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Abstract

Given genomic variation data from multiple individuals, computing the likelihood of complex
population genetic models is often infeasible. To circumvent this problem, we introduce here a
novel likelihood-free inference framework by applying deep learning, a powerful modern technique
in machine learning. In contrast to Approximate Bayesian Computation, another likelihood-free
approach widely used in population genetics and other fields, deep learning does not require a
distance function on summary statistics or a rejection step, and it is robust to the addition of
uninformative statistics. To demonstrate that deep learning can be effectively employed to estimate
population genetic parameters and learn informative features of data, we focus on the challenging
problem of jointly inferring natural selection and demography (in the form of a population size change
history). Our method is able to separate the global nature of demography from the local nature of
selection, without sequential steps for these two factors. Studying demography and selection jointly
is motivated by Drosophila, where pervasive selection confounds demographic analysis. We apply
our method to 197 African Drosophila melanogaster genomes from Zambia to infer both their overall
demography, and regions of their genome under selection. We find many regions of the genome
that have experienced hard sweeps, and fewer under selection on standing variation (soft sweep)
or balancing selection. Interestingly, we find that soft sweeps and balancing selection occur more
frequently closer to the centromere of each chromosome. In addition, our demographic inference
suggests that previously estimated bottlenecks for African Drosophila melanogaster are too extreme,
likely due in part to the unaccounted impact of selection.
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Introduction

With the advent of large-scale whole-genome variation data, population geneticists are currently
interested in considering increasingly more complex models. However, statistical inference in this
setting is a challenging task, as computing the likelihood of a complex population genetic model is a
difficult problem both theoretically and computationally.

Approximate Bayesian Computation (ABC) [4,48] is a likelihood-free inference method based
on simulating data and comparing their summary statistics. (A more detailed description of the
framework is provided below.) This approach has been used to study various complex population
genetic models (e.g., [5,27,47]) for which likelihood computation is prohibitive. Partly due to several
influential theoretical works [3, 6, 10, 15, 29, 39, 44, 57], the popularity of ABC has grown rapidly
over the past decade. ABC’s main advantages are that it is easy to use and is able to output a
posterior distribution. There are a few challenges, however: 1) ABC uses a rejection algorithm, so
the simulated data are not used optimally. 2) As such, training an ABC method requires a very
large amount of simulated data. 3) The choice of a distance metric on summary statistics is an
important consideration in designing an efficient ABC algorithm. 4) ABC suffers from the “curse
of dimensionality,” with decreasing accuracy and stability as the number of summary statistics
grows [2].

In this paper, we introduce an alternate likelihood-free inference framework for population
genomics by applying deep learning, which is an active area of machine learning research. To
our knowledge, deep learning has not been employed in population genomics before. A recent
survey article [28] provides an accessible introduction to deep learning, and we provide a high-level
description below. Our general goal in this paper is to demonstrate that statistical methods based
on deep learning can allow more accurate inference of complex models than previously possible. As
a concrete example, we consider models of non-equilibrium demography and natural selection, for
which multi-locus full-likelihood computation is prohibitive.

To our knowledge, ABC has not been previously applied to the challenging problem of jointly
inferring demography and selection. Several machine learning methods have been developed for
selection, but they mostly focus on classifying the genome into neutral versus selected regions.
Examples include methods based on support vector machines (SVMs) [45,46,51] or boosting [36,37,49].
Often these methods demonstrate robustness to different demographic scenarios, but do not explicitly
infer demography.

The demographic models considered in this paper are restricted to a single population with
time-varying effective population size, but the overall framework presented here can be applied to
more general demographic models. Many methods have been developed to infer ancestral population
size changes, including PSMC [34], diCal [56, 58], and MSMC [53]. These methods assume that
selection would not significantly bias the results. This is perhaps true for humans, but would not be
true for Drosophila, for which selection seems rather ubiquitous throughout the genome.

A few previous works have addressed both population size changes and selection. Galtier et
al. [16] developed a likelihood-based method for distinguishing between a bottleneck and selection.
They applied their method to Drosophila data to conclude that a series of selective sweeps was more
likely than a bottleneck, but did not explicitly infer parameters for both selection and demography.
In their method, Galtier et al. assumed that demographic events affect the entire genome, whereas
selection is a local phenomenon. In contrast, Gossmann et al. [20] estimated the effective population
size locally along the genome, and reported that it is correlated with the density of selected sites.
To make our results as easily interpretable as evolutionary events as possible, we estimate global
effective population size changes.

To test our method, we simulate data under a variety of realistic demographies for Drosophila
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melanogaster. For each demography, we then simulate many regions with different selection
parameters. We then apply our tailored deep learning method using a large number of potentially
informative summary statistics. We demonstrate that parameters can be learned more accurately
with deep learning than with ABC, in addition to being able to interpret which statistics are making
the biggest contributions. After training our deep network, we also apply it to African Drosophila
melanogaster data to learn about its effective population size change history and selective landscape.

ABC background
Rejection-based methods have been used since the late 1990’s (see [48,60]) to estimate population
genetic parameters when the likelihood is difficult to compute. Early improvements to ABC quickly
helped make it a popular method for a variety of scenarios (see [4] for a good introduction). ABC
works by simulating many datasets under a prior for the parameters of interest. Then these datasets
are reduced to a vector of summary statistics that are ideally informative for the parameters. The
summary statistics that are closest to the summary statistics for the target dataset are retained, and
the corresponding parameters used to estimate the desired posterior distributions. The definition of
“close” is usually determined by the Euclidean distance on the summary statistic vectors, which can
create biases if statistics are not properly normalized or have different variances.

Another problem with ABC is its inability to handle uninformative or weakly informative
summary statistics. Intuitively, this is because these statistics add noise to the distance between two
datasets; two datasets simulated under similar parameters may have some uninformative statistics
that are far apart, or two datasets simulated under very different parameters may have some
uninformative statistics that are close together. The distance can be further biased by differences
in the magnitude of the summary statistics. Another major problem with ABC is the rejection
step, which does not make optimal use of the datasets which are not retained. The more statistics
and parameters used, the more datasets must be simulated and rejected to properly explore the
space, making the interaction between these two issues even more problematic. One final issue with
ABC is the black-box nature of the output. Given the distances between the simulated datasets and
the target dataset, and the posterior, there is no clear way to tell which statistics were the most
informative.

To tackle the problem of adding summary statistics, many methods for dimensionality reduction or
selecting summary statistics wisely have been proposed (see [1,15,29,44], and [7] for a dimensionality
reduction comparison). However, simple reductions cannot always learn subtle relationships between
the data and the parameters. Expert pruning of statistics helps some methods, but given the lack
of sufficient statistics, valuable information can be eliminated, especially when trying to infer many
parameters. Blum and François [6] suggested performing a dimensionality reduction step on the
summary statistics via a neural network similar to Fig. 1. This reduction is similar in spirit to the
work presented here, although there are many algorithmic and application differences.

