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Abstract 
 
Extensive efforts have been made to understand genomic function through both 
experimental and computational approaches, yet proper annotation still remains 
challenging, especially in non-coding regions. In this manuscript, we introduce 
GenoSkyline, an unsupervised learning framework to predict tissue-specific functional 
regions through integrating high-throughput epigenetic annotations. GenoSkyline 
successfully identified a variety of non-coding regulatory machinery including enhancers, 
regulatory miRNA, and hypomethylated transposable elements in extensive case studies. 
Integrative analysis of GenoSkyline annotations and results from genome-wide 
association studies (GWAS) led to novel biological insights on the etiologies of a number 
of human complex traits. We also explored using tissue-specific functional annotations to 
prioritize GWAS signals and predict relevant tissue types for each risk locus. Brain and 
blood-specific annotations led to better prioritization performance for schizophrenia than 
standard GWAS p-values and non-tissue-specific annotations. As for coronary artery 
disease, heart-specific functional regions was highly enriched of GWAS signals, but 
previously identified risk loci were found to be most functional in other tissues, 
suggesting a substantial proportion of still undetected heart-related loci. In summary, 
GenoSkyline annotations can guide genetic studies at multiple resolutions and provide 
valuable insights in understanding complex diseases. GenoSkyline is available at 
http://genocanyon.med.yale.edu/GenoSkyline. 
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Introduction 
 
Functionally annotating the human genome is a major goal in human genetics research. 
After years of community efforts, a variety of experimental and computational 
approaches have been developed and applied for genomic functional annotation. 
Comparative genomics studies have shown that approximately 4.5% of the human 
genome is conserved across mammals1. Furthermore, the rich collection of epigenomic 
data generated by large consortia (e.g. ENCODE2 and Epigenomics Roadmap Project3) 
also provides great insight for understanding the functional effects of the genome, 
especially in terms of non-coding regulatory machinery. To best utilize these rich data, 
we recently developed GenoCanyon4, a non-coding functional prediction approach based 
on integrative analysis of annotation data, whose performance was demonstrated through 
predicting well-studied regulatory DNA elements. GenoCanyon provides general 
predictions of non-coding functional regions in the human genome but does not fully 
utilize cell-type-specific information of epigenomic data. Incorporating cell-type-specific 
or tissue-specific information into annotation tools is essential not only for understanding 
the basic biology of the genome, but also for better characterizing genetic variation, as in 
the functional interpretation of risk loci identified from genome-wide association studies 
(GWAS).  
 
GWAS has been a great success in the past decade, yet challenges still remain in both 
identifying additional risk variants and interpreting GWAS results. Current practice 
employs a significance threshold (i.e. 5×10!!) that controls family-wise error rate. Yet 
this approach is known to be underpowered when effect sizes are weak or moderate at 
risk loci5. Moreover, nearly 90% of the genome-wide significant hits in published GWAS 
are located in non-coding regions whose functional impact to human complex traits is 
largely unknown6. Complex linkage disequilibrium (LD) patterns also hinder our ability 
to identify real functional sites among correlated SNPs. Several methods have been 
proposed to integrate annotation data for better prioritizing GWAS signals and their 
effectiveness has also been well demonstrated7-10. Tissue-specific functional annotations 
have the potential to bring even more biological insights to post-GWAS analysis and help 
understand complex disease etiology.  
 
In this paper, we introduce GenoSkyline, a tissue-specific functional prediction tool 
based on integrated analysis of epigenomic annotation data. We demonstrate its ability to 
identify tissue-specific functionality from its performance to rediscover a number of 
experimentally validated non-coding elements. Next, we show valuable biological 
insights GenoSkyline can provide in post-GWAS analysis through integrative analysis of 
15 human complex traits. We believe that GenoSkyline will prove to be a powerful tool 
for human genetics research because of its abilities to assess tissue-specific enrichment of 
GWAS signals, better prioritize GWAS signals, and offer biological interpretations of 
risk loci. 
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Results 
 
Predicting tissue-specific functional regions in the human genome 
 
The posterior probability of being functional given the annotation data is used to measure 
tissue-specific functional potential of each nucleotide in the human genome (Online 
Methods). It will be referred to as GenoSkyline (GS) score in following sections. We 
calculated GS scores for 7 human tissue types; brain, gastrointestinal tract (GI), lung, 
heart, blood, muscle, and epithelium (Supplementary Table 1). With a GS score cutoff 
of 0.5, 22.2% of the human genome is predicted to be functional in at least one of these 
tissue types, while 1.7% is functional in all 7 tissues (Figure 1a). Since GS score has a 
bimodal pattern, these results are not sensitive to cutoff choice (Supplementary Notes).  
 
Across tissue types, the percentage of predicted functional genome ranges from 5.4% 
(Lung) to 9.7% (GI) (Figure 1b and Supplementary Table 2). The overlap between 
heart-specific and muscle-specific functional regions is the largest among all pairs of 
tissues. Interestingly, although the percentage of functional genome in blood (8.4%) is 
similar to other tissue types, it overlaps less with the functional regions in other tissues 
(Figure 1c). This is consistent with the recent discovery that blood has the lowest levels 
of eQTL sharing with other tissues11. 
 
 
 
Investigating the performance of tissue-specific functional annotations  
 
Beta-globin gene complex 
 
We now demonstrate GenoSkyline’s ability to predict tissue-specific functionality using a 
variety of experimentally validated functional machinery. Beta-globin (HBB) gene 
complex is an extensively studied genomic region on chromosome 11, containing 6 genes 
and 23 cis-regulatory modules (CRMs) that are known to control both the timing and the 
spatial pattern of gene expression12,13. We compared GS scores for different tissue types 
in this region. Not surprisingly, blood-specific functionality was observed (Figure 2a). 
Among the 6 genes in this region, adult globin genes HBB and HBD, as well as 
pseudogene HBBP1 are captured well by blood-specific GS scores (Supplementary 
Table 3). However, embryonically expressed HBE1, fetally expressed HBG1 and HBG2, 
and the CRMs that regulate these genes have lower GS scores. This is possibly because 
18 of the 24 cell lines used for developing blood-specific GS scores were acquired from 
adult samples (Supplementary Table 1). The mean blood-specific GS score in these 
genes increases from 0.388 to 0.704 after removing HBG1, HBG2, and HBE1. Similarly, 
a substantial boost in mean GS score is observed after removing CRMs regulating the 
embryonic and fetal globin genes (Figure 2b, Supplementary Figure 1). Compared with 
GenoCanyon, GenoSkyline provides less sensitive but highly specific functional 
predictions. Its ability of identifying tissue-specific functional coding and non-coding 
DNA elements has the potential to benefit diverse types of biological studies. 
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Tissue-specific enhancers 
 
In vivo enhancers with tissue-specific activity in central nervous system (CNS; n=585), 
heart (n=96), and blood vessel (n=9) were downloaded from VISTA enhancer browser14 
(Online Methods). Mean GS scores for brain, heart, and blood tissues were calculated 
for each enhancer. Brain-specific and heart-specific GS scores were substantially higher 
in their respective enhancer categories compared to GS scores of non-relevant tissue 
types. Additionally, the mean blood-specific GS score also stands out for enhancers with 
observed activity in blood vessel despite the limited sample size (Figure 2c). In a 
separate study, 11 human-accelerated elements near the brain developmental transcription 
factor NPAS3 have been identified to act as tissue-specific enhancers within the nervous 
system15. Brain-specific GS scores for these enhancers are substantially higher than those 
for other tissue types (Figure 2d), concurrent with previous results.  
 
