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Abstract 
Chromatin endogenous cleavage (ChEC) uses fusion of a protein of interest to micrococcal 
nuclease (MNase) to target calcium-dependent cleavage to specific genomic loci in vivo. Here 
we report the combination of ChEC with high-throughput sequencing (ChEC-seq) to map 
budding yeast transcription factor (TF) binding.  Temporal analysis of ChEC-seq data reveals 
two classes of sites for TFs, one displaying rapid cleavage at sites with robust consensus motifs 
and the second showing slow cleavage at largely unique sites with low-scoring motifs.  Sites 
with high-scoring motifs also display asymmetric cleavage, indicating that ChEC-seq provides 
information on the directionality of TF-DNA interactions.  Strikingly, similar DNA shape patterns 
are observed regardless of motif strength, indicating that the kinetics of ChEC-seq discriminates 
DNA recognition through sequence and/or shape.  We propose that time-resolved ChEC-seq 
detects both high-affinity interactions of TFs with consensus motifs and sites preferentially 
sampled by TFs during diffusion and sliding.  
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Introduction 
Genome-wide determination of protein binding sites is of great interest for understanding normal 
and pathological cellular processes.  Numerous techniques have been developed to map global 
protein-DNA interactions, and the most popular is formaldehyde crosslinking chromatin 
immunoprecipitation with high-throughput sequencing (X-ChIP-seq).  Although ChIP-seq has 
been used to gain numerous insights into the regulation of DNA-templated processes, it has 
notable limitations attributable to crosslinking and sonication1.  Formaldehyde, the most 
commonly used reagent for ChIP crosslinking, preferentially generates protein-protein 
crosslinks2 and can lead to epitope masking.  X-ChIP-seq may also artificially inflate transient 
factor-chromatin interactions3,4, a problem that appears to be particularly acute at highly 
transcribed regions5-7.  The resolution of X-ChIP-seq is also limited by sonication, though the 
addition of nuclease digestion steps (as in ChIP-exo, high-resolution X-ChIP, and ChIP-nexus) 
can greatly improve its resolution8-10.  Additionally, sonication may introduce biases towards 
protein binding sites in open chromatin11,12.  ChIP-seq performed without crosslinking, as in 
Occupied Regions of Genomes from Affinity-purified Naturally Isolated Chromatin (ORGANIC) 
profiling, circumvents issues associated with crosslinking and provides high resolution due to 
the use of micrococcal nuclease (MNase) to fragment chromatin12,13.  However, the solubility of 
chromatin-associated proteins may be poor under the relatively gentle extraction conditions 
required for non-crosslinking methods9. 

While ChIP-seq is most frequently used to map genome-wide protein-DNA interactions, 
a number of orthogonal methods, each involving fusion of chromatin proteins to DNA-modifying 
enzymes, have also been implemented.  In one such method, DNA adenine methyltransferase 
identification (DamID)14, a protein of interest is fused to the Dam methyltransferase, resulting in 
methylation at regions bound by the protein and containing GATC sequences.  In conjunction 
with microarray analysis, DamID has been used extensively to characterize genome-wide 
protein-DNA interactions in a range of model systems15-19.  DamID allows the identification of 
protein binding sites in living cells without the need for crosslinking or immunoprecipitation, and, 
as it relies upon total DNA extraction rather than chromatin solubilization, it is quantitative and 
can thus be used with small amounts of starting material.  However, the resolution of DamID is 
limited to kilobase-sized regions15 and the DNA-methylating activity of the fusion protein is 
constitutive.  A second enzymatic method is Calling Card-seq, in which a chromatin protein of 
interest is fused to a transposase to facilitate targeted integration of transposons into the 
genome20.  This method offers advantages similar to DamID with the added benefit of 
somewhat higher resolution, though it may be limited by transposase sequence preferences and 
also depends on the presence of restriction sites an appropriate distance from the inserted 
transposon to create templates for circularization and inverse PCR. 

A third enzymatic method, chromatin endogenous cleavage (ChEC)21, makes use of a 
fusion protein comprising a chromatin protein of interest and MNase, which degrades 
unprotected DNA in the presence of calcium.  ChEC has been used to characterize protein 
binding at specific genomic loci in yeast, such as the GAL1-10 promoter, HML, and rDNA21,22, 
and has been used in conjunction with low-resolution microarray analysis to assess the 
association of nuclear pore components with the genome23.  The benefits of ChEC are similar to 
those of DamID and Calling Card-seq, with resolution that is one to two orders of magnitude 
higher than that of these techniques, approaching base-pair resolution when analyzed by primer 
extension23.  Importantly, ChEC is controllable, as robust MNase activity depends on the 
addition of calcium to millimolar concentrations, several orders of magnitude greater than the 
50-300 nM free calcium observed in unstimulated yeast24 and mammalian cells25-29. 

We asked whether a combination of ChEC with high-throughput sequencing (ChEC-seq) 
would allow high-resolution determination of protein binding sites on a genome-wide scale while 
circumventing issues with crosslinking, protein solubility, and antibody quality.  Indeed, ChEC-
seq yielded several times more binding sites for the budding yeast transcription factors (TFs) 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 22, 2015. ; https://doi.org/10.1101/027334doi: bioRxiv preprint 

https://doi.org/10.1101/027334
http://creativecommons.org/licenses/by/4.0/


 

3 
 

Abf1, Rap, and Reb1 than have been reported by ChIP-based methods.  Making use of the 
inducible nature of ChEC, we found that binding sites for these TFs could be partitioned into two 
distinct temporal classes.  The first displayed high levels of cleavage less than a minute after 
the addition of calcium and contained robust matches to known consensus motifs.  In contrast, 
the second class of sites did not display appreciable levels of cleavage until several minutes 
after calcium addition and was depleted of motif matches.  Sites containing motifs also 
displayed asymmetric cleavage patterns, indicating that ChEC-seq can detect directional TF-
DNA binding.  Strikingly, we found that sites both with and without motifs displayed notable DNA 
shape features relative to random sites, indicating that the kinetics of ChEC can separate TF 
binding sites (TFBSs) recognized by a combination of DNA shape and sequence or shape 
alone.  We propose that rapidly cleaved sites, containing high-scoring motifs, represent direct, 
high-affinity binding of TFs to DNA, while slowly cleaved sites, with low-scoring motifs, are loci 
transiently sampled by TFs during diffusion and sliding due to their favorable shape profiles.  
Our results establish ChEC-seq as a robust genome-wide high resolution mapping technique 
orthogonal to ChIP-seq that we anticipate will be broadly applicable to numerous biological 
systems. 