To address the problem of rejecting datasets, different weighting approaches have been proposed
(see [6] for a good example of how the estimation error changes as fewer datasets are rejected).
The idea is to keep more datasets, but then weight each retained dataset by the its distance to the
target dataset. However, few approaches utilize all the datasets in this way, and the most popular
implementation of ABC (ABCtoolbox, [61]) typically still rejects most of the simulated datasets by
default.
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A brief introduction to deep learning
Deep learning has its beginnings in neural networks, which were originally inspired by the way
neurons are connected in the brain [25]. Neural networks have been studied for over 60 years and a
huge body of literature exists on the topic. Neural networks are typically used to learn complex
functions between input data and output parameters in the absence of a model. While standard
regression and classification methods involve fitting linear combinations of fixed basis functions, a
neural network tries to learn basis functions (usually non-linear) appropriate for the data. A neural
network architecture consists of multiple layers of computational units (nodes), with connections
between the layers but not between nodes within a layer. Within a layer, each node computes a
transformation (usually non-linear) of the outputs from the previous layer. Illustrated in Fig. 1 is a
simple feed-forward neural network with a single hidden layer. The phrase “deep learning” refers to
algorithms for learning deep neural network architectures with many hidden layers.

The universal approximation theorem [8, 26] states that any continuous function on compact
subsets of Rn can be uniformly approximated by a feed-forward neural network with a single
hidden layer, provided that the number of nodes in the hidden layer is sufficiently large and
the transformation (called the activation function) associated with each node satisfies some mild
conditions. However, it can be challenging to learn the weights of such a network and to interpret
the hidden layer. So as learning problems became more complex, it was desirable to train networks
with more hidden layers. Since their introduction over 30 years ago, deep architectures have proved
adept at modeling multiple levels of abstraction. However, they were notoriously difficult to train
since their objective functions are non-convex and highly non-linear, and the level of non-linearity
increases with the number of layers in the network. A major breakthrough was made in 2006 when
Hinton and Salakhutdinov [23] showed that a deep feed-forward neural network can be trained
effectively by first performing unsupervised “pretraining” one layer at a time, followed by supervised
fine-tuning using a gradient-descent algorithm called back-propagation [52]. (Simply put, pretraining
provides a good initialization point for non-convex optimization.) They applied their learning
algorithm to dimensionality reduction of images and achieved substantially better results than
PCA-based methods.

Following the work of Hinton and Salakhutdinov, deep learning has been applied to various
challenging problems in computer science over the last 5 years, making groundbreaking progress.
Deep learning broke long-standing records for accuracy that had been set by approaches based on
hand-coded rules. Well-known examples include automatic speech recognition (transforming spoken
words into typed text) [21,40] and computer vision (automatically classifying images into different
categories and tagging objects/individuals in photos) [31].

Many variations have been developed, including dropout, which attempts to learn better and
more robust features of the data (see [9, 24]). Deep learning has also been applied to problems
in neuroscience [30] and computational biology [33,50,62], but has not been used for population
genetics before. We demonstrate here that deep learning provides solutions to some of the problems
with ABC, and can provide an alternative to traditional likelihood-free inference in population
genetics. It could also be used to select optimal statistics for ABC or another method.

Results

In this paper, we describe how we apply deep learning to the challenging problem of jointly estimating
demography and selection (see [35] for a recent review of this topic). One reason why this problem
is difficult is that demography (for example, a bottleneck in population size) and selection can leave
similar signals in the genome. Untangling the two factors directly has rarely been attempted; most
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methods that estimate selection try to demonstrate robustness to demographic scenarios, rather than
estimating demographic parameters jointly with selection. Our analysis is motivated by Drosophila,
where previous demographic estimates may have been confounded by pervasive selection, such as
the demographic history inferred by Duchen et al. [12]. The reverse has occurred as well, with
selection estimates being confounded by demography [19]. See [55] for a more thorough discussion
of the role selection plays in the Drosophila genome. In what follows, we first test the performance
of our method on simulated data and then apply it to analyze 197 Drosophila melanogaster genomes
from Zambia, Africa [32].

Simulating data
To create a simulated dataset that is appropriate for our scenario of interest, we first define the
parameters we would like to estimate. For simplicity, we consider piecewise-constant population size
histories with three epochs: a recent population size N1, a bottleneck size N2, and an ancient size
N3. Further, we define a genomic region as belonging to 4 different selection classes: no selection
(neutral), positive directional selection (hard sweep), selection on standing variation (soft sweep),
and balancing selection. See [13] for a more complete analysis of the different types of selection in
Drosophila. To accurately reflect that demography affects the entire genome while selection affects
a particular region, we simulate many genomic regions under the same demographic history, but the
selection class for each region is chosen independently. See Fig. 2 for a simplified illustration of the
data.

To simulate data, we used the program msms [14]. To make our simulated data as close to the
real data as possible, we simulated n = 100 haplotypes, and correspondingly downsampled the
Zambia Drosophila melanogaster dataset to match. We repeated the following procedure 2500 times.
First we selected three population sizes for the demographic model, then simulated 160 regions with
these sizes, 40 for each selection scenario. Each region was 100 kb, with the selected site (if present)
occurring randomly in the middle 20 kb of the region. We used a baseline effective population
size Nref = 100, 000, a per-base, per-generation mutation rate µ = 8.4× 10−9 [22], and a per-base,
per-generation recombination rate r equal to µ, as inferred by PSMC [34]. We used a generation
time of 10 generations per year. Based on the population size change results of PSMC, we chose the
time change-points for demographic history to be t1 = 0.5 and t2 = 5 in coalescent units. Scaled
effective population size parameters λi := Ni/Nref and their prior distributions are below:

1. Recent effective population size scaling factor: λ1 ∼ Unif(3, 14).

2. Bottleneck effective population size scaling factor: λ2 ∼ Unif(0.5, 6).

3. Ancient effective population size scaling factor: λ3 ∼ Unif(2, 10).

For the selection classes, the different types are shown below:

• Class 0, neutral: no selection, neutral region.

• Class 1, hard sweep: positive selection on a de novo mutation (i.e., hard sweep). For the
selection coefficient, we used s ∈ {0.01, 0.02, 0.05, 0.1}, with 10 regions for each value of s.
The onset of selection was chosen to be 0.005 in coalescent units, which provided sweeps at a
variety of different stages of completion at the present time. We discarded datasets where the
frequency of the selected allele was 0 (early loss of the beneficial mutation due to drift), but
for a large fraction of datasets, the selected allele had not yet fixed.
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• Class 2, soft sweep: positive selection on standing variation (i.e., soft sweep). The selection
coefficients and selection start time were chosen as in the hard sweep scenario, but now the
initial frequency of the selected allele was chosen to be 0.001.

• Class 3, balancing: heterozygote advantage, balancing selection. The selection start time
and selection coefficients were chosen in the same fashion as Class 1.

Using this strategy, we simulated 2500 different demographic histories, with 160 regions for each
one, for a total of 400,000 datasets. To build 160 regions for each demography, we simulated 40
datasets for each of the classes above.