 
Regulatory miRNAs 
 
Next, we test if GenoSkyline could also capture miRNAs expressed exclusively in certain 
tissue types. Liang et al. studied the tissue specific expression pattern of eight groups of 
miRNAs16. We extracted and annotated four groups (groups I, II, III+IVa, and V from 
Liang et al.) that could be represented by the currently available tissue types in 
GenoSkyline annotations. These four groups of miRNAs were found to be expressed 
preferentially in skeletal/cardiac muscle, organs lined with epithelium, brain/peripheral 
blood mononuclear cell (PBMC), and heart, respectively through unsupervised clustering. 
The most relevant tissue types suggested by GenoSkyline for these four groups are 
muscle/heart, GI/epithelium, brain, and heart, respectively (Figure 2e). Our results based 
on integrative analysis of epigenomic data are consistent with the tissue-specific 
expression pattern reported by Liang et al. 
 
 
Inter-genic regulation of myosin heavy chain 
 
We applied GenoSkyline to a validated biologic switch in cardiac development and 
disease. Myosin heavy chain (MHC) is the major contractile protein in human striated 
muscle17. Cardiac muscle cells primarily express two isoforms, alpha-MHC (MYH6) and 
beta-MHC (MYH7)18. The ratio of alpha-to-beta isoforms determines cardiac contractility 
and allows for effective response to a wide range of physiologic and pathologic stimuli19. 
Alpha-to-beta ratio decreases in cardiac diseased states20,21, and reversal of this shift is 
associated with better clinical outcomes22. miRNAs can regulate alpha-to-beta isoform 
shift, and prior studies in rodents have outlined a network of crosstalk between 
intronically expressed miRNAs and their host muscle genes23,24. For instance, mir-208a, 
on an intron of MYH6, is a positive regulator of beta-MHC by targeting transcription 
factors that repress its expression24. GS scores for MYH6 and mir-208a accurately reflect 
their cardiac-specific expression, whereas MYH7 and mir-208b exhibit strong signals in 
both skeletal and cardiac tissue (Figure 3a and Supplementary Table 4). This 
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corresponds to known expression pattern of MYH7 and mir-208b in slow twitch skeletal 
muscle fibers17 as well as heart. We also explored tissue-specific functionality of two 
known distal enhancers of mir-208b identified on VISTA Enhancer Browser, hs2330 and 
hs1670. GS scores for hs2330 mirror MYH7/mir-208b signals. Interestingly, GS scores 
for hs1670, a distal enhancer flanking mir-208b, are also strong in nervous and GI tissue, 
a finding that agrees with its observed expression pattern in other tissues (based on 
VISTA Enhancer Browser data). Collectively, these results show that GenoSkyline can 
replicate the tissue-specific expression pattern of a complex inter-gene regulatory 
network. 
 
 
Zone of polarizing activity regulatory sequence 
 
GenoSkyline can also be generalized to identify tissue specificity outside of the 7 core 
categories discussed here, based on available experimental data. For example, Zone of 
polarizing activity regulatory sequence (ZRS), a well-studied developmental enhancer, is 
located in the fifth intron of LMBR1 gene. Acting as an enhancer of SHH, ZRS has been 
shown to play a crucial role in limb development25. However, none of the seven tissue 
types in GenoSkyline suggest ZRS’s functionality (Supplementary Figure 2). In order 
to see if ZRS could be identified using epigenomic data of other cell types, we extended 
GenoSkyline to two new groups of cells that are potentially important for development, 
embryonic stem cells (ESC) and fetal cells (Supplementary Table 5). Both ESC and 
fetal-cell-specific GS scores successfully identified ZRS with high resolution (Figures 3b 
and 3c). This example shows that GenoSkyline is a flexible framework. Researchers 
could develop their own cell-group-specific functional annotations if ChIP-seq data are 
available for the cells of interest.  
 
 
Hypomethylated transposable elements 
 
A recent study of genome-wide DNA methylation status identified tissue-specific 
hypomethylated transposable elements (TE) exhibiting enhancer activities26. We 
downloaded four groups of TEs that are hypomethylated in ESC H1, fetal brain/primary 
neural progenitor cells, adult breast epithelial cells, and PBMC/adult immune cells, 
respectively (Online Methods). Although DNA methylation data were not used for 
developing GenoSkyline, we were still able to provide highly consistent results, 
suggesting tissue-specific functionality of these TEs in ESC, brain, epithelium, and blood 
cell, respectively (Figure 3d). 
 
 
Analyzing tissue-specific enrichment for 15 human complex traits 
 
In the sections above, we demonstrated GenoSkyline’s ability of identifying tissue-
specific functional regions in the human genome. Next, we focus on how GenoSkyline 
could help us understand human complex traits. Finucane et al. recently proposed using 
LD score regression to partition heritability of complex traits by functional categories27. 
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We applied LD score regression on 15 human complex diseases and traits 
(Supplementary Table 6), and calculated the tissue-specific enrichments using 
GenoSkyline annotations (Online Methods). 
 
Our analysis successfully replicated some well-known findings and also provided novel 
insights to these complex traits (Figure 4; Supplementary Figure 3). For schizophrenia, 
enrichment in brain is much stronger than in any other tissue type (𝑝 = 6.52×10!!"), 
while highly significant enrichment could be observed in heart (𝑝 = 2.30×10!!) and 
blood (𝑝 = 1.65×10!!) as well. Brain is also the most enriched tissue for anorexia 
nervosa (𝑝 = 4.86×10!!) despite the substantially weaker signal. For three autoimmune 
diseases (Crohn’s disease, ulcerative colitis, and rheumatoid arthritis), the strongest 
enrichment was in blood. However, solid enrichment in GI could also be observed for 
both Crohn’s disease and ulcerative colitis, but not rheumatoid arthritis. Sex-stratified 
summary statistics were available for two anthropometric traits - body mass index (BMI) 
and waist-hip ratio (WHR) adjusted for BMI28,29. Therefore, we performed gender-
specific analyses for these two traits. Consistent with recently published results27, brain 
possesses the strongest enrichment for BMI. Interestingly, the enrichment in brain is 
stronger in female samples (𝑝 = 1.21×10!!) than in male samples (𝑝 = 2.39×10!!), 
while epithelial tissue may play a more important functional role in male samples 
(𝑝 = 1.34×10!! in males and 2.83×10!! in females). Some patterns of gender-specific 
enrichment were also observed for WHR. GI is the dominant tissue for females 
(𝑝 = 5.26×10!!) but seems less important in male samples (𝑝 = 2.95×10!!), while 
enrichment in muscle is consistent between males and females.  
 