 
Results 
Overview of the ChEC-seq experimental strategy 
We generated a construct encoding a 3xFLAG epitope and MNase for PCR-based C-terminal 
tagging of endogenous loci in budding yeast.  We chose to interrogate the genome-wide binding 
of the three canonical general regulatory factors: ARS Binding Factor 1 (Abf1), Repressor 
Activator Protein (Rap1), and RNA polymerase I Enhancer Binding protein (Reb1).  Abf1 
contains a bipartite DNA-binding domain (DBD) consisting of a zinc finger and an 
uncharacterized domain and regulates RNA polymerase II transcription as well as DNA 
replication30 and repair31.  Rap1 contains a Myb-family helix-turn-helix DBD and regulates the 
expression of ribosomal protein genes32 and telomere length33.  Reb1, like Rap1, contains a 
Myb-family helix-turn-helix DBD and is involved in the regulation of RNA polymerase I and II 
transcription34-36. ChEC in conjunction with southern blotting has been successfully used to map 
the binding of Reb1 to rDNA37,38.  In addition, all three factors have been implicated in the 
formation of nucleosome-depleted regions (NDRs) at promoters throughout the yeast genome39-

41. 
TFs are often expressed at levels expected to drive nonspecific interactions with 

chromatin via mass action42,43 and scan for their binding sites via trial-and-error sampling of 
sites on chromatin4.  We therefore anticipated that a substantial fraction of cleavages in the TF-
MNase strains could be due to random diffusion and collision of the fusion proteins with 
chromatin.  To control for this, we generated a strain harboring a construct encoding 3xFLAG-
tagged MNase fused to an SV40 nuclear localization signal under the control of the REB1 
promoter integrated at the URA3 locus (‘free MNase’).  As there are more molecules of Reb1 
than either Abf1 or Rap1 in a yeast cell44, we surmised that free MNase driven by the Reb1 
promoter would also serve as a suitable control for Abf1 and Rap1 ChEC-seq experiments.  The 
free MNase control is analogous to the unfused Dam control used in DamID experiments15.  
Expression of free MNase and TF-MNase fusions was well tolerated, as cells displayed no overt 
growth phenotype (Figure 1a), though they showed increased background DNA damage as 
assessed by ɣH2A levels (Figure 1b), in the absence of exogenous calcium.  

We followed the previously described in vivo ChEC protocol21, wherein living yeast cells 
are permeabilized with digitonin prior to the addition of Ca2+ to induce chromatin cleavage 
(Figure 1c).  We presumed that treatment of permeabilized cells with Ca2+ would generate both 
specific cleavages at TFBSs and nonspecific cleavages resulting from mass action-driven 
interactions of the TF-MNase fusions with chromatin, leading to the generation of small 
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protected fragments representing TFBSs.  We thus performed size selection of ChEC DNA prior 
to sequencing library preparation to enrich for small DNA fragments. 

Prior to size selection, we analyzed the kinetics of bulk genomic DNA degradation by 
TF-MNase fusions and free MNase by agarose gel electrophoresis.  Analysis of widely-spaced, 
minute-scale time points revealed notable smearing of genomic DNA by all three TF-MNase 
fusions by the 2.5 m time point.  In contrast, 2.5 m of digestion in the free MNase strain yielded 
only very slight smearing of high molecular weight genomic DNA (Supplementary Figure 1a).  
This pattern persisted until 20 m, when robust smearing of genomic DNA by free MNase could 
be observed.  We interpret these patterns to indicate that specific cleavage mediated by TF-
MNase fusions occurs relatively rapidly, at specific sites, following Ca2+ addition, while digestion 
with free MNase takes longer due to the fact that it is not specifically targeted to any sites on 
chromatin.  A similar pattern was observed with second-scale digestion of DNA with Reb1-
MNase, where slight smearing of genomic DNA was evident as early as 10 s, but no such 
degradation was observed in the free MNase strain (Supplementary Figure 1b). 

   
ChEC-seq maps genome-wide TF binding 
Visualization of mapped ChEC-seq fragments revealed robust, discrete sites of cleavage over 
negligible background signal with variable dynamic range depending on the extent of digestion 
(Figure 2a-c).  A modest amount of cleavage was observed as quickly as 10 s, presumably due 
to activation of TF-MNase molecules bound to DNA at the outset of the time series, and 
increased markedly by 20 s.  Signal-to-noise was generally highest at the 30 and 40 s time 
points, and dynamic range decreased thereafter, presumably due to TF unbinding and 
subsequent digestion of binding sites combined with an overall increase in background signal 
due to increasing nonspecific cleavage.  Strong cleavage was observed at Abf1 and Reb1 sites 
identified by ORGANIC profiling12 (Figure 2a,c) and a Rap1 site identified by ChIP-exo8 (Figure 
2b).  Free MNase digestion yielded only nonspecific patterns of cleavage with a much reduced 
dynamic range compared to that seen for Abf1, Rap1, and Reb1 at the same genomic regions 
(Figure 2a-c), indicating that the patterns of cleavage in the TF-MNase strains are specifically 
due to chromatin targeting of MNase by fusion to TFs and that ChEC-seq is unlikely to suffer 
from a chromatin accessibility bias.  We also assessed the specificity of our ChEC-seq data by 
determining ChEC cleavages at Abf1, Rap1, and Reb1 peaks previously determined by various 
ChIP methods8,12,45 and at an identical number of randomly generated genomic regions.  
Average enrichment of cleavages within ChIP peaks was 8.5-fold to 70-fold higher than at 
random sites (Supplementary Figure 1c-e), further indicating that ChEC-seq specifically detects 
TFBSs. 
 