Transforming input data into summary statistics
For many deep learning applications, the raw data can be used directly (the pixels of an image, for
example). Unfortunately, we currently cannot input raw genomic data into a deep learning method.
Similarly to ABC, we need to transform the data into summary statistics that are potentially
informative about the parameters of interest. Unlike ABC, however, deep learning should not be
negatively affected by correlated or uninformative summary statistics. Thus we sought to include a
large number of potentially informative summary statistics of the data. To account for the impact
of selection, we divided each 100 kb region into three smaller regions: 1) close to the selected site
(40-60 kb), 2) mid-range from the selected site (20-40 kb and 60-80 kb), and 3) far from the selected
site (0-20 kb and 80-100 kb). These regions are based off of the simulation scenario in Peter et
al. [47], and shown more explicitly in Fig. 3. Within each of these three regions, we calculated the
following statistics, except where noted.

For all the statistics described below, n is the haploid sample size. In the case of simulated data,
n = 100. For the real data, we had 197 samples; within each 100 kb region we sorted the samples
by missing data, then retained the 100 most complete samples, except where noted.

1. Number of segregating sites within each smaller region, S. Since all of the statistics must be
in [0, 1], we normalized by Smax = 5000 (any S > Smax was truncated): 3 statistics.

2. Tajima’s D statistic [59], computed as follows

D =
π − S/a1√

V̂ar(π − S/a1)
,

where π is the average number of pairwise differences between two samples, and a1 =
∑n−1

i=1 1/i.
We normalized by Dmin = −3.0 and Dmax = 3.0, again truncating the rare statistic outside
this range: 3 statistics.

3. Folded site frequency spectrum (SFS): ηi is the number of segregating sites where the minor
allele occurs i times out of n samples, for i = 1, 2, · · · , bn/2c. For the real data, for each
segregating site, enough samples were included to obtain 100 with non-missing data. If that
was not possible for a given site, the site was not included. To normalize the SFS, we divided
each ηi by the sum of the entries, which gives us the probability of observing i minor alleles,
given the site was segregating: 50 · 3 = 150 statistics.

4. Length distribution between segregating sites: let Bk be the number of bases between the k
and k + 1 segregating sites. To compute the distribution of these lengths, we define J bins
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and count the number of lengths that fall into each bin:

dBET
j =

|k ∈ {1, 2, · · · , S − 1} : Bk ∈ bin j|
S

.

We choose J = 16 equally spaced bins, the first starting at 0 and the last starting at 300:
16 · 3 = 48 statistics.

5. Identity-by-state (IBS) tract length distribution: for each pair of samples, and IBS tract is a
contiguous genomic region where the samples are identical at every base (delimited by bases
where they differ). For all pairs, let L be the set of IBS tract lengths. In a similar fashion
to the length distribution statistics, we define M bins, and count the number of IBS tract
lengths that fall into each bin:

dIBS
m =

|` ∈ L : ` ∈ bin m|
|L|

.

We choose M = 30 equally spaced bins, the first starting at 0 and the last starting at 5000:
30 · 3 = 90 statistics.

6. Linkage disequilibrium (LD) distribution: LD is a measure of the correlation between two
segregating sites. For example, if there was no recombination between two sites, their
alleles would be highly correlated and LD would be high in magnitude. If there was infinite
recombination between two sites, they would be independent and have LD close to 0. For two
loci, let A, a be the alleles for the first site, and B, b be the alleles for the second site. Let pA
be the frequency of allele A, pB be the frequency of allele B, and pAB be the frequency of
haplotype AB. Then the linkage disequilibrium is computed by

DAB = pAB − pApB.

Here we compute the LD between pairs of sites, where one site is in the “selected” region, and
the other is in each of the three regions (including the selected region). Then we create an LD
distribution similar to the IBS distribution above, using 16 bins, with the first bin ending at
−0.05, and the last bin starting at 0.2: 16 · 3 = 48 statistics.

7. H1, H12, and H2 statistics, as described in Garud et al. [17]. These statistics help to distinguish
between hard and soft sweeps, and are calculated in the selected (middle) region only: 3
statistics.

This gives us a total of 345 statistics.

Comparison with ABCtoolbox
First we wanted to compare the performance of deep learning with that of ABC. We used the
popular ABCtoolbox [61], using the same training and testing datasets as for deep learning. However,
since ABC is not well suited to classification, we restricted this analysis to estimating (continuous)
demographic parameters only. For ABC, the training data represents the data simulated under the
prior distributions (uniform in our case), and each test dataset was compared with the training data
separately. We retained 5% of the training datasets, and used half of these retained datasets for
posterior density estimation. Overall, we used 75% of the datasets for training and 25% for testing.
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We tested two scenarios, one with the full set of summary statistics (345 total), and the other
with a reduced set of summary statistics (100 total). For the reduced set of summary statistics, we
chose statistics which seemed to be informative: the number of segregating sites, Tajima’s D, the
first 15 entries of site frequency spectrum, H1, and the distribution of distances between segregating
sites. The results are shown in Table 1, which suggest that deep learning produces more accurate
estimates of the recent population size (N1) than does ABCtoolbox, whereas they have comparable
accuracies for more distant past sizes.

Results for demography and selection on simulated data
Moving to the demography and selection scenario, we used the dataset and summary statistics
described above, which contains 400,000 datasets total. We used 75% for training and 25% for
testing. In Table 2, we show the population size results for a network with 3 hidden layers of sizes
25, 25, and 10. The best results were found when we averaged the statistics for all of the datasets
with the same demography (160 datasets, or “regions” each).

Table 3 shows the results for an example demography, with 95% confidence intervals (CI)
calculated from the estimates for each (predicted) neutral region within the genome. In this example
(and more generally), the most ancient size N3 is the least accurately estimated. When considering
a single dataset, there is not always a clear winner among our three prediction methods. Overall,
the average statistic method is usually the most accurate, followed by the neutral regions method.

To analyze the selection results, we calculated a confusion matrix in Table 4 to show which
datasets of each class were classified correctly, or misclassified as belonging to a different class. Our
most frequent error is classifying hard sweep datasets as neutral (row 2, column 1 of the confusion
matrix). We hypothesized that this was either because selection occurred anciently and quickly, or
because selection occurred recently and the sweep was not yet complete. To test this, we examined
the results conditional on the frequency of the selected allele at present. The results shown in Table 5
suggest that in fact many of the sweeps were not complete, which is why the regions sometimes
appeared neutral. Regardless, this type of false negative error is arguably preferable to falsely calling
many regions to be under selection when they are in fact neutral.

We also wanted to test the impact of unsupervised pretraining using autoencoders (see Methods).
Tables 6 and 7 compare the results for a randomly initialized network to a network initialized using
autoencoders. These results demonstrate that pretraining is very effective. Due to the non-convex
nature of the optimization problem, random initialization is most likely finding a poor local minima
for the cost function.

Results on real Drosophila melanogaster data
We then ran the real Drosophila melanogaster data through this trained network just like any other
test dataset. We considered only the chromosome arms 2L, 2R, 3L, and 3R in this study. We
partitioned each chromosome arm into 20 kb windows and ran our method on five consecutive
windows at a time, sliding by 20 kb after each run. Classification was performed on the middle
20 kb window.