It is worth noting that extra caution is needed when interpreting these enrichment results. 
For example, Finucane et al. reported connective/bone as the most enriched tissue type 
for human height27, but GenoSkyline annotations for this tissue is not available at this 
moment due to incomplete epigenomic data (Online Methods). Similarly, we are not yet 
able to investigate the relationship between lipid traits and liver tissue because of the lack 
of tissue-relevant functionality data.  
 
 
 
GWAS signal prioritization using tissue-specific functional annotations 
 
We recently developed Genome Wide Association Prioritizer (GenoWAP), and showed 
that GWAS signals could be better prioritized through integrating GWAS summary 
statistics with GenoCanyon annotation10. From the results of tissue-specific enrichment 
analysis, it could be seen that some complex traits are strongly related to a few tissue 
types. In this section, we show that the performance of GWAS signal prioritization could 
be further improved through integrating GenoSkyline annotations of relevant tissue types. 
 
Using both tissue-specific GS scores and GenoCanyon scores that quantify the overall 
functionality, we calculate the posterior probability 𝑃 𝑍! = 1,𝑍! = 1|𝑝  to measure the 
importance of each SNP. In this calculation, ZD is the indicator of disease/trait-specific 
functionality, ZT is the indicator of tissue-specific functionality, and p is the p-value 
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acquired from standard GWAS analysis (Online Methods). Psychiatric Genomics 
Consortium (PGC) has published two large GWAS meta-analyses for schizophrenia, a 
major psychiatric disorder. We applied our method to the smaller study30 and attempted 
to replicate the findings of the larger study31. This analysis demonstrates GenoSkyline’s 
ability to prioritize association signals that are more likely to be replicated in a larger 
sample. These two studies will be referred to as PGC2011 and PGC2014 studies in the 
following discussion. 
 
Enrichment analysis suggests that brain is the most enriched of schizophrenia GWAS 
signals compared with other tissue types, and strong enrichment could also be observed 
in heart and blood (Figure 4). For each SNP in the PGC2011 study, mean GenoCanyon 
score of its surrounding region and mean GS scores of brain, blood, and heart tissues 
were calculated (Online Methods). SNPs in these tissue-specific functional regions and 
the SNPs in general functional regions are all enriched for associations with 
schizophrenia (Figure 5a; Supplementary Figure 4). Notably, tissue-specific functional 
regions are more enriched for associations with schizophrenia relative to general 
functional regions, with blood showing the strongest enrichment. It is also worth noting 
that non-functional regions are enriched of GWAS associations as well, most likely due 
to the LD between functional and non-functional SNPs10.  
 
Next, we define a new SNP-level metric for the tissue-specific GenoSkyline posterior 
(GSP) scores (i.e. 𝑃 𝑍! = 1,𝑍! = 1|𝑝 ) of brain, blood, and heart, as well as the non-
specific functionality posterior (NSFP) scores (i.e. 𝑃 𝑍! = 1|𝑝 ; see Online Methods) 
for each SNP in PGC2011 study. Enrichment analysis using GTEx whole-blood eQTLs11 
found that the top SNPs based on tissue-specific GSP scores are substantially more 
enriched of eQTLs than NSFP scores and p-values. As expected, blood GSP scores 
showed the strongest enrichment of whole-blood eQTLs (Figure 5b). When using a set 
of quantitative trait loci in human brain32, tissue-specific GSP scores also showed 
superior performance, with the brain-specific scores dominating others as the number of 
top SNPs increase (Figure 5c and Supplementary Figure 5).  
 
A total of 108 schizophrenia-associated loci were identified in the PGC2014 study. We 
removed three loci on chromosome X due to the absence of SNPs on sex chromosomes in 
the PGC2011 dataset. All the SNPs in the PGC2011 study were ranked based on their p-
values, NSFP scores, and tissue-specific GSP scores, respectively (Supplementary 
Table 7). The maximum ranks at each of the 105 schizophrenia-associated loci based on 
these different criteria were then compared (Supplementary Table 8). Brain GSP score 
showed better performance in prioritizing these loci when compared with p-value. Sixty-
seven out of 105 loci had an increased rank (p-value=0.003, one-sided binomial test). The 
performance of heart GSP score was slightly worse than brain-specific score, but still 
better than p-value ranking. Blood GSP score showed comparable performance with p-
value ranking. Notably, the performance of brain and heart GSP scores was still 
significantly better than NSFP score, although NSFP score outperforms ranking based on 
p-value. 
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Tissue-specific functional annotations could provide even deeper insight when 
prioritizing SNPs locally at risk loci. The schizophrenia-associated locus on chromosome 
8q21 is located in the intergenic region upstream of MMP16 gene (Figure 5d). The p-
values in the PGC2014 study clearly suggested two signal peaks. One is located near the 
transcription start site of MMP16, while the other resides nearly 200,000 bases upstream 
and shows slightly stronger signal. However, the two-peak pattern was not clear in the 
PGC2011 study. Instead, two SNPs close to the end of the LD block near 89.8M showed 
the strongest signal. We compared the local predictions based on brain, heart, and blood-
specific GSP scores at this locus (Figure 5e). Brain GSP scores successfully revealed the 
multi-peak nature at this locus, suggested the importance of the peak near 89.6Mb, and 
diminished the signal strength at the two SNPs near 89.8Mb, concurrent with the 
PGC2014 results. Although the method was applied on PGC2011 p-values, the results 
after prioritization matched the signal pattern in the PGC2014 study very well. Heart GSP 
scores also suggested the existence of the signal peak near 89.6M. However, the posterior 
scores have lower values, and the overall signal pattern does not match the PGC2014 
study very well. The signal peak near 89.6M was completely lost in the blood-specific 
results. The two SNPs near 89.8M, however, had large GSP scores. The differences 
across tissue types are concurrent with GS scores at this locus (Figure 5d). Upstream of 
MMP16, near 89.6M, several functional segments can be seen in brain, only one remains 
in heart, and none exists in blood. Through comparing the tissue-specific prioritization 
results with the p-values in PGC2014 study, we see that brain-specific GSP scores had 
the strongest signal strength, which can be quantified using the local maximum GSP 
score (Online Methods). The highly matched signal pattern also suggested that brain 
might be the tissue type in which this locus plays a functional role.  
 
 
 
Further insight on risk loci associated with coronary artery disease 
 
Next, we applied our method to another GWAS to further illustrate the biological insight 
that GenoSkyline can provide for understanding complex diseases. The CARDIoGRAM 
consortium published a large-scale GWAS meta-analysis of coronary artery disease 
(CAD) comprising 22,333 cases and 64,762 controls33, in which they replicated 10 out of 
12 previously reported risk loci and identified 13 new loci associated with CAD. We 
applied our method on the summary statistics and used the local maximum GSP score to 
measure the relatedness between each risk locus and different tissue types (Online 
Methods). We removed the locus on chromosome 1q41 (MIA3) and the locus on 
chromosome 6q25.3 (LPA) due to incomplete data in the meta-analysis stage of 
CARDIoGRAM study. The remaining 21 CAD-associated loci are summarized in Table 
1 and Supplementary Table 9. 
 