ChEC-seq reveals temporally distinct classes of TFBSs 
Data generated by steady-state methods such as ChIP and DamID have two dimensions: 
binding site location and occupancy.  In addition to these, ChEC-seq data provides a third 
dimension: time.  We wondered if analysis of ChEC-seq cleavage kinetics could provide insight 
into the modes of DNA recognition by TFs.  We thus determined the maximum signal for each 
base position in the genome irrespective of digestion time and called peaks on this composite 
dataset using a genome-wide thresholding approach, followed by analysis of signal within each 
peak across all time points. 
 For Abf1, we detected 12,351 peaks (Supplementary Data 1).  Of note, this is an order 
of magnitude more peaks than was detected using ORGANIC profiling12.  To ask if there are 
temporally distinct classes of Abf1 sites, we performed unsupervised k-means clustering of peak 
signal with k = 2.  This analysis revealed a striking partitioning of the data into fast and slow 
classes based on the time point at which maximum signal was reached (Figure 3a, 
Supplementary Figure 2a).  We wondered if this temporal partitioning of sites might reflect 
differences in the affinity of Abf1 for the DNA sequences underlying these peaks and so scored 
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each site using a previously published position frequency matrix (PFM)45.  We observed a 
robust relationship between temporal class and motif strength, with the highest motif scores 
corresponding to the fast class and lower motif scores corresponding to slow sites (Figure 3a).  
Consistent with this, de novo motif discovery within fast sites revealed a robust match to the 
Abf1 consensus, similar to that previously determined by ORGANIC12, while a nonspecific AT-
rich sequence was the most enriched sequence in slow sites (Figure 3a).  To test the 
reproducibility of these data, we performed two additional replicates at the 30 s time point and 
compared the sum of cleavages within each peak.  This comparison revealed excellent 
correspondence between replicates (Spearman’s rank correlation ρ = 0.966-0.981; 
Supplementary Figure 3a).  Extending these analyses to Rap1 and Reb1, we detected 7,260 
Rap1 peaks, over twelve times the number of Rap1 peaks previously determined by ChIP-exo8, 
and 8,268 Reb1 peaks, greater than four times the number of Reb1 sites previously reported in 
ChIP studies8,12 (Supplementary Data 1).  As was observed for Abf1 peaks, Rap1 (Figure 3b, 
Supplementary Figure 3b) and Reb1 (Figure 3c, Supplementary Figure 3c) peaks could be 
divided into fast and slow clusters also distinguished by motif strength.  De novo motif discovery 
using fast but not slow Rap1 and Reb1 peaks also revealed robust matches to previously 
determined consensus sequences, similar to those found by ChIP-exo and/or ORGANIC, and 
AT-rich motifs bearing some resemblance to those found in slow Abf1 sites were found in Rap1 
and Reb1 slow sites (Figure 3b-c).  Cleavage levels for Rap1 and Reb1 peaks were also robust 
across 30 s replicates (Rap1 Spearman’s rank correlation ρ = 0.963-0.990; Supplementary 
Figure 3b and Reb1 Spearman’s rank correlation ρ = 0.945-0.989; Supplementary Figure 3c).  
We also analyzed the reproducibility of cleavage levels across 2.5 m replicates for Abf1 and 
found robust correlations (Spearman’s rank correlation ρ = 0.901-0.958; Supplementary Figure 
3d). 
 We considered the possibility that, because slow sites generally lack robust consensus 
motifs, these sites could simply be due to chromatin accessibility or other biases.  If this were 
the case, we would expect the majority of slow sites to overlap across datasets for multiple TFs.  
However, analysis of the overlap of slow sites between TFs revealed that 7,550/8,649 (87.3%) 
of Abf1 slow sites, 4,115/5,286 (77.8%) of Rap1 slow sites, and 4,974/5,557 (89.5%) of Reb1 
slow sites were unique.  This suggests that slow sites represent preferred sites without robust 
consensus motifs for TFs that may be sampled during diffusion and sliding4. 
 To further assess the specificity of our ChEC-seq peaks, we called peaks on the free 
MNase dataset (Supplementary Data 1) and used these peaks to generate a false discovery 
rate (FDR) for each TF-MNase peak set.  The FDR was defined as the percentage of TF-
MNase peaks that were also found in the free MNase dataset.  FDRs calculated were 2.37% for 
Abf1, 3.71% for Rap1, and 2.42% for Reb1.  These small FDRs indicate that at most a very 
minor fraction of the peaks in each experiment (Abf1, 292/12,353; Rap1, 269/7,260; Reb1, 
200/8,268) might be artifactual.  These FDRs may be overestimates, because a number of free 
MNase peaks occur in telomeric and rDNA regions, which tend to have high signal in ChIP 
experiments, but to which Rap1 and Reb1 have been shown to bind by multiple ChIP 
approaches8,12.  The correlation between TF and free MNase signals at peaks was also very 
poor (Spearman’s rank correlation ρ = 0.080-0.118; Supplementary Figure 4).  We conclude 
from these analyses that ChEC-seq peaks are dependent on targeting of MNase to chromatin 
by fusion to a TF. 
 
