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Abstract15

Many key bacterial pathogens are frequently carried asymptomatically, and the emergence and16
spread of these opportunistic pathogens can be driven, or mitigated, via demographic changes17
within the host population. These inter-host transmission dynamics combine with basic18
evolutionary parameters such as rates of mutation and recombination, population size and selection,19
to shape the genetic diversity within bacterial populations. Whilst many studies have focused on20
how molecular processes underpin bacterial population structure, the impact of host migration and21
the connectivity of the local populations has received far less attention. A stochastic neutral model22
incorporating heightened local transmission has been previously shown to fit closely with genetic23
data for several bacterial species. However, this model did not incorporate transmission limiting24
population stratification, nor the possibility of migration of strains between subpopulations, which25
we address here by presenting an extended model. The model captures the observed population26
patterns for the common nosocomial pathogens Staphylococcus epidermidis and Enterococcus27
faecalis, while Staphylococcus aureus and Enterococcus faecium display deviations attributable to28
adaptation. It is demonstrated analytically and numerically that expected strain relatedness may29
either increase or decrease as a function of increasing migration rate between subpopulations, being30
a complex function of the rate at which microepidemics occur in the metapopulation. Moreover, it31
is shown that in a structured population markedly different rates of evolution may lead to32
indistinguishable patterns of relatedness among bacterial strains; caution is thus required when33
drawing evolution inference in these cases.34
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Introduction37

Bacteria colonizing multicellular hosts are organized in a hierarchy of local interconnected38
subpopulations forming a complex metapopulation as a whole. The subpopulations can range in39
scale from discrete intracellular colonies residing within a single host cell to pervasive strains40
circulating among hosts across cities, countries and continents(Fraser et al., 2009). Although most41
bacteria are harmless or even advantageous to their host organisms, some cause infectious disease,42
and understanding the evolutionary dynamics and the factors producing the genetic variation of43
pathogen populations is important for combatting disease emergence and spread.44

Previous work has demonstrated that a simple model of stochastic microepidemics arising from45
repeated sampling of localized transmission chains, can explain genotypic variation in local46
surveillance data from several common human pathogens(Fraser et al., 2005; Hanage et al., 2006),47
under an assumption that all isolates are equally fit (neutrality). In these studies, populations were48
characterized by a simple measure of the level of genotype relatedness known as the allelic49
mismatch distribution, where isolates with more shared alleles are considered to be more closely50
related. These comparisons have been widely used in classical ecology and population genetics and51
different patterns in the mismatch distribution can be associated with various factors contributing to52
the population structure, including: population growth(Harpending, 1994; Rogers and Harpending,53
1992), selection(Bamshad et al., 2002), and host contact network structure(Plucinski et al., 2011).54
The mismatch distribution has also been used to detect deviations from neutrality or constant55
population size(Mousset et al., 2004) and for inference about bacterial recombination rates(Hudson,56
1987).57

Population structure is one of the most studied phenomena in population genetics, both from the58
theoretical and applied perspective(Ewens, 2004; Hartl and Clark, 2007). Nevertheless in the case59
of bacteria limited knowledge exists about the effects of population structure arising from multiple60
host organisms such as human and different animal species or other, often poorly defined and61
understood, ecological patches. The main reason for this is simultaneously accounting for the major62
phenomena known to impact evolution of bacterial pathogen populations, such as recombination,63
clonal expansion, as well as migration, which for example may be caused by anthroponosis and64
zoonosis when multiple different host organisms are colonized by the same bacterial species. This65
hampers both theoretical derivation of limit results for such models and empirical fitting due to66
likelihood equations not being available in closed form. Fraser et al. solved the likelihood67
intractability arising from microepidemics by using a stochastic mixture distribution to account for68
the increase in the probability of sampling identical strains from the same transmission chain69
(Fraser et al., 2005). An analogous approximation technique has later been independently70
introduced in a more general ecological setting and it is known as the synthetic likelihood (Wood,71
2010).72