The first impression of these results is that despite the strong overall enrichment of 
GWAS signals (Figure 4), heart is the most relevant tissue type for only two loci. On the 
contrary, a substantial proportion of risk loci (9 out of 21) seem to be functional in the GI 
tissue. Interestingly, GI was the most enriched tissue type for several known risk factors 
for CAD including LDL and total cholesterol (Figure 4). These results suggest not only 
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the larger effect sizes of CAD-associated loci in the gastrointestinal system, but also a 
substantial amount of undetected heart-related loci. Furthermore, brain was the least 
enriched tissue type for CAD GWAS signals, but the risk locus on chromosome 14q32.2 
near HHIPL1 and CYP46A1 was predicted to be functional in brain. In fact, the CYP46A1 
gene encodes for Cholesterol 24-hydroxylase that is present mainly in brain, where it 
converts cholesterol from degraded neurons into 24S-hydroxychoelesterol33,34. This 
process is crucial for eliminating cholesterol from the brain since cholesterol is usually 
unable to pass the blood-brain barrier35. 
 
A larger GWAS for CAD was published during the preparation of this manuscript36. This 
large study may be used to validate the performance of our approach when its summary 
statistics become publicly available in the future.  
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Discussion 
 
In this paper, we introduced GenoSkyline, an integrative framework for predicting tissue-
specific functional regions in the human genome. Through integrating GenoSkyline 
annotations with GWAS summary statistics, we illustrated a variety of ways that 
GenoSkyline could help researchers understand human complex diseases and traits. We 
also showed that the GenoSkyline framework is customizable so that researchers can 
develop their own functional annotations for a selected group of cells. As epigenomic 
ChIP-seq data become available for an increasing number of cell types in the future, 
GenoSkyline’s ability to facilitate studies of complex disease will be further enhanced. 
 
Our approach is not without limitation. First, the annotation results are incomplete due to 
currently unavailable tissue types, and as a result, the GWAS enrichment results may not 
be comprehensive (e.g. liver may also be highly related to CAD, but there is no complete 
annotation data from liver yet). Second, some risk loci (or independent functional 
segments at the same locus) may play active roles in multiple tissue types. For example, 
in our PGC GWAS analysis, although local maximum GSP scores suggest that brain may 
be more relevant with the risk locus upstream of MMP16, two SNPs near 89.8MB are 
located near several functional segments in blood. Whether these SNPs can be 
functionally linked to schizophrenia remains to be investigated. Moreover, we emphasize 
that our method identifies regions of likely functionality, but does not provide conclusive 
proof of functionality for any individual SNP or locus. That said, our method still 
provides a simple and intuitive summary statistic that measures the relatedness between 
risk loci and sets of functionally related tissues. It has great potential to become a 
standard step in downstream GWAS analysis to help researchers generate new 
hypotheses regarding the etiology behind each risk locus.  
 
The increasing accessibility of GWAS summary statistic datasets, coupled with the 
method’s independence from requiring individual-level genotype and phenotype, make 
Genoskyline tissue-specific prioritization useful and easy to implement. Moreover, 
GWAS signal integration is just one way to utilize GenoSkyline annotations. Its 
nucleotide-level functional prediction based on unsupervised learning and the good 
predictive performance in non-coding regions promise a potential role in many fields of 
genomics, such as next-generation sequencing studies and understanding somatic 
mutations. GenoSkyline scores of seven tissue types and two additional cell types have 
been pre-calculated for the entire human genome and can be readily downloaded. Source 
code is available for all major OSes and can be accessed at 
(http://genocanyon.med.yale.edu/GenoSkyline). We believe that GenoSkyline and its 
applications can guide genetics research at multiple resolutions and greatly benefit the 
broader scientific community. 
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Online Methods 
 
Consolidated epigenomes 
 
Epigenetic data were selected from the Epigenomics Roadmap Project’s 111 consolidated 
reference epigenomes database3 (http://egg2.wustl.edu/roadmap/) based on anatomy type 
and mark availability. Each tissue type is a clustering of relevant samples in order to 
contain at least one of each of the following: H3k4me1, H3k4me3, H3k36me3, 
H3k27me3, H3k9me3, H3k27ac, H3k9ac, and DNase I Hypersensitivity. Samples are 
reduced to a per-nucleotide binary encoding of presence or absence of narrow contiguous 
regions of ChIP-seq signal enrichment compared to input (Poisson p-value threshold of 
0.01), and a union of all tissue-specific samples for that mark is taken. The set of 8 marks 
was chosen due to the well-understood, localized regulatory interactions of histone 
marks37 and DNase I38. We created nine unique tissue and cell type clusters based on 
these annotations (Supplementary Table 1) to represent common, physiologically-
related organ systems. To reflect actual tissue-specific epigenetic behavior, a majority of 
samples chosen are primary tissues and cultures, and inclusion of immortalized cell lines 
has been kept to a minimum. 
 
 
GenoSkyline model and estimation  
 
Lu et al. previously proposed a method that applies unsupervised-learning techniques on 
genomic annotations to predict the functional potential of a genomic region4. Given a set 
of annotations A, we assume the joint distribution of A along the genome to be a mixture 
of annotations at locations with no functionality, i.e. f(A | Z = 0), and annotations at 
locations that are functional, i.e. f(A | Z = 1). We assume that each annotation in A is 
conditionally independent given Z, allowing the conditional joint density of A given Z to 
be factorized as 

 
𝑓 𝑨 𝑍 = 𝑐 = 𝑓! 𝐴! 𝑍 = 𝑐 , 𝑐 = 0, 1

!

!!!
   (1) 

 
Since all annotations used are binary classifiers, the Bernoulli distribution was used to 
model the marginal functional likelihood given each individual annotation.  
 
 𝑓! 𝐴! 𝑍 = 𝑐 = 𝑝!"

!!(1− 𝑝!")!!!! , 𝑖 = 1,… ,8;   𝑐 = 0, 1 (2) 
 
Assuming a prior probability 𝜋 of being functional (𝜋 = 𝑃(𝑍 = 1)), we can estimate the 
parameter 𝑝!" of each annotation with the Expectation-Maximization (EM) algorithm, 
and calculate the posterior probability at a given genomic coordinate, referred to as the 
GS score. 
 
     
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 6, 2015. ; https://doi.org/10.1101/028464doi: bioRxiv preprint 

https://doi.org/10.1101/028464
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
𝑃 𝑍 = 1 𝑨 =

𝜋𝑓 𝑨 𝑍 = 1
𝜋𝑓 𝑨 𝑍 = 1 + 1− 𝜋 𝑓 𝑨 𝑍 = 0   

=
𝜋 𝑓!(𝐴!|𝑍 = 1)!

!!!

𝜋 𝑓!(𝐴!|𝑍 = 1)!
!!! + 1− 𝜋 𝑓!(𝐴!|𝑍 = 0)!

!!!
 

(3) 

 
 
We must estimate 17 parameters for each tissue tract.  
 
 𝚯 = (𝜋,𝑷𝟏,𝑷𝟎) (4) 
 
Where 
 
 𝑷𝒄 = 𝑝!! ,𝑝!! ,…    ,𝑝!!   ,      𝑐 = 0,1 (5) 
 
Parameters were estimated using the GWAS Catalog6, downloaded from the NHGRI 
website (http://www.genome.gov/gwastudies/), which at the time of download, contained 
13,070 unique SNPs found to be significant in at least one published GWAS. These SNPs 
were expanded into 1k bp intervals, and formed a genome sampling covering 12,801,840 
bp of the genome. While significant SNP associations are likely to tag the effects of 
nearby functional elements, the size and distance of these functional elements varies for 
each individual SNP. As a result, the total sampling serves as an effective and robust 
representation of functional and non-functional regions along the genome (Supplemental 
Notes). 
 
