted cell at the frontier and
average the opening sector angle of all surviving sectors.

opening angle can be measured in experiment. Note that
we will only get a surviving sector if we are in the active
phase (see Fig. 1(b)), where there is a non-zero proba-
bility that the unconverted cell type will survive at long
times. Then, consider points (s, 1) in the phase diagram
that are some shortest distance A = A(s, p) away from
the phase transition line. We know that as we approach
the phase transition line and A — 0%, the dynamics will
be governed by directed percolation. In particular, the
slope &1 /€| of the sector (measured relative to the pop-
ulation frontier) will be proportional to a power law of

A:

SL _ g AvG-D), 3)

€l
where a¢ is a constant of proportionality, z ~ 1.581 is a
dynamical critical exponent, and v, = 1.097 is a spatial
correlation length exponent [19]. The constant of pro-
portionality a¢ is not universal and will depend on where
we are along the transition line and particular details of
our model. So, in summary, as long as we are close to
the transition and the angle 6 is small,

0 ~ 2 arctan ag(s)A”(z_l)} ~ 2a¢ A*037. 4)

The prediction in Eq. (4) may be checked with sim-
ulations. We simulate range expansions with flat, uni-
form frontiers on a triangular lattice with a single cell
per lattice site. The frontiers are a single cell wide and
correspond to rows of the lattice. Cells at the frontier
compete with their neighbors to divide into the next lat-
tice row. The probability of division is proportional to

the cell growth rate. The unconverted blue cells have a
growth rate normalized to 1, while the converted yellow
cells grow with rate 1 — s. This implements the selec-
tive advantage of the blue cells. After a cell division, the
daughter cell may mutate with probability p if it is un-
converted (just as in the designed yeast strain). These
competition rules are a generalization of the Domany-
Kinzel model updates [21]. The model implementation is
described in detail in Ref. [8]. It is possible to evolve sec-
tors by considering initial frontiers with just a single blue
cell surrounded by all yellow cells. Some examples of the
resulting sectors are shown in the insets of Fig. 1(b). We
then measure the average angle 6 subtended by the blue
cell sectors as a function of the distance A away from the
extinction transition line in the (u, s) plane (see inset of
Fig. 3). We find excellent agreement between simulation
and Eq. (4) in Fig. 3. The parameter a¢ ~ 0.88 is found
by fitting. We will check these results with experiments
in the next section.

EXPERIMENTAL RESULTS
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FIG. 4. The average steady-state fraction of unconverted cells
(f) in (a) well-mixed populations cultured in a test-tube and
in (b) range expansions. The concentration for the range
expansions was measured by sampling cells at the edge of a
circular colony after five days of growth. The dashed lines
are the theoretical predictions of the phase transition lines.
In (a), we expect that the transition occurs around p = s.
In (b), we get the significantly different line shape u ~ As?,
with A ~ 1.5 as the single parameter fit to the data.

We first compare the steady-state concentration of un-
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converted blue cells in well-mixed populations and two-
dimensional range expansions as a function of the muta-
tion rate p and the blue cell selective advantage s. We
expect that if p is large enough compared to s, the fit blue
strain is unable to survive in the population at long times.
Thus, we expect the average fraction of blue cells (f) to
eventually decay to zero. Otherwise, the fraction will
approach some non-zero steady-state value fo,. We esti-
mate this value in the well-mixed populations by measur-
ing the fraction of mCherry-expressing unconverted cells
by flow cytometry after enough generations to achieve
a steady-state (approximately 40, or four thousand-fold
dilutions from saturation) or until the unconverted frac-
tion is no longer measurable. Similarly, we estimate the
fraction of unconverted cells in colonies at steady-state
by collecting cells from the very edge of circular colonies
after five days’ growth with a pipette tip and perform-
ing flow cytometry. The population frontier inflates in
the circular range expansions, which has consequences
for the dynamics. However, the steady-state fraction foo
does not change much [8].