For the demography, the population size results are shown in Table 8. The first row (average
statistic method) is our best estimate, which we also plot and compare with other histories in Fig. 4.
Our history is close to the PSMC result, although more resolution would be needed for a proper
comparison. The expansion after the bottleneck is roughly consistent with previous results citing
the range expansion of Drosophila melanogaster (out of sub-Saharan Africa) as beginning around
15,000 years ago [18]. This range expansion likely led to an effective population size increase like
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the one we infer.
The number of windows classified as Neutral, Hard Sweep, Soft Sweep, and Balancing Selection

are 1191, 2572, 429, and 637, respectively. See Table S1 for further details. If we restrict our
analysis to regions classified with probability greater than 0.9999, then we find 47 hard sweeps,
69 soft sweeps, and 18 regions under balancing selection. In Table S2, we include a table of these
high-confidence windows, along with which genes are found in each window. We also include a plot
(Figure S1) of where the selected regions fall throughout the genome (restricted to regions with a
probability at least 0.95). Interestingly, soft sweeps and balancing selection seem to occur more
frequently closer to the centromere of each chromosome. There is also an excess of hard sweeps on
chromosome arm 2L.

Upon examining the genes in the top regions classified to be under selection, we find several
notable results. In the hard sweep category, a few of the top regions harbor many genes involved in
chromatin assembly or disassembly. Further, there are two regions each containing exactly one gene,
where the gene has a known function. These are Fic domain-containing protein (detection of light
and visual behavior), and charybde (negative regulation of growth). In the soft sweep category, we
find many genes related to transcription, and several related to pheromone detection (chemosensory
proteins). We also find four regions each containing exactly one gene, with that gene having a known
function. These are gooseberry (segment polarity determination), steppke (positive regulation of
growth), Krüppel (proper body formation), and Accessory gland protein 36DE (sperm storage, [41]).
Fly embryos with a mutant Krüppel (German for “cripple”) gene have a “gap” phenotype with the
middle body segments missing [38]. Finally in the balancing selection category, one interesting gene
we find is nervana 3, which is involved in the sensory perception of sound. We also find balancing
selection regions containing the genes cycle (circadian rhythms) and Dihydropterin deaminase (eye
pigment), although there are other genes within these putatively selected regions.

We also wanted to investigate which statistics were the most informative for our parameters of
interest, using the procedure described in Methods (c.f., Algorithm 1). To that affect, we kept the
25 most informative statistics for each population size and selection, highlighting common statistics
in the 4-way Venn diagram in Fig. 5. For each statistic name in the diagram, close, mid, and far
represent the genomic region where the statistic was calculated. The numbers after each colon refer
to the position of the statistic within its distribution or order. For the SFS statistics, it is number
of minor alleles. An interesting set of four statistics is informative for all parameters, including very
long IBS tracts close to the selected site (“IBS, close: 30”) and the H12 statistic. Additionally, “LD,
mid: 4” represents low LD between sites close to the selected site and sites mid-range from the
selected site (likewise for LD “LD, far: 4”). Many low LD pairs could signal a lack of selection, and
vice versa. IBS statistics are generally not as helpful for selection, but extremely informative for
the population sizes, especially N2 and N3. Bottlenecks can have a significant impact on IBS tract
distributions, so it makes sense that N2 (the bottleneck size) is the most reliant on IBS statistics.
The number of segregating sites S is generally quite informative, especially for selection. Interesting,
the folded site frequency spectrum (SFS) is not as informative as one might have anticipated.
However, the number of singletons is very informative, especially for selection and N1, which could
have been foreseen given that recent events shape the terminal branches of a genealogy, and thus the
singletons. Tajima’s D is helpful for selection only, which it was designed to detect. The distances
between segregating sites (“BET” statistics) do not generally seem very helpful. Neither does
H2, the frequency of the second most common haplotype. It is comparing H1 to H2 (via the H12
statistic) that is helpful.
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Regularization of the network weights
In deep learning, one hyper-parameter that should be investigated closely is the regularization
parameter λ in the cost function, also called the weight decay parameter. (See Methods for details).
If λ is set to be too high, large weights will be penalized too much, and interesting features of
the data cannot be learned well. But if λ is set too low, the weights tend to display runaway
behavior. Due to this balance, a validation procedure is typically used to find the right λ. In our
case, the additional runtime of simulating more data and performing more training would be too
computationally expensive, but we do provide a small validation study in Figure S2.

Runtime
In terms of runtime, the vast majority is spent simulating the data. During training, most of
the runtime is spent fine-tuning the deep network, which requires computing the cost function
and derivatives many times. To speed up this computation, our deep learning implementation
is parallelized across datasets, since each dataset adds to the cost function independently. This
significantly improves the training time for deep learning, which can be run overnight on this dataset
with a modest number of hidden nodes/layers. Once the training is completed, an arbitrary number
of datasets can be tested more or less instantaneously. In contrast, each of the “training” datasets
for ABC must be examined for each test dataset. This takes several weeks for a dataset of this size
(which is why we tested ABC on a subset of the data), although it could be parallelized across the
test datasets.

Discussion

Using deep learning for population genetics is still in its infancy, and there are many directions of
future work. One important advantage of deep learning is that it provides a way to distinguish
informative summary statistics from informative ones. Here we have presented one method for
extracting informative statistics given a trained deep network. Other methods are possible, and it is
an open question which one would produce the best results. It would be interesting to down-sample
statistics using a variety of methods, then compare the results. Overall, learning more about how
statistics relate to parameters could be very useful for population genetics going forward.

The prospect of using deep learning to classify regions as neutral or selected is very appealing
for subsequent demographic inference. There are other machine learning methods that perform such
classification, but they are generally limited to two classes (selected or neutral). One exception is a
study in humans [63], which classifies genomic regions as neutral or under positive, negative, or
balancing selection. Although their approach does not jointly infer selection and demography, it
would be interesting to see their method used on Drosophila.

We infer many hard sweeps in African Drosophila, which is perhaps expected given their large
effective population size. However, when restricting our analysis to selected regions with high
confidence, the numbers of hard sweeps and soft sweeps are comparable. It would be interesting to
analyze our results in the context of a simulation study by Schrider et al. [54], which found that
regions classified as soft sweeps are often truly the “shoulders” of hard sweeps. This possibility is
worth investigating, as the signatures of soft sweeps and soft shoulders are extremely similar.

Deep learning can make optimal use of even a limited number of simulated datasets. In this
vein, it would be interesting to use an approach such as ABC MCMC [39] to simulate data from a
prior, then use deep learning on these simulated datasets. Alternatively, deep learning could be used
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to select informative statistics for a subsequent method such as ABC. Such combined approached
could be a fruitful area of further exploration.

We would also like to apply deep learning to a wider variety of scenarios in populations genetics.
Population structure and splits would be an examples, although these scenarios would most likely
require different sets of summary statistics.

On the computer science side, deep learning has almost exclusively been used for classification,
not continuous parameter inference. It would be interesting to see the type of continuous parameter
inference presented here used in other fields and applications.

Finally, machine learning methods have been criticized for their “black-box” nature. In some
sense they throw away a lot of the coalescent modeling that we know to be realistic, although this
is included somewhat in the expert summary statistics of the data. It would be advantageous to
somehow combine the strengths of coalescent theory and the strengths of machine learning to create
a robust method for population genetic inference.