 
Case studies of experimentally validated functional machinery 
   
VISTA enhancers14 were downloaded from the VISTA Enhancer Browser 
(http://enhancer.lbl.gov/), where enhancers with E11.5 reporter staining experimental 
data were selected. Brain enhancers were selected based on staining results identifying 
any CNS-related tissues (neural tube, cranial nerve, hindbrain, mesenchyme derived from 
neural crest, trigeminal V, forebrain, and midbrain). Heart enhancers were enhancers 
identified for positive reporter results in the heart region of E11.5 mouse reporter assays. 
Blood vessels enhancers were identified by selecting for “blood vessels” expression 
pattern. Hypomethylated TE loci in H1ES, brain, breast, and blood were downloaded 
from http://epigenome.wustl.edu/TE_Methylation/. All genomic coordinates were 
converted to genome build hg19. 
 
 
SNP prioritization using tissue-specific functional annotation 
 
We identify three disjoint cases for a given GWAS SNP: 
 
I. The SNP is in a genomic region that is functional for the given phenotype and tissue 
(ZD = 1, ZT = 1). 
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II. The SNP is in a genomic region that is functional for the given tissue, but that tissue 
has no functionality in the phenotype (ZD = 0, ZT = 1). 
 
III. The SNP is in a genomic region that is not functional in the given tissue (ZT = 0). 
 
A useful metric for prioritizing SNPs is the conditional probability that the SNP is 
classified under case-I given its p-value in a given GWAS study, i.e. P(ZD =1, ZT = 1| p). 
We can calculate this probability by employing Bayes formula and considering all three 
cases as follows: 
 

 
𝑃 𝑍! = 1,𝑍! = 1     𝑝)

=   
𝑓 𝑝 𝑍! = 1,𝑍! = 1 ×𝑃(𝑍! = 1,𝑍! = 1)

𝑓 𝑝 𝑍! = 1,𝑍! = 1 ×𝑃 𝑍! = 1,𝑍! = 1 + 𝑓 𝑝   𝑍! = 0,𝑍! = 1)×𝑃(𝑍! = 0,𝑍! = 1) + 𝑓(𝑝 𝑍! = 0 ×𝑃(𝑍! = 0) 

 
(6) 

 
First, the case in which ZT = 0 can be directly identified by assigning each SNP a prior 
probability of tissue-specific functionality (i.e. 𝑃(𝑍! = 1)) defined as the average GS 
score of its surrounding 10,000 base pairs for that tissue (Supplementary Notes). We 
partition all the SNPs into two subgroups based on a mean GS score threshold of 0.1, 
although these probabilities take on a bimodal distribution and are not sensitive to 
changing threshold10. In this way, we can use these partitions to directly estimate f(p|ZT = 
0) by applying density estimation techniques on the SNP subgroup with low GS scores. 
More specifically, we apply histogram for density estimation and use cross validation to 
choose the optimal number of bins.  
 
Second, we estimate the p-value density of our second case, where ZD = 0 and ZT = 1. We 
can intuitively assume that SNPs that are functional in a tissue but not relevant to the 
phenotype will have similar p-value behavior to all other SNPs that are not relevant to the 
phenotype, which in turn behave similarly to SNPs that are not functional at all 
(Supplementary Notes). More formally, we can describe this relationship as follows: 
 
 𝑓 𝑝 𝑍! = 0,𝑍! = 1 = 𝑓(𝑝|𝑍! = 0) = 𝑓(𝑝|𝑍 = 0) (7) 
 
We can effectively estimate 𝑓 𝑝 𝑍 = 0  by using a similar approach to estimating 
𝑓(𝑝 𝑍! = 0 , but partitioning SNPs using the general functionality GenoCanyon score 
instead of tissue-specific GS score.  
 
Next, we consider the following formulas. 
 
 𝑃 𝑍! = 1,𝑍! = 1 = 𝑃 𝑍! = 1 𝑍! = 1 ×𝑃 𝑍! = 1  (8) 
 
 𝑃 𝑍! = 0,𝑍! = 1 = 𝑃 𝑍! = 0 𝑍! = 1)×𝑃(𝑍! = 1) (9) 
 
The prior probability 𝑃 𝑍! = 1   can be calculated directly from GS scores as stated 
above, but the conditional probabilities of disease-specific functionality given tissue-
specific functionality remains to be estimated.  
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Finally, we estimate all the remaining terms in formula 4 using the EM algorithm. In the 
first step of the estimation procedure, we acquired the subset of SNPs located in tissue-
specific functional regions. The p-value distribution of these SNPs is the following 
mixture. 
 
 𝑓 𝑝 𝑍! = 1 = 𝑃 𝑍! = 1 𝑍! = 1 ×𝑓 𝑝 𝑍! = 1,𝑍! = 1

+ 𝑃 𝑍! = 0 𝑍! = 1 ×𝑓 𝑝 𝑍! = 0,𝑍! = 1  (10) 

 
Density 𝑓 𝑝 𝑍! = 0,𝑍! = 1  has been estimated in earlier steps. Applying the findings 
of Chung et al., we assume a beta distribution of the p-values of functional SNPs (i.e. 
𝑓 𝑝 𝑍! = 1,𝑍! = 1 ) as a reasonable approximation under general assumptions of SNP 
effect size9. 
 
 𝑝 𝑍! = 1,𝑍! = 1   ~  𝐵𝑒𝑡𝑎 𝛼, 1 , 0 < 𝛼 < 1 (11) 
 
The EM algorithm is then applied to the SNP subset located in tissue-specific functional 
regions. The beta assumption guarantees a closed-form expression in each iteration and 
all the remaining parameters can be subsequently estimated. We now have all the 
necessary terms for equation 4, and define this as our posterior probability score of 
tissue-specific disease functionality (GSP score). The feature of integrating tissue-
specific functional annotations to prioritize GWAS signals has been added to the 
GenoWAP software available on our server 
(http://genocanyon.med.yale.edu/GenoSkyline). 
 
 
SNP prioritization using GenoCanyon annotation 
 
Non-tissue specific GenoCanyon scores are assigned to GWAS signals using 
GenoWAP10. Briefly, GenoWAP calculates the posterior score 𝑃 𝑍! = 1 𝑝  using a 
simpler model for functionality. 
 
 

𝑃 𝑍! = 1 𝑝 =
𝑓(𝑝|𝑍! = 1)×𝑃(𝑍! = 1)

𝑓 𝑝 𝑍! = 1 ×𝑃 𝑍! = 1 + 𝑓(𝑝|𝑍! = 0)×𝑃(𝑍! = 0)	
  

 
(12) 

This conditional probability can be calculated similarly to GS scores, making use of 
equation (5) to empirically estimate 𝑓 𝑝 𝑍! = 0 , a beta distribution on partitioned 
Genocanyon scores (calculated with 22 tissue non-specific ENCODE functionality 
annotations4) to estimate 𝑓 𝑝 𝑍! = 1 , and the EM algorithm on the functional marker p-
value density to calculate 𝑃(𝑍! = 1) as described in Lu et al. These are referred to in the 
results as the NSFP scores to which GenoSkyline SNP prioritization is compared. 
 