ChEC-seq peaks are enriched in ChIP-seq datasets 
Recent work has indicated that the extended formaldehyde crosslinking (10-15 min) usually 
performed in X-ChIP experiments captures transient interactions of TFs with degenerate motifs 
during binding site scanning3,4.  We thus anticipated that X-ChIP experiments would capture 
ChEC-seq sites regardless of their temporal profile and motif strength.  As our cluster analysis 
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revealed two distinct classes of sites distinguishable by motif strength, we refined the binary 
classification of ChEC-seq sites by parsing sites by motif strength for further analysis.  For the 
purposes of all subsequent analyses, we define sites with a motif match p-value < 0.001 as 
‘high-scoring sites’ and those with a motif match p-value ≥ 0.001 as ‘low-scoring sites’.   

While X-ChIP methods capture protein-DNA interactions regardless of duration when a 
long crosslinking step is used, ORGANIC preferentially enriches for stable, high-affinity protein-
DNA interactions12.  We thus hypothesized that, if low-scoring sites were representative of 
transient chromatin interactions during scanning, they would be less enriched relative to high-
scoring sites in ORGANIC compared to X-ChIP experiments. To examine this, we performed an 
X-ChIP experiment in which chromatin was digested with MNase (MNase-X-ChIP-seq) for Abf1.  
We then generated average plots of Abf1 X-ChIP-seq and ORGANIC signal around each class 
of sites.  As we hypothesized, Abf1 enrichment was essentially equal at high- and low-scoring 
sites when assessed by X-ChIP-seq (Figure 4).  In contrast, average Abf1 enrichment was ~2-
fold lower at low-scoring compared to high-scoring sites when assayed by ORGANIC (Figure 4).  
These analyses further support the specificity of ChEC-seq and suggest that low-scoring ChEC-
seq sites represent transient interactions of TFs with preferred sites during binding site 
scanning. 

We next assessed the overlap of ChEC-seq peaks with peaks obtained by various ChIP 
approaches.  High-scoring Abf1 ChEC-seq peaks overlapped with 929/1,277 (72.7%) of peaks 
discovered by X-ChIP-chip45 and/or ORGANIC12, while low-scoring Abf1 ChEC-seq peaks 
intersected with 696/1,277 (54.5%) of these ChIP peaks (Supplementary Figure 5a).  High-
scoring Rap1 ChEC-seq peaks overlapped with 395/654 (58.9%) of peaks reported by X-ChIP-
chip and/or ChIP-exo, while low-scoring Rap1 ChEC-seq peaks coincided with 270/654 (41.3%) 
of these ChIP peaks (Supplementary Figure 5b).  High-scoring Reb1 ChEC-seq peaks 
overlapped with 1,839/2,820 (65.2%) of peaks discovered by X-ChIP-chip and/or ORGANIC, 
while low-scoring Reb1 ChEC-seq peaks corresponded to 1,136/2,820 (40.3%) of these ChIP 
peaks (Supplementary Figure 5c).  These results indicate that ChEC-seq captures a substantial 
fraction of TFBSs previously identified by ChIP-based methods.  Furthermore, the stronger 
overlap of high-scoring ChEC-seq peaks with ChIP peaks, most of which were reported to 
contain consensus motifs, is consistent with the robust motif matches in this class of ChEC-seq 
sites. 
 
ChEC-seq detects directionality in protein-DNA interactions 
As we fused MNase to the C-terminus of each TF, we wondered if we could obtain structural 
information about the orientation of each TF on DNA and thus analyzed cleavage patterns 
around high-scoring and low-scoring sites for each TF.  High-scoring Abf1 sites showed robust 
and essentially equivalent peaks of cleavage upstream and downstream of the motif match 
(Figure 5a).  We also observed a moderate frequency of cleavage within the motif match, likely 
indicating MNase accessibility of the nonspecific spacer between the two specific halves of the 
Abf1 motif46.  Low-scoring Abf1 sites displayed low levels of cleavage throughout the motif 
match and the upstream and downstream regions (Figure 5a).  High-scoring Rap1 sites also 
showed strong cleavage peaks to either side of the motif match, as well as a strong cleavage 
peak in the center of the motif match (Figure 5b).  The cleavage in the center of the Rap1 motif 
match may be attributable to cleavage within the 3 bp linker that spans the two hemi-sites 
making up the Rap1 consensus sequence47.  Low-scoring Rap1 sites displayed a noisier 
version of the tripartite cleavage pattern observed at more robust motif matches (Figure 5b).  In 
contrast to Abf1 and Rap1, high-scoring Reb1 sites displayed a strongly asymmetric pattern of 
cleavage, with nearly all cleavages occurring upstream of the motif match (Figure 5c).  
However, this pattern was not observed at low-scoring Reb1 sites (Figure 5c).  These data 
suggest that ChEC-seq, with appropriate structural consideration of the protein under study, is 
capable of providing information about the orientation of TFs bound to DNA. 
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Though all three TFs tested presumably bind in a directional manner to their 
nonpalindromic motifs, robust cleavage asymmetry was observed only in Reb1 experiments 
(Figure 5c).  This may be explained by structural flexibility of the proteins under study and/or the 
relatively long length of the TF-MNase linker (33 aa).  In the case of Abf1, its C-terminal ~200 
aa contain no domains and as such might be quite flexible, allowing MNase on a long linker to 
cleave on either side of its binding sites.  Rap1 contains a C-terminal RCT protein-protein 
interaction domain, but this domain is predicted to be positioned above the central Rap1 DBDs 
and so may afford MNase access to DNA on either side of its binding sites48.   
 To investigate the effect of linker length on the observed ChEC-seq profiles, we 
shortened the TF-MNase linker from 33 to 8 aa (short linker strains are hereafter referred to as 
TF-SL) and performed ChEC-seq.  The Abf1-SL strain displayed the same cleavage patterns at 
Abf1 sites determined in the longer linker strain, suggesting that it is structural flexibility in the 
Abf1 C-terminus that dictates cleavage patterns in these strains (Figure 6a).  As expected, the 
Reb1-SL strain displayed a cleavage pattern very similar to that of the Reb1 strain (Figure 6b).  
We did not observe cleavage in the Rap1-SL strain, potentially due to the long expected 
distance of the Rap1 C-terminus from DNA48. 