To improve understanding of the evolutionary dynamics of structured bacterial populations, we73
employ a simulation-based approach to neutral models that can account for the multiple stochastic74
forces impacting the genetic diversity that persists over time. By capturing both a heterogeneous75
span of microepidemics and migration events across the boundaries limiting transmission between76
subpopulations, we characterize the expected behavior of the metapopulations as a whole. This77
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provides an opportunity to explore the limits of inferring the vital model parameters from genetic78
surveillance data, and gives novel insight into the emergence of important human pathogens.79

Materials and Methods80

Model81

We consider an infinite alleles model for a finite haploid population with N individuals and discrete82
generations, where the reproduction takes place by random sampling of N individuals from the83
current generation to the next generation(Ewens, 2004). When the population is assumed structured,84
the subpopulation sizes are indexed by N1, N2. The parameters which may vary across85
subpopulations are indexed accordingly. Mutations are introduced per generation by a Poisson86
process with the rate θ = μNτ, where μ is the per locus mutation rate and τ is a scaling factor87
representing the generation time in calendar time. In all subsequent work we set τ = 1, unless88
otherwise mentioned. We assume that each individual is characterized by a genotype comprising89
alleles at L unlinked loci, where a mutation event at any locus always introduces a novel allele.90
Recombination between randomly chosen genotypes occurs at any locus according to a Poisson91
process with the rate defined as ρ = rNτ, where r is the rate per locus in relation to the mutation rate.92
In our simulations we simulated the population until allelic diversity reached equilibrium.93

Microepidemics are modeled as doubly stochastic events, with the frequency of new94
microepidemics per generation following a Poisson distribution with mean ωNτ. The size of each95
microepidemic has a Poisson distribution with mean γ. Each micropidemic is generated96
independently similar to the assumptions in Fraser et al. such that first a single individual is97
randomly chosen, after which its genotype is propagated to Y randomly chosen other individuals98
such that Y has Poisson distribution with mean γ. When the population is stratified, the99
microepidemic rates of the subpopulations are denoted by ω1, γ1 and ω2, γ2, respectively. Migration100
between subpopulations is a Poisson process with the rates τN1m12, τN2m21 per generation, where the101
first subindex of the parameters m12, m21 defines the source and the second subindex the target102
subpopulation. In migration events genotypes of a Poisson distributed number of randomly chosen103
individuals from the source population replace the genotypes of randomly chosen individuals in the104
target population. In our simulations the events were generated in the following order: reproduction105
mutation, recombination, microepidemics and migration at each generation. In all the reported106
results each subpopulation size was N = 2000, unless otherwise indicated. Medians and 95%107
confidence intervals for the allelic mismatch distributions were obtained by recording the108
population state every 100th generation after initial 500 generations until 20000 generations, and109
using these values to calculate the corresponding quantiles of the mismatch probabilities.110

Data and processing of genotype networks111

eBURST networks for the populations were produced using default settings(Feil et al., 2004).112
Turner et al. demonstrated that eBURST provides a robust recapitulation of the genetic relatedness113
of strains in a bacterial population based on the MLST resolution(Turner et al., 2007). To quantify114
details of the networks we calculated genotype degree distributions and distributions of geodesic115
distances between pairs of genotypes, which are standard measures of network topology(Goh et al.,116
2002).117
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MLST isolate data were accessed (September 15, 2014) from the following databases:118
http://efaecalis.mlst.net/ (E. faecalis), http://efaecium.mlst.net/ (E. faecium), http://saureus.mlst.net/119
(S. aureus), and (May 10, 2015) from: http://sepidermidis.mlst.net/ (S. epidermidis).120