 
Calculating tissue-specific enrichment using LD score regression 
 
Enrichment of GenoSkyline-derived tissue-specific annotations in GWAS summary 
statistics was calculated using stratified LD score regression27. First, tissue-specific 
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annotations were computed using GenoSkyline scores, 1000 Genomes data of European 
ancestry39 and a 1-centiMorgan (cM) window. Then the annotations were analyzed by 
adding each one of them to the full baseline model to control for 53 categories of general 
annotations. For each tissue-specific annotation, partitioned heritability was estimated 
using stratified LD score regression27 and enrichment was then calculated as the ratio of 
proportion of SNP heritability explained by the annotation and proportion of SNPs in the 
annotation. 
 
 
Measuring relevant tissue types for GWAS risk loci 
 
A large GSP score is obtained if the p-value for the SNP is small and the SNP is located 
in a highly functional region for the tissue type under investigation. Therefore, the 
maximal GSP score at a risk locus effectively measures how well the p-values match the 
pattern of GenoSkyline annotations, thereby measuring the relatedness between the 
GWAS locus and different tissue types. For each tissue, the maximal GSP score is 
acquired at the risk locus of interest. These scores are then compared across tissue types. 
The largest score is referred to as local maximum GSP score, and the corresponding 
tissue type is predicted to be the most relevant tissue. 
 
 
Bioinformatics tools 
 
Locus plots were generated using LocusZoom40. The “ggbio” R package41 was used to 
plot genes. The “bigmemory” R package42 was used to access and manipulate massive 
dataset. 
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Figures and Tables 
 
Figure 1. General characteristics of GenoSkyline annotations. (a) Number of tissues in 
which nucleotides are functional. (b) Proportion of functional genome for each tissue 
type. (c) Overlap of functional regions across seven tissue types. The scale is log odds 
ratio. 
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Figure 2. Case studies of HBB gene complex, in vivo enhancers, and regulatory miRNAs. 
(a) Comparison of GenoCanyon prediction and GenoSkyline scores for seven tissues in 
HBB gene complex region. Red boxes mark the locations of CRMs. The number of red 
boxes is less than 23 because some CRMs are next to each other. (b) Mean blood-specific 
GS score for different region categories. (c) Boxplot of mean GS scores for enhancers in 
CNS, heart, and blood vessel. (d) Boxplot of mean GS scores for 11 human-accelerated 
elements near NPAS3. (e) Boxplot of mean GS scores for tissue-specific regulatory 
miRNAs. 
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Figure 3. Case studies of MHC, ZRS, and hypomethylated TEs. (a) GenoSkyline scores 
for seven tissues in the genomic region surrounding MYH6 and MYH7. (b) ESC-specific 
and fetal-cell-specific GS scores for the 5th intron of LMBR1. The red box marks the 
location of ZRS. (c) Bar plot of the mean GS scores for the 5th intron of LMBR1 and 
ZRS across nine tissue and cell types. (d) Boxplot of mean GS scores for four groups of 
hypomethylated TEs. 
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Figure 4. Tissue-specific enrichment of GWAS signals. Enrichment p-values were 
calculated using LD score regression. The grey line is the 0.05 cutoff for p-value. 
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Figure 5. Prioritizing schizophrenia GWAS signals using GenoSkyline annotations. (a) 
Tissue-specific functional regions are more enriched of schizophrenia associations than 
generally functional regions and non-functional regions. (b) Enrichment of GTEx whole-
blood eQTLs in top SNPs from PGC2011 study. (c) Enrichment of human brain 
quantitative trait loci in top SNPs from PGC2011 study. (d) Summary statistics at the 
schizophrenia-associated locus on chromosome 8q21 near MMP16 gene. The top and 
middle panel show p-values from PGC2011 and PGC2-14 studies, respectively. The 
bottom panel shows GenoSkyline annotations at this locus. (e) Locus plots for tissue-
specific posterior scores. From top to bottom, the three panels show posterior scores of 
brain, heart, and blood tissues, respectively.  
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Table 1.  Risk loci for coronary artery disease 
 

Chr Starta Stopa Genes in region Tissue typeb Posterior scorec 
1p13.3 109,700,000 109,900,000 SORT1 GI 0.99991 
2q33.1 203,600,000 204,000,000 WDR12 GI 0.99999 
3q22.3 137,900,000 138,200,000 MRAS Heart 0.99625 
6p24.1 12,700,000 13,100,000 PHACTR1 GI 0.99997 
9p21.3 21,900,000 22,200,000 CDKN2A, CDKN2B NAd NAd 
10q11.21 44,400,000 44,900,000 CXCL12 GI 0.83314 
19p13.2 11,000,000 11,400,000 LDLR Blood 0.99967 
21q22.11 35,500,000 35,700,000 MRPS6 Lung 0.9993 
1p32.2 56,900,000 57,100,000 PPAP2B GI 0.99699 
6p21.31 34,600,000 35,300,000 ANKS1A Heart 0.95156 
6q23.2 134,000,000 134,300,000 TCF21 GI 0.99998 
7q32.2 129,600,000 129,900,000 ZC3HC1 Muscle 0.9995 
9q34.2 136,000,000 136,400,000 ABO GI 0.99531 
10q24.32 104,400,000 105,000,000 CYP17A1, CNNM2,  

NT5C2 
GI 0.94966 

11q23.3 116,500,000 116,700,000 ZNF259,  
APOA5-A4-C3-A1 

Blood 0.9997 

13q34 110,700,000 111,200,000 COL4A1, COL4A2 Muscle 0.99704 
14q32.2 100,000,000 100,300,000 HHIPL1, CYP46A1 Brain 0.97293 
15q25.1 78,900,000 79,200,000 ADAMTS7 Muscle 0.99934 
17p13.3 2,000,000 2,300,000 SMG6, SRR GI 0.98812 
17p11.2 17,400,000 18,000,000 RASD1, SMCR3, PEMT Blood 0.96864 
17q21.32 46,800,000 47,200,000 UBE2Z, GIP, ATP5G1,  

SNF8 
Blood 0.96206 

aThese coordinates are the roughly estimated boundaries of risk loci. The inference of 
relevant tissues is not sensitive to the boundary coordinates. 
bThe tissue type that provides the largest local maximum posterior score. 
cLocal maximum GSP score for the most relevant tissue type. 
dNot applicable due to ties. See Supplementary Table 9. 
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Supplementary Notes 
 
Bimodal pattern in GenoSkyline score 
 
When estimating the proportion of functional genome for each tissue type, we adopted 
0.5 as the cutoff for GS score. The GS score histograms for different tissues on 
chromosome 22 are plotted in Supplementary Figure 6. The GS score distributions have 
a clear and consistent bimodal pattern across different tissue types. The similar bimodal 
pattern can also be observed for other chromosomes. Therefore, the cutoff choice does 
not substantially affect the estimation of functional proportion. 
 