To further explore the effects of structural flexibility on ChEC-seq cleavage patterns, we 
expressed Reb1 tagged with MNase at its N-terminus from a plasmid and performed ChEC-seq.  
Tagging of the Reb1 N-terminus with MNase resulted in a symmetric cleavage pattern (Figure 
5c) similar to that observed in the Abf1 and Rap1 strains (Figure 5a,b), suggesting that 
structural flexibility of the protein under study has a substantial effect on the cleavage pattern 
observed. 
 
High-scoring and low-scoring TFBSs share DNA shape features 
What drives preferential interaction of TFs with low-scoring sites?  Recent work has suggested 
that, in addition to sequence, DNA shape can drive recognition of specific loci by TFs49,50.  We 
thus wondered if low-scoring sites might contain DNA shape features conducive to recognition 
and so analyzed minor groove width (MGW), Roll, propeller twist (ProT), and helix twist (HelT) 
at high-scoring and low-scoring sites for each TF.  For each TF and category of DNA shape 
features, we compared the patterns between high-scoring and low-scoring sites. Pearson 
correlation coefficients (PCCs) close to 1 and large Kolmogorov-Smirnov (KS) p values indicate 
similar DNA shape profiles.  Abf1 high-scoring and low-scoring sites displayed highly similar 
patterns of MGW (PCC = 0.98; KS p = 0.68), Roll (PCC = 0.99; KS p = 0.68), ProT (PCC = 
0.98; KS p = 0.94), and HelT (PCC = 0.98; KS p = 0.68) (Figure 7a).  Similarly, Rap1 high-
scoring and low-scoring sites showed very similar MGW (PCC = 0.97; KS p = 0.18), Roll (PCC = 
0.98; KS p = 0.68), ProT (PCC = 0.98; KS p = 0.99), and HelT (PCC = 0.98; KS p = 0.94) 
(Figure 7b).  Lastly, analysis of Reb1 high-scoring and low-scoring sites likewise yielded good 
correspondence of MGW (PCC = 0.94; KS p = 0.83), Roll (PCC = 0.98; KS p = 0.83), ProT 
(PCC = 0.99; KS p = 0.83), and HelT (PCC = 0.93; KS p = 0.99) (Figure 7c).  Shape parameters 
at randomly selected binding sites displayed weak correlation with and significant difference 
(PCC < 0.3; KS p < 0.05) from those at both high-scoring and low-scoring sites for all three 
factors.   
 We next asked if a small subset of low-scoring sites with relatively good matches to the 
consensus might be driving the DNA shape trends observed in the average plots.  To test this, 
we generated heatmaps for each shape parameter and TF ranked by motif match p-value.  
Heatmaps for Abf1 (Supplementary Figure 6), Rap1 (Supplementary Figure 7), and Reb1 
(Supplementary Figure 8) high-scoring and low-scoring sites were highly similar, suggesting that 
the identified shape patterns are not dependent on the presence of a strong consensus motif. 
We also compared the relative abilities of a shape model and a sequence model to distinguish 
between sites containing high-scoring and low-scoring motifs using L2-regularized multiple 
linear regression. The resulting values for area under the receiver operating characteristic 
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(AUROC) showed that sequence is a better discriminator between high-scoring and low-scoring 
sites than shape (Supplementary Figure 9), indicating that DNA shape is more similar than 
sequence between these two classes of sites.  These results suggest that ChEC-seq kinetics 
separates TFBSs on the basis of their recognition mode (sequence and shape versus shape 
alone). 
 
Discussion 
We have shown that ChEC-seq robustly identifies global protein-DNA interactions with high 
spatial and temporal resolution.  Time-resolved analysis of ChEC-seq sites distinguishes two 
classes of TFBSs by cleavage kinetics and motif strength.  High-scoring sites exhibited rapid 
cleavage during ChEC time courses, suggesting that they are already partially occupied when 
calcium is added and rapidly reach maximum occupancy.  In contrast, low-scoring sites reached 
cleavage maxima twenty minutes after calcium addition but were largely unique to each TF, 
arguing that they do not simply reflect DNA accessibility in vivo.  Strikingly, high-scoring and 
low-scoring sites displayed very similar profiles of DNA shape features.   

The fact that low-scoring sites are only robustly detected several minutes into the ChEC 
time course suggests two possibilities: 1) low-scoring sites are only robustly cleaved after high-
scoring sites are digested away or 2) the transient nature of TF-DNA interactions at low-scoring 
sites necessitates several minutes of incubation to detect robust cleavage levels.  Although our 
current results cannot distinguish these two possibilities, the ability of ChEC-seq to kinetically 
separate high-affinity binding events and transient sampling interactions is a distinct advantage 
of the method over existing mapping approaches.  We speculate that high-scoring sites 
represent sites of high-affinity protein-DNA interactions driven by recognition of both DNA 
sequence and shape, while low-scoring sites are lower affinity sites preferentially sampled 
during binding site scanning due to their favorable shape profiles (Figure 8).  Our observations 
suggest that TFs first physically recognize sites with similar shapes and then further narrow 
down that group through the formation of sequence-specific hydrogen bonds with motifs.  In this 
regard, DNA shape could serve as a trigger for a shift in protein conformation between the 
previously proposed scanning and folding modes51, which facilitate rapid binding site searching 
and stable protein-DNA interactions, respectively.  Thus, it may be that DNA shape and protein 
conformation work in concert to limit the binding site search space. 