121

122

Results123

We extended the microepidemic infinite alleles model with mutation and recombination rates124
previously proposed by Fraser et al. (Fraser et al., 2005) to incorporate population stratification,125
whereby genotypes are free to move between subpopulations at a defined rate. In addition, rather126
than using a single microepidemic parameter to describe localized transmission (Fraser et al., 2005),127
we introduced two parameters modulating the distributions of both the frequency and sizes of the128
transmission clusters in stochastic fashion. Our microepidemic infinite alleles migration model129
(MIAMI) can thereby encompass a wide variety of evolutionary and ecological parameter space.130
Since the resulting patterns of genetic variation reflect a complex function of several factors, we131
consider first a model without population stratification to delineate the influence of each of the132
model components.133

The frequency distribution of the number of allelic mismatches between pairs of genotypes is a134
classical approach to describe the distribution of genetic variation within a population (Fraser et al.,135
2005). Depending on the interplay of several factors, a population may either have a peaked or flat136
equilibrium distribution over the space of summary statistics, such as the allelic mismatch137
distribution (Fig. 1). For lower mutation rates, high r/m will lead to bell-shaped mismatch138
distributions, since recombination acts as a cohesive force keeping genetic variation together as a139
cloud in the space of possible genotypes(Fraser et al., 2007). The mismatch distribution becomes140
less sensitive to changes in recombination rate and the equilibrium distribution becomes more141
peaked when the mutation rate increases (Fig. 1).142

Fig. 2 shows the impact of heightened localized transmission (microepidemics) on genetic143
relatedness visualized using eBURST (Feil et al., 2004; Francisco et al., 2009) and the allele144
mismatch distribution. The rate of mutation and homologous recombination varies among bacterial145
pathgoens and this can have a marked effect on the population structure. To model the interplay of146
these two important factors at different levels, four evolutionary scenarios were considered: low147
mutation and recombination rate (A), mutation dominates (B), recombination dominates (C), both148
mutation and recombination effects are sizeable (D). If mutation dominates over recombination149
(Fig. 2,B), microepidemics do not lead to as pronounced changes in the relatedness pattern as in the150
situation where both mutation and recombination rates are low (Fig. 2,A). Interconnected clusters151
do emerge under a high rate of recombination, often spanning across large parts of the entire152
population (Fig. 2,C). The variability of the mismatch distribution at the equilibrium becomes153
elevated under all regimes of baseline parameter values when microepidemics occur at a frequent154
rate, as illustrated by the broader confidence intervals (Fig. 2,A-D). Both the frequency and size155
distribution of the individual microepidemics influence how much probability mass is shifted156
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towards identical genotypes, but the change is also influenced by mutation and recombination rate157
parameters (Supplementary Fig. 1).158

The effect of migration rate on the allelic mismatch distribution within a subpopulation is a159
complicated function of mutation, recombination and microepidemic rates in a structured160
population, even if there are only two subpopulations (Fig. 3). We studied the combinations in161
which a subpopulation undergoes microepidemic expansions at a moderate rate and is coupled with162
another subpopulation where the rate varies from zero to twice that of the first subpopulation. An163
increase of the migration rate between the two subpopulations by an order of magnitude leads either164
to a substantial decrease of the genotypic diversity (Supplementary Fig. 2, i), an increase in the165
genotypic diversity (Supplementary Fig. 2, a), or to no change at all (Supplementary Fig. 2, e),166
depending on whether the subpopulation considered as a source experiences more, less, or an equal167
amount of the microepidemics, compared with the target subpopulation. The effect of migration168
remains equally complex for the between-subpopulations allelic mismatch distribution, which is169
insensitive to a change in the migration rate by an order of magnitude for many combinations of170
subpopulation dynamics (Supplementary Fig. 3). Population stratification combined with171
asymmetric migration rates can produce patterns of relatedness which are otherwise unlikely under172
the neutral model (Supplementary Fig. 4). For example, in all our simulations a characteristic U-173
shaped allelic mismatch distribution only arose when the migration rate was highly asymmetric and174
one subpopulation experienced considerable microepidemics while the other one had none175
(Supplementary Figs. 5,6).176