Methods

Deep learning details
In this section we provide the theory behind training deep networks. The notation in this section
follows that of [42]. Let x(i) be the vector of summary statistics for dataset i, and y(i) the vector
of parameters that dataset i was simulated under. If we have m such datasets, then together
{(x(1),y(1)), . . . , (x(m),y(m))} form the training data that will be used to learn the function from
summary statistics to parameters. Deep neural networks are a way to express this type of complex,
non-linear function. The first layer of the network is the input data, the next layers are the “hidden
layers” of the network, and the final layer represents the network’s prediction of the parameters of
interest.

Cost function for a deep network. An example deep network is shown in Fig. 6. The

collection of weights between layer ` and layer ` + 1 is denoted W (`) = (w
(`)
jk ), where w

(`)
jk is the

weight associated with the connection between node j in layer ` and node k in layer ` + 1. The
biases for layer ` is denoted b(`). The total number of layers (including the input and output layers)
is denoted L, and the number of hidden nodes in layer ` is denoted u`. The main goal is to learn
the weights that best describe the function between the inputs and the outputs.

To learn this function, we first describe how the values of the hidden nodes are computed, given

a trial weight vector. The value of hidden node j in layer ` ≥ 2 is denoted a
(`)
j , and is defined by

a
(`)
j = f

(
z
(`)
j

)
and z

(`)
j = W

(`−1)
j · a(`−1) + b

(`−1)
j , (1)

where W
(`−1)
j is the jth column of the weight matrix W (`−1) (i.e., all the weights going into node

j of layer ` − 1), a(`−1) = (a
(`−1)
k ) is a vector of the values of all the nodes in layer ` − 1 (with

a(1) = x, the input vector), and

f(z) :=
1

1 + exp(−z)
(2)

is the activation function. Here we use a logistic function, but other functions can be used. Another
common activation function is the hyperbolic tangent function.

Hence, given the input data and a set of weights, we can feed forward to learn the values of all
hidden nodes, and a prediction of the output parameters. These predictions are usually denoted
by hW,b(x(i)) for our hypothesis for dataset i, based on all the weights W = (W (1), . . . ,W (L−1))
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and biases b = (b(1), . . . , b(L−1)). We will discuss different ways to compute the hypothesis function
later on. To find the best weights, we define a loss function based on the l2-norm between this
hypothesis and the true parameters. This loss function is given by

J(W , b) =
1

m

m∑
i=1

1

2

∥∥hW,b(x(i))− y(i)
∥∥2. (3)

The goal of deep learning is to find the weights (W and b) that minimize this loss function. To
efficiently find these optimal weights, we can use backpropagation to find the gradient. The intuition
behind this approach is that once we have found the hypothesis, we then want to see how much
each of the weights contributed to any differences between the hypothesis and the truth. Therefore
we start at the last hidden layer, see how much each of those weights contributed, then work our
way backwards, using the gradient of the previous layer to compute the gradient of the next layer.
For this procedure we need to compute the partial derivatives of the cost function with respect to
each weight.

Consider a single training example x with associated output y. The cost for this dataset is a
term in Eq.(3) and is denoted by

J(W , b,x,y) :=
1

2

∥∥hW,b(x)− y
∥∥2.

Then, define

δ
(`)
j :=

∂J(W , b,x,y)

∂z
(`)
j

,

where z
(`)
j , defined in Eq.(1), is the input to the activation function for node j in layer `. We first

consider δ
(L)
j for the final layer. Noting that the jth entry of hW,b(x) is f(z

(L)
j ), we get

δ
(L)
j = [f(z

(L)
j )− yj ]f ′

(
z
(L)
j

)
.

Based on this initialization, we can recursively compute all the δ variables:

δ
(`)
j =

[ u`+1∑
k=1

w
(`)
jk δ

(`+1)
k

]
f ′
(
z
(`)
j

)
.

Now we can use the δ variables to recursively compute the partial derivatives for one dataset:

∂J(W , b,x,y)

∂w
(`)
jk

= a
(`)
j δ

(`+1)
k ,

∂J(W , b,x,y)

∂b
(`)
k

= δ
(`+1)
k .

Finally, putting all the datasets together we get

∂J(W , b)

∂w
(`)
jk

=
m∑
i=1

∂J(W , b,x(i),y(i))

∂w
(`)
jk

and
∂J(W , b)

∂b
(`)
k

=
m∑
i=1

∂J(W , b,x(i),y(i))

∂b
(`)
k

.

Since we can compute the derivatives using this backpropagation algorithm, we can use the LBFGS
optimization routine (as implemented in [11]) to find the weights that minimize the cost function.
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Unsupervised pretraining using autoencoders. It is possible to train a deep network by
attempting to minimize the cost function described above directly, but in practice, this proved
difficult due to the high-dimensionality and non-convexity of the optimization problem. Initializing
the weights randomly before training resulted in poor local minima. Hinton and Salakhutdinov [23]
sought to initialize the weights in a more informed way, using an unsupervised pretraining routine.
Unsupervised training ignores the output (often called the “labels”) and attempts to learn as much
as possible about the structure of the data on its own. PCA is an example of unsupervised learning.
In Hinton and Salakhutdinov, the unsupervised pretraining step uses an autoencoder to try to learn
the best function from the data to itself, after it has gone through a dimensionality reduction step
(this can be thought of as trying to compress the data, then reconstruct it with minimal loss).
Autoencoding provides a way to initialize the weights of a deep network that will ideally be close to
optimal for the supervised learning step as well. See Fig. 7 for a diagram of an autoencoder.

Training an autoencoder is an optimization procedure in itself. As before, let W (1) be the
vector of weights connecting the input x to the hidden layer a, and W (2) be the vector of weights
connecting a to the output layer x̂, which in this case should be as close as possible to the original
input data. We again typically use the logistic function shown in Eq.(2) as our activation function
f , so we can compute the output using:

aj = f(W
(1)
j · x + b

(1)
j ) and x̂k = f(W

(2)
k · a + b

(2)
k ).

If a linear activation function is used instead of a logistic function, the hidden layer becomes the
principle components of the data. This makes dimensionality reduction with an autoencoder similar
in spirit to PCA, which has been used frequently in genetic analysis (see [43] for an example).
However, the non-linear nature of an autoencoder has been shown to reconstruct complex data
more accurately than PCA. Using backpropagation as we did before, we can minimize the following
autoencoder cost function using all m input datasets:

A(W , b) =
1

m

m∑
i=1

1

2

∥∥x̂(i) − x(i)
∥∥2.

The resulting weights W ∗(1) and b∗(1) will then be used to initialize the weights between the first
and second layers of our deep network. The weights W ∗(2) and b∗(2) are discarded. To initialize the
rest of the weights, we can repeat the autoencoder procedure, but this time we will use the hidden

layer a∗ = (a∗j ), where a∗j = f(W
∗(1)
j · x + b

∗(1)
j ), as our input data, and feed it through the next

hidden layer. In this way we can use “stacked” autoencoders to initialize all the weights of the deep
network. Finally, the supervised training procedure described in the previous section can be used to
fine-tune the weights to obtain the best function from the inputs to the parameters of interest.