 
Robustness of GenoSkyline parameter estimation 
 
The parameters in the GenoSkyline framework were estimated from a set of 12,801,840 
bases acquired from GWAS catalog. The reason of using this GWAS-based set is to 
guarantee the inclusion of a sufficient amount of functional bases. In our previous work, 
we showed that parameter estimation under this framework is robust4. Here, all the 17 
parameters were re-estimated after adding 2,000,000 and 6,000,000 bases randomly 
selected from chromosome 1 to the initial set containing 12,801,840 bases. The parameter 
estimates remained highly stable (Supplementary Table 10). These results show that 
GenoSkyline parameter estimation is insensitive to the choice of the initial set. 
 
 
Several remarks on GSP score  
 
For GSP score calculation, we used the mean GS score of the surrounding 10,000 bases 
as the prior probability 𝑃(𝑍! = 1) for each SNP. This is because the nucleotide-level GS 
score may be insufficient for GWAS signal prioritization. In fact, each SNP in GWAS 
carries information of its nearby variants that are not genotyped or imputed. A better-
informed metric needs to measure the functional potential for the surrounding region of 
each SNP. We chose 10,000 bases as the window size, but no substantial difference in 
empirical performance was observed when changing the window size to 5,000 or 20,000. 
In our implemented GenoWAP software for SNP prioritization (available at 
http://genocanyon.med.yale.edu/GenoSkyline), the users are allowed to use their own 
annotation data. Therefore, the window size can be changed when necessary. Since the 
mean GS score of surrounding regions was used as the prior, our SNP prioritization 
approach is in fact a region-based tool. We emphasize again that it identifies regions of 
likely functionality and substantially improves the resolution of GWAS, but does not 
provide conclusive proof of functionality for any individual SNP or locus.  
 
In order to calculate the GSP score, we assumed that SNPs that are functional in a tissue 
not relevant to the phenotype would have similar p-value behavior to all other SNPs that 
are not relevant to the phenotype, which in turn behave similarly to SNPs that are not 
functional at all (see equation 7 in Online Methods). This assumption may not hold 
exactly due to some intrinsic differences between SNPs located in non-functional regions 
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(Z=0) and those in non-specific functional (Z=1) and tissue-specific functional regions 
(ZT=1). As far as we are aware, the main possible contributing factor may be different 
linkage disequilibrium (LD) patterns in those regions with Z = 0 and those with Z = 1 or 
ZT=1. For example, if there is stronger LD in ZT = 1 regions, then the markers with ZD = 
0 and ZT = 1 may have a different p-value distribution from those with Z = 0.  
 
In order to check if this is a serious issue, we compared the LD patterns in regions with Z 
= 0, Z =1, and ZT = 1 for multiple tissue types on chromosome 22. We downloaded the 
pre-calculated LD scores43 for the 1000 Genomes European population from the LD 
score GitHub page (https://github.com/bulik/ldsc/wiki/LD-Score-Estimation-Tutorial). 
Based on cutoff 0.1 for GenoCanyon and GenoSkyline scores, we divided all the SNPs 
on chromosome 22 into tissue-specific functional, non-specific functional and non-
functional subcategories. The kernel density estimates of the two subgroups are plotted in 
Supplementary Figure 7. It can be seen that there is no substantial difference of LD 
score distributions between different categories. Therefore, it is reasonable to assume the 
LD patterns in regions with Z = 0, Z = 1, and ZT = 1 to be similar. Moreover, as ZD = 1 is 
a relatively small proportion of Z = 1, this assumption is likely to be a good 
approximation.  
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Supplementary Figure 1. Mean GS score for different region categories in HBB gene 
complex across seven tissue types. For each tissue, the four bars from left to right 
indicate all 23 CRMs, adult CRMs, all genes, and adult globins, respectively. 
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Supplementary Figure 2. GenoCanyon score and GenoSkyline scores for seven tissues 
in the 5th intron of LMBR1. The red box marks the location of ZRS. 
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Supplementary Figure 3. Tissue-specific fold enrichment of GWAS signals.  
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Supplementary Figure 4. Histograms of p-values for SNPs located in non-functional, 
functional, and tissue-specific functional regions. 
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Supplementary Figure 5. Fold enrichment of eQTLs in top SNPs from PGC2011 study. 
(a) GTEx whole-blood eQTLs. (b) Human brain quantitative trait loci. 
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Supplementary Figure 6. Distribution of GenoSkyline scores on chromosome 22.  
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Supplementary Figure 7. Comparison of LD score densities on chromosome 22 across 
different SNP categories.  
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Supplementary Table 1. Cell types used for developing GenoSkyline annotations of 
seven tissue types. 
 

Tissue EIDa Anatomy Standardized Epigenome Name Type 

Brain 

E054 BRAIN Ganglion Eminence derived primary cultured neurospheres PrimaryCulture 
E053 BRAIN Cortex derived primary cultured neurospheres PrimaryCulture 
E071 BRAIN Brain Hippocampus Middle PrimaryTissue 
E074 BRAIN Brain Substantia Nigra PrimaryTissue 
E068 BRAIN Brain Anterior Caudate PrimaryTissue 
E069 BRAIN Brain Cingulate Gyrus PrimaryTissue 
E072 BRAIN Brain Inferior Temporal Lobe PrimaryTissue 
E067 BRAIN Brain Angular Gyrus PrimaryTissue 
E073 BRAIN Brain Dorsolateral Prefrontal Cortex PrimaryTissue 
E070 BRAIN Brain Germinal Matrix PrimaryTissue 
E082 BRAIN Fetal Brain Female PrimaryTissue 
E081 BRAIN Fetal Brain Male PrimaryTissue 

GI 

E078 GI_DUODENUM Duodenum Smooth Muscle PrimaryTissue 
E076 GI_COLON Colon Smooth Muscle PrimaryTissue 
E103 GI_RECTUM Rectal Smooth Muscle PrimaryTissue 
E111 GI_STOMACH Stomach Smooth Muscle PrimaryTissue 
E092 GI_STOMACH Fetal Stomach PrimaryTissue 
E085 GI_INTESTINE Fetal Intestine Small PrimaryTissue 
E084 GI_INTESTINE Fetal Intestine Large PrimaryTissue 
E109 GI_INTESTINE Small Intestine PrimaryTissue 
E106 GI_COLON Sigmoid Colon PrimaryTissue 
E075 GI_COLON Colonic Mucosa PrimaryTissue 
E101 GI_RECTUM Rectal Mucosa Donor 29 PrimaryTissue 
E102 GI_RECTUM Rectal Mucosa Donor 31 PrimaryTissue 
E110 GI_STOMACH Stomach Mucosa PrimaryTissue 
E077 GI_DUODENUM Duodenum Mucosa PrimaryTissue 
E079 GI_ESOPHAGUS Esophagus PrimaryTissue 
E094 GI_STOMACH Gastric PrimaryTissue 

Lung 
E017 LUNG IMR90 fetal lung fibroblasts Cell Line CellLine 
E088 LUNG Fetal Lung PrimaryTissue 
E096 LUNG Lung PrimaryTissue 