To obtain an analytical insight to the joint effect of microepidemic and migration rates on genotypic177
diversity, we considered how the equilibrium probability of identical genotypes is affected by178
introducing a change to the subpopulation based on either mechanism. Fraser et al. derived the179
equilibrium probability of identical genotypes at L unlinked loci, under the assumption of no180

microepidemics(Fraser et al., 2005), which equals ଴௅݌ = ଵା௅ఘ௣బಽషభ௣బభ

ଵା௅ఏା௅ఘ
. Here θ = 2μN, where μ is the181

per locus mutation rate and N is the population size. Furthermore, the recombination rate is defined182
as ρ = 2rN, where r is the rate per locus in relation to the mutation rate. Since this extension of the183
classical equilibrium result by Kimura to allow for recombination is based on the assumption that in184
any generation only a single event occurs, Fraser et al. handled the effect of microepidemics on a185
population at equilibrium implicitly by introducing a probabilistic mixture where a single parameter186
represents the increase in the probability ଴௅ caused by microepidemics. Consistent with this, we187݌
quantify the change in the probability of identical strains by evaluating the expectation of the effect188
of microepidemic and migration events when allowed at the equilibrium of a simpler population189
experiencing only mutation and recombination events.190

Consider first the effect of stochastic microepidemics occurring in a single generation. The expected191
number of identical genotype pairs arising from them equals ߛ) + 1)ଶܰ߱ , where ω is the scaled192
rate at which microepidemics occur per generation and γ is the expected size of each microepidemic193

(Methods). The expected contribution to the probability of homozygous strains is then (ఊାଵ)మேఠ

ቀே
ଶ
ቁ

,194

which is an increasing function of both the expected size and rate of microepidemics. Next,195
consider two subpopulations of sizes N1, N2, which at equilibrium become connected with migration196
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rates N1m12, N2m21, respectively, in addition to the effect of introducing microepidemics (Methods).197
Each subpopulation is assumed to have its own set of parameters ଵଶߛ ଵܰ߱ଵ, ଶଶߛ ଶܰ߱ଶ governing the198
extent of microepidemics. Assume now that the subpopulations are of equal size N1 = N2. Then, the199
expected contribution to the probability of identical strains in subpopulation 1 by an increase in the200
migration rate m21 depends on whether ଵଶߛ ଵܰ߱ଵ > ଶଶߛ ଶܰ߱ଶ or ଵଶߛ ଵܰ߱ଵ < ଶଶߛ ଶܰ߱ଶ, since larger and201
more frequent microepidemics in subpopulation 2 will increase the probability that the genotypes202
migrating to subpopulation 1 are identical to each other. Conversely, increased migration from203
subpopulation 2 will have expected effect of decreasing the probability when the extent of204
microepidemics in subpopulation 2 is smaller than in subpopulation 1. A difference in the sizes of205
the subpopulations can further amplify these effects since the rates of events are relative to them.206

Global surveillance data based on MLST typing for several common nosocomial bacterial207
pathogens (S. aureus, S. epidermidis, E. faecalis, E. faecium) generally match well with the208
expected shape of the allelic mismatch distribution for the considered archetypical population types209
(Fig. 4). eBURST diagrams provide additional insight into the structure of these populations (Fig.210
5). S. aureus is known to have a very low recombination rate(Everitt et al., 2014) and its population211
structure is mainly shaped by a combination of mutation rate and intensive clonal expansion of212
distinct genotypes (Fig. 5, C). Conversely, its sister species S. epidermidis displays the bell-shaped213
mismatch distribution typical for organisms with high recombination rate(Meric et al., 2015) (Fig.214
4, D) and a large connected network of related genotypes (Fig. 5, D). The numerous distinct clusters215
with short distances to the ancestral genotype observed in S. aureus population (clonal complexes216
with single-locus variants) were not accurately predicted by the model, despite of an extensive217
search over the parameter space. The main deviance arose from the inability to recapitulate a large218
number of descendant genotypes connected with each single ancestral genotype. The most closely219
matching neutral model predicts instead invariably that several further branches emerge from these220
descendants during the timescale at which genotype clusters themselves emerge.221