The experimental results in Fig. 4 vividly illustrate the
effects of spatial fluctuations on the transition to extinc-
tion. We see that there is a much smaller section of the
(1, s) space that yields a non-zero steady-state fraction
of unconverted cells in the population. The theoretical
predictions for the phase boundaries are consistent with
the experiment: We find p =~ s for the well-mixed popu-
lation and p ~ As? for the populations grown on Petri
dishes, where A = 1.5 is a fitting parameter. Note that
A is a number of order unity, as we expected from the
scaling argument A ~ Dg/ Dng.
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FIG. 5. Measured averages of opening angles of sectors formed
in experimental linear range expansions as a function of the
distance A from the critical line found in Fig. 4(b). The
dashed line shows the fit to the expected directed percola-
tion power law behavior in Eq. (4). Inset: The black lines
shows the position of the transition. The red crosses show
the (u,s) coordinates of all the growth conditions used to
grow the colonies in the experiment. The distance A is also
shown for one of these points with a solid red line.

It is also interesting to study the opening angle 6

formed by the sectors in linear range expansions as we
approach the phase transition line. From Eq. (4), we ex-
pect this angle to vanish as a power-law with decreasing
distance A from the critical line (see inset of Fig. 3). The
measured opening angles as a function of A are shown
in Fig. 5. The values are collected by approximating the
opening sector angle from images of the colony edges and
averaging over many sectors. The error bars are calcu-
lated from the standard deviations of the sector angle
measurements used to compute the averages. Growth
conditions corresponding to many different values of p
and s were used, as illustrated in the inset of Fig. 5. We
see that the theoretical prediction gives reasonable re-
sults, except for small A. This is expected because the
colony sector angle vanishes as A — 0 and the smaller
sectors are harder to identify in the range expansion im-
ages. We also expect some error due to the variation of
the non-universal parameter a¢ along the transition line
(see Eq. (4)).

CONCLUSION

We have now examined an extinction transition us-
ing a genetically modified yeast strain that irreversibly
converts from a more to a less fit strain. This synthetic
strain maintains many sources of biological variability, in-
cluding variability in growth rate/orientation, while pro-
viding exquisite control over conversion, relative growth
rate, and visualization of two cell types. Experiments
with this strain thus provide an appropriate validation
for the analytical and simulation-based approaches pre-
sented in this work.

The effects of spatial dynamics on the transition have
been clearly demonstrated. We found that spatial fluc-
tuations enhance extinction through genetic drift: The
extinction in a well-mixed population occurs when p ~ s
and when p ~ s? for a range expansion with a thin (ap-
proximately one-dimensional) frontier. Hence, the un-
converted strain is maintained in a smaller region of the
(14, ) phase space in the range expansion compared to the
well-mixed case, as shown in Fig. 4. We expect that this
enhancement is generic. The enhanced extinction prob-
ability might be observable in other spatially structured
populations, such as tissue growth and natural range ex-
pansions. The enhanced extinction probability has im-
portant implications for pathological conditions and can-
cer.

We also looked at the opening sector angles of clusters
of the fit strain spreading through a less fit population.
The opening angle vanishes with a directed percolation
power law as we approach the extinction transition. We
have verified this power law with both simulations and
experiments. Such sector dynamics might be relevant for
cancer, where driver mutations may spread through an
otherwise slowly-growing cancerous population while ac-
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cumulating irreversible, deleterious mutations [22]. Even
when many deleterious mutations accumulate, we expect
that there is an analogous extinction transition at which
the mutations accumulate fast enough to lead to a pop-
ulation collapse of the cells with the driver mutation
[22, 23].

To better understand these dynamics in cancer, we
would need to consider three-dimensional range expan-
sions with effectively two-dimensional frontiers, such as
the surfaces of solid tumors. In three-dimensional pop-
ulations, the extinction dynamics may be quite different
[23]. Spatial fluctuations do not enhance genetic drift as
much, and the phase diagram for extinction will have a
different shape. It would be interesting to examine three-
dimensional range expansions of this synthetic strain to
look at how these different spatial dynamics influence the
extinction transition. This may be done by embedding
the yeast in soft agar, or growing them in cylindrical
columns with nutrients supplied at one end, as described
in Ref. [24].
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