When the number of hidden nodes is large, we would like to constrain an autoencoder such that
only a fraction of the hidden nodes are “firing” at any given time. This corresponds to the idea
that only a subset of the neurons in our brains are firing at once, depending on the input stimulus.
To create a similar phenomenon for an autoencoder, we create a sparsity constraint that ensures the
activation of most of the nodes is close to 0, and the activation of a small fraction, ρ, of nodes is
close to 1. Let ρ̂j be the average activation of the hidden node j:

ρ̂j =
1

m

m∑
i=1

aj(x
(i)),

where aj(x
(i)) is the value of the jth hidden node when activated with dataset x(i). To ensure

sparsity, we would like ρ̂j to be close to ρ, our desired fraction of active nodes. This can be
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accomplished by minimizing the KL divergence:

u2∑
j=1

KL(ρ‖ρ̂j) =

u2∑
j=1

[
ρ log

ρ

ρ̂j
+ (1− ρ) log

1− ρ
1− ρ̂j

]
,

where u2 is the number of nodes in the hidden layer of the autoencoder. We multiply this term by a
sparsity weight β.

In addition, a regularization term is included, which prevents the magnitude of the weights from
becoming too large. To accomplish this, we add a penalty to the cost function that is the sum of the
squares of all weights (excluding the biases), weighted by a well-chosen constant λ, which is often
called the weight decay parameter. Including both sparsity and regularization, our final autoencoder
cost becomes:

Aλ(W , b) =
1

m

m∑
i=1

1

2

∥∥x̂(i) − x(i)
∥∥2 + β

u2∑
j=1

KL(ρ‖ρ̂j) +
λ

2

2∑
`=1

u∑̀
j=1

u`+1∑
k=1

[
(w

(`)
jk

]2
.

We also regularize the weights on the last layer during fine-tuning, so our deep learning cost function
becomes:

Jλ(W , b) =
1

m

m∑
i=1

1

2

∥∥hW,b(x(i))− y(i)
∥∥2 +

λ

2

uL−1∑
j=1

uL∑
k=1

[
w

(L−1)
jk

]2
.

The final layer: parameter estimation vs. classification. In population genetics, often
we want to estimate continuous parameters. To compute our hypothesis for a parameter of interest,
based on a set of weights, we could use a logistic activation function, Eq.(2), as we did for the other
layers. However, the logistic function is more suitable for binary classification. Instead, we use a
linear activation function, so in the case of a single parameter, our hypothesis for dataset i becomes

hlinear
W,b (x(i)) = [a(L−1)(x(i))]TW (L−1) + b(L−1).

In other words, it is the dot product of the activations of the final hidden layer and the weights that
connect the final hidden layer to the parameters.

For such classification results, if we had two classes, we could use logistic regression to find
the probability a dataset was assigned to each class. With more than two classes, we can extend
this concept and use softmax regression to assign a probability to each class. If we have K classes
labeled 1, . . . ,K, we can define our hypothesis as follows

hsoftmax
W,b (x(i)) =


p(y(i) = 1 | x(i);W , b)

p(y(i) = 2 | x(i);W , b)
...

p(y(i) = K | x(i);W , b)



=
1

Z


exp{W (L−1)

1 · a(L−1)(x(i)) + b
(L−1)
1 }

exp{W (L−1)
2 · a(L−1)(x(i)) + b

(L−1)
2 }

...

exp{W (L−1)
K · a(L−1)(x(i)) + b

(L−1)
K }

 ,
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where Z is the sum of all the entries, so that our probabilities sum to 1. Using this formulation, we
can define our classification cost function:

J softmax
λ (W , b) = − 1

m

m∑
i=1

K∑
j=1

1{y(i) = j} log p(y(i) = j|x(i);W , b) +
λ

2

uL−1∑
s=1

uL∑
t=1

[
w

(L−1)
st

]2
.

Intuitively, we can think about this cost function as making the log probability of the correct class
as close to 0 as possible.

Deep learning for demography and selection

Deep learning model. To modify our deep learning method to accommodate this type of inference
problem, during training we have an outer-loop that changes the demography as necessary, and an
inner loop that accounts for differences in selection for each region. During testing, we estimate
demography and infer selection for each region separately, then average the demographies to obtain
one global estimate for each genome. We also average just the estimates from the regions classified
as neutral, which produces a better demographic estimate. In addition, we use these multiple
estimates from each region to estimate the variance.

One final complication is that we estimate continuous parameters for the population sizes, but
consider selection to be a discrete parameter. This involves a linear activation function for the
population sizes and a softmax classifier for the selection parameter. A diagram of our deep learning
method is shown in Fig. 8.

Analysis of informative statistics. One advantage of deep learning is that the weights of the
optimal network give us an interpretable link between the summary statistics and the parameters of
interest. However, from these weights, it is not immediately obvious which statistics are the most
informative or “best” for a given parameter. If we only wanted to use only a small subset of the
statistics, which ones would give us the best results? To answer this question, we provide a new
analysis method, described in Algorithm 1.
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for each class c in {neutral, hard sweep, soft sweep, balancing} do
Let Xc = the vector of average summary statistics for class c
Let O = the output of the final layer when the input is Xc

For N1, N2, N3, perturb the average input summary statistics by δ = 0.000001:

for each summary statistic index s do
O+
s = the output of the final layer when Xc[s] is replaced by Xc[s] + δ

O−s = the output of the final layer when Xc[s] is replaced by Xc[s]− δ

for each output index j ∈ {1, 2, 3} do
p = |O[j]−O+

s [j]|
q = |O[j]−O−s [j]|
sizeResponseChangec,j [s] = (p+ q)/2

end

end

For classification, we use the following approach:

for each class b 6= c do

for each summary statistic index s do
Replace Xc[s] with Xb[s] and call the new vector X ′c
Let classResponseChangec,b[s] = the total variation distance between the softmax
distribution (output indices 4-7) for input Xc and that for X ′c

end

end

end

To obtain the “most informative” statistics for N1, N2, N3:
for each output index j ∈ {1, 2, 3} do

Average the arrays sizeResponseChangec,j over all classes c and take the top 25 entries

end

To obtain the “most informative” statistics for selection:
Average the arrays classResponseChangec,b over classes c and b, and take the top 25 entries

Algorithm 1: Method for finding the most informative statistics for each output parameter.
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Software Availability

An open-source software package that implements deep learning algorithms for population genetic
inference will be made publicly available.
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[19] González, J., Macpherson, J. M., Messer, P. W., and Petrov, D. A. Inferring the
strength of selection in Drosophila under complex demographic models. Molecular Biology and
Evolution 26, 3 (2009), 513–526.

[20] Gossmann, T. I., Woolfit, M., and Eyre-Walker, A. Quantifying the variation in the
effective population size within a genome. Genetics 189 (2011), 1389–1402.

[21] Graves, A., rahman Mohamed, A., and Hinton, G. Speech recognition with deep
recurrent neural networks. In IEEE International Conference on Acoustic Speech and Signal
Processing (ICASSP) (2013), pp. 6645–6649.

[22] Haag-Liautard, C., Dorris, M., Maside, X., Macaskill, S., Halligan, D. L.,
Charlesworth, B., and Keightley, P. D. Direct estimation of per nucleotide and
genomic deleterious mutation rates in Drosophila. Nature 445 (2007), 82–85.