Contrasting the population structures of E. faecium and E. faecalis reveals marked differences,222
where E. faecium forms large networks of related genotypes characteristic of highly223
recombinogenic bacteria (Fig. 5, B) (Turner et al., 2007), despite a relatively low estimated224
recombination rate(de Been et al., 2013). E. faecalis shows only limited clustering of genotypes225
(Fig. 5, A) and a mismatch distribution typical for a population dominated by mutation, with a226
slight increase of identical genotype pairs due to localized hospital transmission (Fig. 4, A).227

The model parameter configurations leading to matching characteristics between the observed and228
simulated population structure are given in Table 1 for the two species where the neutral model re-229
capitulates the surveillance data well (S. epidermidis, E. faecalis). We compared genotype networks230
using the standard measures of degree distribution and geodesic distances between nodes and found231
a considerable agreement between the data and the simulations (Table 1, Supplementary Fig. 7,8).232

Table 1. Population characteristics of genotype relatedness for real and simulated data.233

S. aureus S. epidermidis E. faecalis E. faecium
N commensal 555 120 225 126
N hospital 543 264 1003 1534
Mean degree 3.14 1.95 1.12 4.03
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Max degree 34 10 9 47
Mean geodesic
distance

2.15 3.54 1.82 4.12

Max geodesic
distance

5 7 5 12

Simulation settings  Not matching ω1 = 45, γ1 = 30,
ω2 =10 , γ2 =10 ,
m12 =0.01 , m21
=0.001 , θ= 0.0704
, r/m =2

ω1 =10 , γ1 = 20,
ω2 =15 , γ2 = 20,
m12 =0.001, m21 =
0.001, θ=0.198,
r/m =1

Not matching

Mean degree 1.67 1.08
Max degree 20 13
Mean geodesic
distance

3.1 1.94

Max geodesic
distance

8 6

234

Discussion235

Previously described neutral models specified by mutation and recombination rate in combination236
with microepidemics show a close fit to observed genotype survey data for several commensal and237
pathogenic bacteria. This holds true for both short-term population evolution dominated by the local238
dynamics of microepidemics (Fraser et al., 2005; Hanage et al., 2006) and for longer time scales239
where recombination acts as a cohesive force keeping populations together(Fraser et al., 2007).240
However, there is limited knowledge about how varying levels of isolation in host organisms, such241
as human and different animal species (Fraser et al., 2009), might influence the evolutionary242
dynamics and lead to structured populations. Here we introduce a neutral model incorporating243
microepidemics and migration, which mimics a situation where ecological factors limit244
transmission between subpopulations. By comparing the model predictions with MLST data large245
scale genotyping surveys of four major human pathogens we find that for two species the246
population structure is well delineated by the neutral assumptions, while different types of247
deviations from the model predictions are observed for the remaining two.248