A common finding from large-scale mapping efforts is that many TFs with well-
established sequence specificities bind more sites without than with consensus motifs.  For 
instance, for a group of 36 TFs with well-known DNA binding specificities, ~36-100% of X-ChIP-
seq sites reported by the ENCODE project do not contain consensus motifs52.  It has been 
proposed based on these and other similar results that indirect tethering of proteins to DNA via 
protein-protein interactions is more prevalent than is generally thought.  Alternatively, these 
sites might represent transient interactions with DNA that are captured and inflated by cross-
linking53.  Consistent with this latter interpretation, analysis of Sox2 association with the genome 
by live-cell microscopy showed that its residence time at sites with poor consensus motifs is 
~15-fold shorter than at sites with strong motifs, despite the fact that these sites can be 
captured in ChIP-exo experiments4.  Notably, these transient interactions appear to be quite 
prominent, as Sox2 undergoes nearly 100 diffusions prior to locating a consensus binding site.  
Our results are consistent with this idea, indicating that the majority of sites without motif 
matches represent capture of transient scanning interactions with sites displaying preferred 
DNA shape features.  ChEC-seq is thus a powerful tool for distinguishing high-affinity, 
sequence-dependent interactions from interactions with preferred low-scoring sites during 
sampling of binding sites in vivo, which is not possible with current steady-state mapping 
technologies.  The high spatiotemporal resolution of ChEC-seq allowed us to gain mechanistic 
insights into TF-DNA sliding, which will likely enable the development of models for the search 
of TFBSs under in vivo conditions. 
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ChEC-seq has notable advantages relative to genome-wide mapping methodologies 
based on ChIP or other enzymatic fusions.  In particular, the inducible nature of ChEC-seq 
provides kinetic information not currently available on a genome-wide scale, and it was the 
rapidly inducible nature of ChEC-seq that allowed us to separate TFBSs based on their 
recognition by DNA sequence and shape or shape alone.  ChEC-seq also revealed structural 
information on TFs bound to their cognate sites.  One limitation of ChEC-seq is that multiple 
time points must be performed to capture fast and slow sites; however, one early (i.e. 30 s) and 
one late (i.e. 20 m) should be sufficient to capture both classes.  The major limitation of ChEC-
seq is the requirement for expression of a fusion protein.  Although tagging of endogenous loci 
has generally been laborious in non-yeast systems, the recent development of CRISPR/Cas9-
based genome editing54 has greatly simplified tagging, and we speculate that MNase tagging of 
endogenous loci in non-yeast systems will be commonplace to generate reagents for genome-
wide mapping of protein binding with high spatial and temporal resolution.  
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Methods 
Yeast strain construction 
The yeast ChEC-tagging vector pGZ108 was constructed by insertion of a PCR amplicon 
encoding a 3xFLAG tag and aa 83-231 of MNase (representing the mature sequence of MNase, 
GenBank P00644) followed by two stop codons (TAGTAG) between the PacI and AscI sites of 
pFA6a-3HA-kanMX655 (Addgene #39295), replacing the 3xHA tag.  The total length of the linker 
between the C-terminus of the protein of interest and MNase is 33 aa 
(GRRIPGLIKDYKDHDGDYKDHDIDYKDDDDKAA).  ChEC-tagging vectors with the HIS3MX6 
and TRP1 markers (pGZ109 and pGZ110), derived from pFA6a-3HA-HIS3MX655 (Addgene 
#41600) and pFA6a-3HA-TRP155 (Addgene #41595), were also created but not used in this 
study.  These vectors retain compatibility with the F2/R1 primer pairs commonly used for 
epitope tagging of endogenous yeast genes.  The ChEC-tagging short linker vector pGZ173 
was constructed as above, except that the 3xFLAG tag was excluded from the inserted PCR 
amplicon.  The linker length of this vector is 8 aa (GRRIPGLI).  Yeast ChEC strains were 
created by transformation with ChEC cassettes amplified from pGZ108 using gene-specific 
F2/R1 primers (http://yeastgfp.yeastgenome.org/yeastGFPOligoSequence.txt).  The REB1 
promoter-3FLAG-MNase-NLS construct (pGZ136) was created by gene synthesis (Operon) and 
cloned into the XhoI and EcoRI sites of pRS406 for integration at URA3.  A codon-optimized 
SV40 NLS (PPKKKRKV) was added to the C-terminus of MNase by PCR prior to ligation into 
pRS406.  The vector for expressing N-terminally MNase-tagged Reb1 (pGZ172) was 
constructed by Gibson assembly56 of PCR amplicons encoding the REB1 promoter, MNase-
3FLAG, and the REB1 ORF into the SacI site of pRS413.  Following transformation of yeast 
with pGZ172, the chromosomal copy of REB1 was deleted using a kanMX6 deletion cassette 
amplified from pFA6a-kanMX6 with an F2/R1 primer pair.  Plasmids and yeast strains used in 
this study are listed in Supplementary Tables 1 and 2, respectively. 
 
ChEC 
For each ChEC experiment, a 50 mL culture was grown to an OD600 of 0.5-0.7 at 30°C in YPD.  
Cells were pelleted at 3,000 x g and washed three times with 1 mL Buffer A (15 mM Tris pH 7.5, 
80 mM KCl, 0.1 mM EGTA, 0.2 mM spermine, 0.5 mM spermidine, 1X Roche cOmplete EDTA-
free mini protease inhibitors, 1 mM PMSF), centrifuging as above between washes.  Cells were 
resuspended in 600 µL Buffer A containing 0.1% digitonin and permeabilized at 30°C for 5 min.  
CaCl2 was added to 2 mM and ChEC digests were performed at 30°C.  At each time point, a 
100 µL aliquot of the digest was transferred to a tube containing 100 µL 2X stop buffer (400 mM 
NaCl, 20 mM EDTA, 4 mM EGTA) and 1% SDS.  Protein was then digested with 80 µg 
proteinase K at 55°C for 30 m.  Nucleic acids were extracted with an equal volume of 
phenol/chloroform/isoamyl alcohol and precipitated with 2.5 volumes 100% ethanol and 30 µg 
Glycoblue (Ambion).  Pellets were washed once with 1 mL 100% ethanol, dried, and 
resuspended in 30 µL 0.1X TE buffer, pH 8.0.  RNA was digested with 10 µg RNase A at 37°C 
for 20 m. 
 