[23] Hinton, G. E., and Salakhutdinov, R. R. Reducing the dimensionality of data with
neural networks. Science 313, 5786 (2006), 504–507.

[24] Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov,
R. R. Improving neural networks by preventing co-adaptation of feature detectors. arXiv
preprint, http://arxiv.org/abs/1207.0580, 2012.

[25] Hopfield, J. J. Neural networks and physical systems with emergent collective computational
abilities. PNAS 79, 8 (1982), 2554–2558.

[26] Hornik, K. Approximation capabilities of multilayer feedforward networks. Neural Networks
4, 2 (1991), 251–257.

[27] Jensen, J. D., Thornton, K. R., and Andolfatto, P. An approximate Bayesian estimator
suggests strong, recurrent selective sweeps in Drosophila. PLoS Genet 4, 9 (2008), e1000198.

[28] Jones, N. Computer science: The learning machines. Nature 505, 7482 (2014), 146.

[29] Joyce, P., and Marjoram, P. Approximately sufficient statistics and Bayesian computation.
Statistical Applications in Genetics and Molecular Biology 7, 1 (2008), Article26.

[30] Kim, J. S., Greene, M. J., Zlateski, A., Lee, K., Richardson, M., Turaga, S. C.,
Purcaro, M., Balkam, M., Robinson, A., Behabadi, B. F., et al. Space-time wiring
specificity supports direction selectivity in the retina. Nature 509, 7500 (2014), 331–336.

[31] Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classification with deep
convolutional neural networks. In Advances in Neural Information Processing Systems (NIPS)
(2012), pp. 1097–1105.

19

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 2, 2015. ; https://doi.org/10.1101/028175doi: bioRxiv preprint 

http://arxiv.org/abs/1207.0580
https://doi.org/10.1101/028175
http://creativecommons.org/licenses/by-nc-nd/4.0/


[32] Lack, J. B., Cardeno, C. M., Crepeau, M. W., Taylor, W., Corbett-Detig, R. B.,
Stevens, K. A., Langley, C. H., and Pool, J. E. The Drosophila genome nexus: a
population genomic resource of 623 Drosophila melanogaster genomes, including 197 from a
single ancestral range population. Genetics 199, 4 (2015), 1229–1241.

[33] Leung, M. K. K., Xiong, H. Y., Lee, L. J., and Frey, B. J. Deep learning of the
tissue-regulated splicing code. Bioinformatics 30, 12 (2014), i121–i129.

[34] Li, H., and Durbin, R. Inference of human population history from individual whole-genome
sequences. Nature 475 (2011), 493–496.

[35] Li, J., Li, H., Jakobsson, M., Li, S., Sjödin, P., and Lascoux, M. Joint analysis of
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[46] Pavlidis, P., Živković, D., Stamatakis, A., and Alachiotis, N. SweeD: likelihood-based
detection of selective sweeps in thousands of genomes. Molecular Biology and Evolution 30, 9
(2013), 2224–2234.

[47] Peter, B. M., Huerta-Sanchez, E., and Nielsen, R. Distinguishing between selective
sweeps from standing variation and from a de novo mutation. PLoS Genetics 8, 10 (2012),
e1003011.

[48] Pritchard, J. K., Seielstad, M. T., Perez-Lezaun, A., and Feldman, M. W. Popula-
tion growth of human Y chromosomes: a study of Y chromosome microsatellites. Molecular
Biology and Evolution 16, 12 (1999), 1791–1798.

[49] Pybus, M., Luisi, P., Dall’Olio, G., Uzkundun, M., Laayouni, H., Bertranpetit,
J., and Engelken, J. Hierarchical boosting: a machine-learning framework to detect and
classify hard selective sweeps in human populations. Bioinformatics (2015). In press. doi:
10.1093/bioinformatics/btv493.

[50] Qi, Y., Oja, M., Weston, J., and Noble, W. S. A unified multitask architecture for
predicting local protein properties. PLoS One 7, 3 (2012), e32235.

[51] Ronen, R., Udpa, N., Halperin, E., and Bafna, V. Learning natural selection from the
site frequency spectrum. Genetics 195 (2013), 181–193.

[52] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learning representations by
back-propagating errors. Nature 323, 9 (1986), 533–536.

[53] Schiffels, S., and Durbin, R. Inferring human population size and separation history from
multiple genome sequences. Nature Genetics 46 (2014), 919–925.

[54] Schrider, D. R., Mendes, F. K., Hahn, M. W., and Kern, A. D. Soft shoulders ahead:
Spurious signatures of soft and partial selective sweeps result from linked hard sweeps. Genetics
200, 1 (2015), 267–284.

[55] Sella, G., Petrov, D. A., Przeworski, M., and Andolfatto, P. Pervasive natural
selection in the Drosophila genome? PLoS Genetics 5, 6 (2009), e1000495.

[56] Sheehan, S., Harris, K., and Song, Y. S. Estimating variable effective population sizes
from multiple genomes: A sequentially Markov conditional sampling distribution approach.
Genetics 194, 3 (2013), 647–662.

[57] Sisson, S. A., Fan, Y., and Tanaka, M. M. Sequential Monte carlo without likelihoods.
Proceedings of the National Academy of Sciences 104, 6 (2007), 1760–1765.

[58] Steinrücken, M., Kamm, J. A., and Song, Y. S. Inference of complex population
histories using whole-genome sequences from multiple populations. bioRxiv preprint, http:
//dx.doi.org/10.1101/026591, 2015.

[59] Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymor-
phism. Genetics 123, 3 (1989), 585–595.
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Tables

Table 1. A comparison between ABCtoolbox and deep learning for demography only. Out of 1000
demographies (160,000 datasets total), 75% were used for training and 25% for testing. In this
scenario, deep learning generally outperforms ABCtoolbox, as measured by the relative error:
|Nest −Ntrue|/Ntrue. There is generally more improvement using deep learning when the number of
statistics is larger.

Dataset Method N1 error N2 error N3 error

Full summary statistics ABCtoolbox 0.062 0.043 0.218
Deep learning 0.044 0.028 0.221

Filtered summary statistics ABCtoolbox 0.161 0.035 0.311
Deep learning 0.065 0.055 0.319

Table 2. Deep learning results for population sizes under the scenario with demography and
selection, using a network with 3 hidden layers of sizes 25, 25, and 10. We evaluate the results in
three ways, using the relative error of the estimates: |Nest −Ntrue|/Ntrue. First, for each test
demography, we average the statistics for each dataset, and then run these values through the
training network. Second, for each test demography, we run the datasets through the network one
by one, then average the predictions. Finally, we perform the second procedure, but with only the
regions we classified as neutral. We note that the most ancient size (N3) is always the least
accurately estimated.

Deep learning predictions N1 error N2 error N3 error

Average stat prediction 0.051 0.074 0.487
Final prediction 0.098 0.077 0.569
Neutral regions prediction 0.072 0.083 0.566

Table 3. Results for an example demography, with the true population sizes shown in the first row.
The next three rows represent predictions of the sizes, with the prediction based on neutral genomic
regions being generally the most accurate. For this final prediction, 95% confidence intervals are
shown in the last row.