249

The observed differences between E. faecium and E. faecalis, which colonize the gastrointestinal250
tract, are particularly interesting since mutation and recombination rates have been estimated to be251
similar for the two species based on both MLST and whole-genome data(de Been et al., 2013; Vos252
and Didelot, 2009). Moreover, they are responsible for roughly equal frequencies of nosocomial253
infections worldwide (Tedim et al., 2015; Willems et al., 2012). E. faecalis population structure254
bears the hallmarks of either a high rate of mutation or drift (or both). E. faecalis is known to255
colonize the vast majority of normal hosts within a population (Tedim et al., 2015), and therefore256
can be considered as part of the physiological commensal microbiota of humans and many other257
animals. Certainly, its population structure could be reflective of the evolutionary dynamics of a258
generalist organism which regularly experiences a high level of drift and gene flow between259
different host species.260
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On the basis of the predictions made by our model, E. faecium would need to have substantially261
higher recombination rate than E. faecalis to lead to the observed pattern of genotype relatedness262
under neutrality. Since there is evidence of the recombination rate not being substantially higher in263
E. faecium, the only possibility for the large genotype networks to arise under our neutral model264
would be unobserved population stratification. If unobserved sources experiencing very large clonal265
expansions contributed continuously to the hospital subpopulation of E. faecium, the expected266
allelic mismatch distribution would bear the characteristics of a subpopulation with high267
recombination rate (Supplementary Fig. 3, i). It is known that intensive farming and animal268
production practices provide opportunities for rapid clonal expansion of bacterial strains colonizing269
the animal hosts. Given the known connection between strains from domesticated animals and the270
hospital associated E. faecium (Lebreton et al., 2013; Willems et al., 2012), it is plausible that these271
clonal expansions could manifest themselves as connected networks in the human hospital272
subpopulation. However, the extensively connected network of E. faecium genotypes would still273
remain unlikely unless the rate of recombination was substantial. An alternative explanation for the274
extensive genotype relatedness is a marked deviation from neutrality, such that the connected275
strains represent either a subpopulation adapted to the hospital environment, consistent with276
previous studies(Lebreton et al., 2013; Willems et al., 2012), or an adaptation to different host277
subpopulations (Faith et al., 2015). Further dense sampling will be required to characterize278
mechanistically the role of hospital adaption for creating the observed relatedness patterns of E.279
faecium strains.280

S. aureus and S. epidermidis frequently colonize the skin, soft tissue and the nares of human hosts,281
while also being ubiquitous in a range of animals. However, the overall population density and the282
proportion of human or animal hosts colonized by S. epidermidis largely exceed that of S. aureus,283
so that S. epidermidis, but not S. aureus, can be considered of a physiological commensal, part of284
the normal microbiota. The human S. aureus population is characterized by several genetically285
distinct clonal complexes, each sharing a single ancestral genotype. Such a population can arise286
under the neutral mutation/drift driven evolutionary trajectory combined with a high rate of287
localized transmission. In this scenario clonal complexes appear and proliferate for a time, to be288
replaced by others arising through genetic drift at the operational timescale of decades or longer.289
This has been previously described as an ‘epidemic clonal’ structure(Smith et al., 2000).290

We may consider that E. faecalis and S. epidermidis,  members of the normal microbiota,  have an291
“endemic polyclonal structure”, where endemicity is assured by a highly frequent inter-host292
migration (both vertical and horizontal), resulting in a minimal adaptive stress in colonization of293
most hosts. On the contrary, E. faecium and S. aureus are less-adapted organisms to the generality294
of potential hosts, thus requiring local adaptation, and migration being dependent of this local295
success, an “epidemic clonal structure”. Obviously, in hospitals due to the homogenization of296
colonizable hosts (age, antibiotic exposure), and facilitation of host-to-host migration (hospital297
cross-colonization, microepidemics) E. faecium and S. aureus might appear as “locally endemic”,298
and therefore are expected to locally evolve towards a more complex population structure.299

Both the commensal and hospital subpopulations of S. epidermidis display a pattern of genetic300
relatedness typical of a population where recombination is the dominant force generating population301
structure. An exception to this can be seen in the higher fraction of maximally distinct commensal302
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genotypes, which could plausibly arise when novel strains infrequently migrate to the human303
commensal population from several non-overlapping zoonotic sources(Meric et al., 2015).304
However, our model was not able to accurately predict the persistence of the clonal complex305
structure observed for S. aureus, which may be reflecting a deviance from neutrality.306