Western blotting 
Yeast cells were grown to an OD600 of 0.4-0.5 in YPD and whole cell extract (WCE) was 
prepared from 2 OD600 as described57.  Antibodies used for western blotting were rabbit anti-
ɣH2A (H2A phospho S129) (Abcam ab15083, 1:500) and rabbit anti-H2A (Millipore 07-146, 
1:1000).  Images were obtained using the Licor Odyssey and bands were quantified using 
Image Studio Lite (Licor).  The ratio of ɣH2A/total H2A in the WT WCE was set to 1.0 and 
ɣH2A/total H2A ratios in the ChEC strains were expressed relative to this value. 
 
Library preparation and sequencing 
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Prior to generating sequencing libraries, ChEC DNA was subjected to size-selection using 
Ampure XP beads (Agencourt).  A beads:sample ratio of 2.5:1 (v:v) was used and the unbound 
fraction, containing small DNA fragments, was extracted to remove RNase and precipitated as 
above, and used for library preparation.  Sequencing libraries were constructed as 
described46,58, except that KAPA polymerase was used for library amplification.  Libraries were 
sequenced for 25 cycles in paired-end mode on the Illumina HiSeq 2500 platform at the Fred 
Hutchinson Cancer Research Center Genomics Shared Resource.  Paired-end fragments were 
mapped to the sacCer3/V64 genome build using Novoalign (Novocraft) as described to 
generate SAM files46,59.  For visualization of ChEC-seq tracks, data were normalized as follows.  
The number of fragment ends corresponding to each base position in the genome was divided 
by the total number of read ends mapped.  This accounts for differences in sequencing depth 
across samples.  Read end-normalized counts/bp were then scaled by multiplication of each 
position with the total number of mapped bases in that sample.  Normalization was performed 
using a custom perl script (pairs_single_end_sizes.pl in Supplementary File 1). 
 
Comparison of ChEC-seq data to ChIP data 
The sum of ChEC cleavages within 100 bp windows centered on each peak midpoint was 
determined using the bedmap feature of the BEDOPS suite60.  Abf1 and Reb1 ORGANIC peaks 
(10 m MNase, 80 mM salt) were from Kasinathan et al12, Rap1 ChIP-exo peaks were from Rhee 
and Pugh8, and Abf1, Rap1, and Reb1 X-ChIP-chip peaks were from MacIsaac et al45.  An 
equal number of random sites for each peak set was generated using the random feature of the 
BEDTools suite, filtered to exclude any high-scoring or low-scoring sites61.  Overlap of ChEC-
seq and ChIP peaks was performed using BEDTools intersect using 100 bp windows centered 
around the motif match midpoint for ChEC-seq peaks or the peak midpoint for ChIP peaks.  To 
analyze X-ChIP signal at Abf1 ChEC-seq sites, we performed Abf1 MNase-X-ChIP as 
described13.  Average plots were generated using bedgraph files with a custom perl script with a 
shell wrapper (average_plot.pl and window.sh in Supplementary File 1). 
 
Peak calling 
The maximum signal across all time points for each base position in the genome was 
determined using a custom perl script (combine_chec_bed.pl in Supplementary File 1) that 
output a single bedgraph file with the maximum value for each position.  Peaks were called on 
this bedgraph file using a genome-wide thresholding approach using a custom perl script with a 
shell wrapper (threshold_bed.pl and call_peaks.sh in Supplementary File 1).  To be included in 
a peak, a base position was required to have a value at least 10 times the genome-wide 
average.  Positions exceeding the specified threshold within 30 bp of one another were merged 
into a single peak (an interpeak distance of 30).  Thresholds used were: Abf1, 10.02165; Rap1, 
9.24372; Reb1, 8.17298; free MNase, 10.57292.  Reproducibility of peak occupancies was 
assessed by Spearman correlation.  To calculate an FDR for each dataset, TF and free MNase 
peaks were overlapped using BEDOPS --element-of and the number of overlapping peaks was 
divided by the total number of TF peaks.  FDRs calculated were: Abf1-MNase, 2.37%; Rap1-
MNase, 3.71%; Reb1-MNase, 2.42%.  Information on called peaks is given in Supplementary 
Data 1. 
 
Temporal analysis of ChEC-seq data 
The sum of ChEC cleavages within 50 bp windows centered on each peak midpoint was 
determined.  Rows were then Z-score transformed to allow comparison of ChEC-seq signal 
across rows (multiple time points).  This analysis was performed with a custom perl script 
(chec_heatmap.pl in Supplementary File 1).  Matrices were clustered with Gene Cluster 3.062 
and visualized with Java Treeview. 
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Motif analysis 
FASTA sequences were obtained for each 50 bp window surrounding each peak midpoint using 
BEDTools fastaFromBed.  FASTA sequences were then scored using a custom perl script 
(pssm_scorer.pl in Supplementary File 1) implementing the FIMO algorithm63 and using 
previously determined PFMs downloaded from ScerTF64.  FASTA sequences were uploaded to 
the MEME-ChIP65 web server for de novo motif discovery.  Logos were generated with 
LogOddsLogo66, using the yeast GC content option. 
 
Cleavage pattern analysis 
A custom perl script with a shell wrapper (average_plot_ends.pl and window_ends.sh in 
Supplementary Software) was used to determine average fragment end counts from pairs.bed 
files (created using pairs2bed.sh, Supplementary File 1) at each position in a 100 bp window 
surrounding each motif match center.  Cleavage data from the time point with maximal signal for 
each factor and class of sites in the Figure 3 heatmaps were used for average analysis.  
Cleavage data from 30 s and 5 m time points were used for average analysis of SL and N-
terminal cleavage.  Counts were normalized by multiplication of each position by the size of the 
budding yeast genome (taken here to be 12,495,000 bp) divided by the number of fragments 
mapped for a given time point.  Normalized free MNase counts were then subtracted from TF-
MNase counts. 
 