N1 N2 N3

True sizes 878,675 235,199 713,001
Average stat prediction 872,541 264,817 600,650
Final prediction 840,784 243,180 622,359
Neutral regions prediction 873,289 237,686 619,943
95% CI (863677, 882902) (234136, 241237) (618573, 621313)
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Table 4. Confusion matrix for the selection predictions, in the demography and selection scenario.
Each row represents the datasets that truly belong to each selection class. Each column represents
the datasets that were actually classified as each selection class. Ideally we would like all 1’s down
the diagonal, and 0’s in the off-diagonal entries. The largest number in each row is shown in
boldface. We can see that neutral datasets are the easiest to classify, and sometimes regions under
selection (hard sweeps in particular) look neutral as well (first column). The overall percentage of
misclassified datasets was 6.2%.

Called Class
True Class Neutral Hard Sweep Soft Sweep Balancing

Neutral 0.9995 0.0002 0.0003 0.0000
Hard Sweep 0.1434 0.8333 0.0032 0.0201
Soft Sweep 0.0096 0.0010 0.9891 0.0003
Balancing 0.0301 0.0356 0.0056 0.9287

Table 5. Hard sweep results, broken down by the present-day frequency (f) of the selected allele
(which we would not know for a real dataset). We defined “low” frequency as f ∈ [0, 0.3),
“moderate” frequency as f ∈ [0.3, 0.7), and “high” frequency as f ∈ [0.7, 1]. We can see that if the
frequency of the selected allele is low, the region is often misclassified as neutral, since the selective
sweep is not yet complete. However, if the frequency is moderate or high, the dataset is usually
classified correctly as a hard sweep.

Called Class
f Neutral Hard Sweep Soft Sweep Balancing

Low (18.4% of datasets) 0.6820 0.3137 0.0009 0.0035
Moderate (12.5% of datasets) 0.0988 0.8220 0.0000 0.0793
High (69.1% of datasets) 0.0084 0.9734 0.0044 0.0138

Table 6. Relative error on the test dataset, for a deep network with 6 hidden layers. For the
results in the first row, the weights of the entire network were initialized randomly, then optimized.
In the second row, the weights were initialized using autoencoders for each layer. The positive
impact of unsupervised pretraining is clear; random initialization causes the optimization to get
stuck in a local minima.

Initialization Type N1 error N2 error N3 error

Random 0.429 0.421 0.710
Autoencoder 0.061 0.166 0.577
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Table 7. Confusion matrix for the selection predictions, compared between random initialization
(top) and autoencoder initialization (bottom), for a deep network with 6 hidden layers. Again,
ideally we would like all 1’s down the diagonal, and 0’s in the off-diagonal entries. The largest
number in each row is shown in boldface. When the network is initialized randomly, almost every
dataset is classified as neutral; the network has not really learned anything meaningful from the
input data. The overall percentage of misclassification is 74.8% for random initialization, while it is
only 6.1% for autoencoder initialization.

Called Class
True Class Neutral Hard Sweep Soft Sweep Balancing

Random Initialization
Neutral 1.000 0.000 0.000 0.000
Hard Sweep 0.978 0.007 0.000 0.015
Soft Sweep 1.000 0.000 0.000 0.000
Balancing 1.000 0.000 0.000 0.000

Autoencoder Initialization
Neutral 1.000 0.000 0.000 0.000
Hard Sweep 0.145 0.831 0.004 0.021
Soft Sweep 0.011 0.001 0.987 0.000
Balancing 0.030 0.028 0.001 0.941

Table 8. Population size results for African Drosophila from Zambia, rounded to the nearest
hundred. The first row (predictions based on averaging the statistics for each region in the
Drosophila genome) represents our best estimate of the population sizes. The final row is a 95%
confidence interval.

Prediction N1 (recent) N2 (bottleneck) N3 (ancestral)

Average statistics 544,200 145,300 652,700
Average predictions 622,100 158,200 650,400
Neutral regions 607,300 161,400 651,200
95% CI (596,700 – 617,900) (157,800 – 165,000) (649,600 – 652,700)
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Figure 1. An example of a classical neural network. The single hidden layer serves to learn
informative combinations of the inputs, remove correlations, and typically reduce the dimension of
the data. After the optimal weight on each connecting arrow is learned through labeled training
data, unlabeled data can be fed through the network to estimate the output parameters.

Demography  1	

Demography  2	

Demography  3	

De  novo	
mutation	

Balancing	

Standing	
variation	

Figure 2. Input data for the demography and selection scenario. For each demographic history
(bottleneck), we simulated many different genomic regions. Each region can either have no selection
(neutral), one site with an de novo mutation under positive selection (hard sweep), one site under
balancing selection, or one standing variant under positive selection (soft sweep).

selected site 

region 1: within 10kb 

region 3: 30-50kb 

region 2: 10-30kb 

Figure 3. Regions used for computing the statistics, which are based off of Peter et al. [47]. Note
that the selected site was chosen randomly within region 1.
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Figure 4. Comparison between demographic histories. On the left in green is PSMC [34], run on
the entire genome for a subset of the data (n = 20). In blue is our history from the first line of
Table 8. On the right in red is the history from Duchen et al. [12], which assumes a very short,
severe bottleneck (note the change in the y-axis scale). A more gradual bottleneck seems more
realistic, although we do not have a simple explanation for why there was a bottleneck at all.
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Figure 5. A Venn diagram of most informative statistics for each parameter (N1, N2, N3, and
selection). For each parameter, the top 25 statistics were chosen, according to the procedure in
Algorithm 1. The Venn diagram captures statistics common to each subset of parameters, with
notable less informative statistics shown in the lower right. Close, mid, and far represent the
genomic region where the statistic was calculated. The numbers after each colon refer to the
position of the statistic within its distribution or order. For the SFS statistics, it is number of
minor alleles. For each region, there are 50 SFS statistics, 16 BET statistics (distribution between
segregating sites), 30 IBS statistics, and 16 LD statistics.
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Figure 6. An example of a deep neural network with two hidden layers. The first layer is the
input data (each dataset has 5 statistics), and the last layer predicts the 2 parameters of interest.
The last node in each input layer (+1) represents the bias term. Here the number of layers L = 4,
and the number of nodes (computational units) in each layer is u1 = 5, u2 = 3, u3 = 3, and u4 = 2
(these counts exclude the biases).
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Figure 7. An example of an autoencoder. The input data (x) is projected into a (usually) lower
dimension (a), then reconstructed (x̂). The weights of an autoencoder are optimized such that the
difference between the reconstructed data and the original data is minimal.
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Figure 8. Our deep learning framework for effective population size changes and selection.
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Supporting Information Tables and Figures

Table S1. Classification results for all windows, along with which genes are found in each
window. (XLS)

Table S2. High-confidence windows, along with which genes are found in each window. (XLS)
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Figure S2. Validation procedure for a network with two hidden layers of size 8 and 4. The
x-axis shows increasing values of λ, and the y-axis shows the error on the validation dataset. The
curve shows a characteristic shape with low and high λ producing poorer results than an
intermediate value. For these hidden layers sizes and this dataset, λ̂ = 0.0001 was optimal.
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