The complexities of within- and between-subpopulation strain dependence, and the extent of307
localized transmission and migration across ecological patch boundaries makes formal statistical308
inference about microepidemics and migration rates difficult. A particular challenge is that, when a309
population evolves within a drift dominated model, it is unlikely that reliable estimates of the310
parameters driving the population dynamics can be obtained, since observed outcomes of the311
population structure vary substantially. Similarly, as the consequences of migration events are312
dependent on other stochastically varying factors across the subpopulations, high migration rates313
may lead to a pattern of relatedness indistinguishable from those generated by low rates. It is314
possible that these issues could be resolved using coalescent-based models developed mainly for315
eukaryotic populations(Beerli and Felsenstein, 1999; Beerli and Felsenstein, 2001; Choi and Hey,316
2011; Hey and Machado, 2003; Hey and Nielsen, 2004). However, robust generalization of such317
models is challenging due to the specific features of bacterial metapopulations which, in general,318
evolve by a complex combination of the stochastic forces of mutation, recombination, clonal319
expansion and host switches. Another obstacle for using coalescent-based methods is the large320
number of hosts that need to be explicitly considered in studies on large-scale bacterial pathogen321
populations.322

It is evident that a limited number of neutrally evolving core genes, such as those typically used in323
the MLST typing schemes, limits the scope of models that can be fitted to genetic surveillance data.324
However, our results imply that some evolutionary scenarios would remain unidentifiable even if325
housekeeping loci were considered at the whole-genome scale, in particular if the data are mainly326
cross-sectional even if densely covering the host population. Hence, one of our main conclusions is327
that the optimal data for studying dynamics in this fashion are densely sampled longitudinal328
surveillance data covering evolutionary events at whole-genome level(Croucher et al., 2013). This329
highlights the importance of easy access online repositories of genomic variation as an extension of330
the currently existing MLST databases and that sample metadata should be an equally important331
focus of the data sharing principles. Using such a strategy in the near future may enable important332
model-based predictions about the dynamics of existing and emerging pathogens that pose a333
considerable global challenge for human and animal health.334
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Figure legends427

Fig. 1. Allelic mismatch distributions for combinations of mutation and recombination rates in a population428
with N = 3000. Bold line in green shows the mean mismatch probability over 20000 generations, sampled at429
intervals of 100 generations. The green shaded area shows the 95% confidence interval and the colored lines430
are examples of mismatch distributions at random time points. Vertical axis in each panel shows the431
probability mass associated with the points of the curves across the values on the horizontal axis.432
Distributions are shown as continuous curves for visual clarity.433

Fig. 2. eBURST networks and mismatch distributions for a population without (grey) and with (yellow)434
microepidemics, where ω = 27, γ = 16. The 95% confidence intervals are shown by shaded areas and are435
defined as in Fig. 1. The mutation and recombination parameters used are: 0.0011, 1 (A), 0.0088, 1 (B),436
0.0011, 8 (C), 0.0088, 8 (D).437
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Fig. 3. Schematic illustration of the combined effect of microepidemics and migration. The population on the438
left is unstratified, in which case increasing rate (ω) and size (γ) of microepidemics lead to decreased genetic439
variation. In a stratified population with two subpopulations (P1, P2) the effect of increasing microepidemics440
(ω1, γ1) on genetic diversity in subpopulation P1 depends both on the microepidemics in subpopulation P2441
(ω2, γ2) and on the migration rate (m21). The case with m21 = 0 leads to identical decrease of genetic variation442
as in an unstratified population. The notation “<<” is used to indicate that the parameters on the left side of443
the double inequality are much smaller than those on the right side.444

Fig. 4. Mismatch distributions of commensal and hospital subpopulations of four common nosocomial445
bacterial pathogens. The right-most column shows the between-subpopulation mismatch distributions.446

Fig. 5. eBURST networks of the isolates used to calculate the mismatch distribution in Fig. 4; E. faecalis447
(A), E. faecium (B), S. aureus (C), S. epidermidis (D).448
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