DNA shape analysis 
FASTA sequences generated from the previously generated 100 bp windows centered on motif 
match midpoints were used as input for our DNAshape method67 for high-throughput prediction 
of DNA structural features.  A set of 100 bp windows generated by BEDTools random not 
overlapping high-scoring or low-scoring sites and equal in number to the low-scoring sites for 
each factor was used as the random control for DNA shape analysis.  The resulting patterns for 
minor groove width (MGW), Roll, propeller twist (ProT), and helix twist (HelT) were analyzed 
using the framework of the motif database TFBSshape68.  Statistical comparisons between DNA 
shape profiles were performed using a Pearson correlation coefficient (PCC) and Kolmogorov-
Smirnov (KS) test with the null hypothesis that the distributions of DNA shape profiles derived 
from sequences containing high-scoring and low-scoring motifs are identical.  PCCs close to 1 
and large KS p values, therefore, indicate similar DNA shape profiles.   
 
Multiple linear regression 
To test if DNA sequence or shape are more similar between sequences containing high-scoring 
and low-scoring motifs, we trained two models based on L2-regularized multiple linear 
regression, one model using DNA sequence and the other model using four DNA shape 
features: MGW, ProT, Roll, and HelT. The sequence was encoded in binary features, whereas 
the shape features were normalized between 0 and 1, as previously described49. Using the 
sequence-based and shape-based models, values for the area under the receiver operating 
curve (AUROC) were calculated for the classification between sequences containing high-
scoring and low-scoring motifs and compared to the classification of sequences containing high-
scoring motifs and random sequences.  An AUROC value of 0.5 indicates a random classifier. 
 
Data availability 
Sequencing data have been deposited in GEO under accession number GSE67453.  
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Figure 1. Phenotypic characterization of strains bearing MNase-tagged TFs 
(a) Growth of free MNase and TF-MNase strains on YPD.  (b) Western blot analysis of H2A 
serine 129 phosphorylation (ɣH2A) in free MNase and TF-MNase strains. The ɣH2A/total H2A 
ratio is indicated under each lane.  (c) ChEC-seq workflow.  Yeast cells expressing a chromatin 
protein (CP) of interest genetically fused to MNase are permeabilized with digitonin and calcium 
is added to induce cleavage by CP-MNase.  Digested DNA is then purified and prepared for 
high-throughput sequencing.    
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Figure 2. Genome-wide mapping of TF binding with ChEC-seq 
Tracks of ChEC-seq signal for (a) Abf1, (b) Rap1, and (c) Reb1 along the indicated 200 bp 
segments of the genome.  The positions of Abf1 and Reb1 motifs detected within ORGANIC 
peaks and a Rap1 motif detected within a ChIP-exo peak is indicated.  Tracks of free MNase 
ChEC-seq signal at these genomic regions are also shown.  
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Figure 3. Temporal analysis of ChEC-seq data reveals distinct classes of TFBSs 
Heatmaps of raw Z-scored, clustered ChEC-seq signals and motif scores for (a) Abf1, (b) Rap1, 
and (c) Reb1 sites.  The sequence logos of the highest-scoring motif discovered by MEME-
ChIP and plotted with LogOddsLogo in fast and slow sites are displayed below the heatmap for 
the corresponding factor.   
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Figure 4. ChEC-seq peaks display enrichment in ChIP experiments.  
Average plots of Abf1 X-ChIP-seq and ORGANIC signal around high-scoring, low-scoring, and 
random sites.  Shaded areas represent 95% confidence intervals.  
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Figure 5. ChEC-seq sites display distinct cleavage profiles based on motif strength 
(a) Average plots of Abf1 cleavage around high-scoring and low-scoring Abf1 sites.  The 
boundaries of the motif match are indicated by vertical dotted lines.  (b) Same as (a) but for 
Rap1 sites.  (c) Same as (a) but for Reb1 sites.  Sites are oriented such that the best match to 
the consensus motif used for scoring is left to right on the top strand.  The y-axis scale has been 
expanded in the lower panels to reveal details in the low-scoring site profiles.  
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Figure 6. TF-MNase linker alteration modulates cleavage patterns 
a) Average plots of Abf1-SL cleavage around high-scoring and low-scoring Abf1 sites.  The 
boundaries of the motif match are indicated by vertical dotted lines.  (b) Same as (a) but for 
Reb1 sites.  (c) Average plots of Reb1 cleavage around high-scoring and low-scoring Reb1 
sites.  The y-axis scale has been expanded in the lower panels.  
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Figure 7. ChEC-seq-derived sites display distinctive DNA shape profiles for each TF 
regardless of the strength of a consensus motif. Average profiles of minor groove width 
(MGW), Roll, propeller twist (ProT), and helix twist (HelT) at high-scoring, low-scoring, and 
random (a) Abf1, (b) Rap1, and (c) Reb1 sites.   Plots were centered on the middle of the best 
match to the consensus motif used for scoring within each peak.  Schematic representations of 
shape features are shown to the left of the row of plots for the corresponding feature.  
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Figure 8. Characteristics of high-scoring and low-scoring ChEC-seq sites 
A schematic representation of two TFBSs with differing affinity for the cognate TF.  On the left, 
at a high-scoring site, a TF binds its cognate motif with high affinity, likely forming hydrogen 
bonds and other base-specific contacts, thus rapidly generating high levels of cleavage at 
specific sites.  On the right, at a low-scoring site, a TF scans along the genome by sliding and 
sampling shape-preferred low-scoring sites, likely without forming contacts with the functional 
groups of the bases, thus generating dispersed low-level cleavages around these sites. 
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