Heart 

E083 HEART Fetal Heart PrimaryTissue 
E104 HEART Right Atrium PrimaryTissue 
E095 HEART Left Ventricle PrimaryTissue 
E105 HEART Right Ventricle PrimaryTissue 
E065 VASCULAR Aorta PrimaryTissue 

Blood 

E062 BLOOD Primary mononuclear cells from peripheral blood PrimaryCell 
E034 BLOOD Primary T cells from peripheral blood PrimaryCell 
E045 BLOOD Primary T cells effector/memory enriched from peripheral blood PrimaryCell 
E033 BLOOD Primary T cells from cord blood PrimaryCell 
E044 BLOOD Primary T regulatory cells from peripheral blood PrimaryCell 
E043 BLOOD Primary T helper cells from peripheral blood PrimaryCell 
E039 BLOOD Primary T helper naive cells from peripheral blood PrimaryCell 
E041 BLOOD Primary T helper cells PMA-I stimulated PrimaryCell 
E042 BLOOD Primary T helper 17 cells PMA-I stimulated PrimaryCell 
E040 BLOOD Primary T helper memory cells from peripheral blood 1 PrimaryCell 
E037 BLOOD Primary T helper memory cells from peripheral blood 2 PrimaryCell 
E048 BLOOD Primary T CD8+ memory cells from peripheral blood PrimaryCell 
E038 BLOOD Primary T helper naive cells from peripheral blood PrimaryCell 
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E047 BLOOD Primary T CD8+ naive cells from peripheral blood PrimaryCell 
E029 BLOOD Primary monocytes from peripheral blood PrimaryCell 
E031 BLOOD Primary B cells from cord blood PrimaryCell 
E035 BLOOD Primary hematopoietic stem cells PrimaryCell 
E051 BLOOD Primary hematopoietic stem cells G-CSF-mobilized Male PrimaryCell 
E050 BLOOD Primary hematopoietic stem cells G-CSF-mobilized Female PrimaryCell 
E036 BLOOD Primary hematopoietic stem cells short term culture PrimaryCell 
E032 BLOOD Primary B cells from peripheral blood PrimaryCell 
E046 BLOOD Primary Natural Killer cells from peripheral blood PrimaryCell 
E030 BLOOD Primary neutrophils from peripheral blood PrimaryCell 

Muscle 

E100 MUSCLE Psoas Muscle PrimaryTissue 
E108 MUSCLE Skeletal Muscle Female PrimaryTissue 
E107 MUSCLE Skeletal Muscle Male PrimaryTissue 
E089 MUSCLE Fetal Muscle Trunk PrimaryTissue 
E090 MUSCLE_LEG Fetal Muscle Leg PrimaryTissue 
E052 MUSCLE Muscle Satellite Cultured Cells PrimaryCulture 

Epithelium 

E055 SKIN Foreskin Fibroblast Primary Cells skin01 PrimaryCulture 
E056 SKIN Foreskin Fibroblast Primary Cells skin02 PrimaryCulture 
E059 SKIN Foreskin Melanocyte Primary Cells skin01 PrimaryCulture 
E061 SKIN Foreskin Melanocyte Primary Cells skin03 PrimaryCulture 
E057 SKIN Foreskin Keratinocyte Primary Cells skin02 PrimaryCulture 
E058 SKIN Foreskin Keratinocyte Primary Cells skin03 PrimaryCulture 
E028 BREAST Breast variant Human Mammary Epithelial Cells (vHMEC) PrimaryCulture 
E027 BREAST Breast Myoepithelial Primary Cells PrimaryCell 

a	
  Epigenome	
  ID	
  in	
  Roadmap	
  project	
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Supplementary Table 2. Proportion of functional genome across seven tissue types 
under GS score cutoff 0.5. 
 

 
Brain GI Lung Heart Blood Muscle Epithelium 

Chr 1 0.097 0.116 0.059 0.073 0.099 0.084 0.109 
Chr 2 0.078 0.099 0.054 0.060 0.083 0.072 0.092 
Chr 3 0.078 0.096 0.050 0.063 0.080 0.072 0.090 
Chr 4 0.054 0.068 0.034 0.042 0.051 0.047 0.065 
Chr 5 0.073 0.082 0.047 0.057 0.069 0.063 0.082 
Chr 6 0.079 0.099 0.053 0.062 0.090 0.075 0.095 
Chr 7 0.079 0.090 0.051 0.061 0.080 0.070 0.090 
Chr 8 0.074 0.086 0.051 0.062 0.073 0.070 0.088 
Chr 9 0.085 0.099 0.056 0.061 0.075 0.074 0.094 
Chr 10 0.098 0.116 0.064 0.079 0.093 0.091 0.103 
Chr 11 0.111 0.121 0.069 0.079 0.098 0.090 0.120 
Chr 12 0.091 0.109 0.061 0.073 0.104 0.083 0.114 
Chr 13 0.054 0.061 0.038 0.044 0.052 0.048 0.062 
Chr 14 0.083 0.095 0.052 0.059 0.088 0.071 0.086 
Chr 15 0.088 0.102 0.060 0.071 0.085 0.078 0.099 
Chr 16 0.102 0.120 0.069 0.072 0.107 0.090 0.119 
Chr 17 0.158 0.182 0.105 0.112 0.168 0.144 0.183 
Chr 18 0.071 0.081 0.049 0.058 0.063 0.059 0.079 
Chr 19 0.152 0.175 0.100 0.110 0.189 0.138 0.200 
Chr 20 0.117 0.136 0.074 0.084 0.120 0.101 0.131 
Chr 21 0.061 0.083 0.047 0.045 0.074 0.062 0.077 
Chr 22 0.118 0.131 0.073 0.090 0.122 0.104 0.128 
Chr X 0.029 0.039 0.019 0.023 0.041 0.030 0.034 
Chr Y 0.001 0.005 0.001 0.003 0.006 0.001 0.004 
Overall 0.082 0.097 0.054 0.063 0.084 0.073 0.094 
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Supplementary Table 3. Mean GS scores for functional elements in the HBB gene 
complex. 
 

 Name Starta Stopa Brain GI Lung Heart Blood Muscle Epithelium 

Genes in 
HBB gene 
complex 

HBB 5246696 5248301 0.0232 0.0100 0.0017 0.0013 0.7336 0.0008 0.0029 
HBD 5254059 5255858 0.0013 0.0138 0.3161 0.0014 0.8895 0.0010 0.0340 
HBBP1 5263184 5264822 0.0012 0.0097 0.0527 0.0020 0.4709 0.0008 0.0258 
HBG1 5269502 5271087 0.0010 0.0016 0.0017 0.0014 0.0668 0.0008 0.0030 
HBG2 5274421 5276011 0.0010 0.0015 0.0018 0.0013 0.1430 0.0008 0.0033 
HBE1 5289580 5291373 0.0135 0.0007 0.0017 0.0015 0.0003 0.0008 0.0034 

CRMs in 
HBB gene 
complex 

3’HS1 5226013 5226493 0.0063 0.0089 0.0346 0.0186 0.0090 0.0130 0.3177 
HBB_3’enh 5245876 5246140 0.0014 0.0005 0.0022 0.0013 0.9062 0.0008 0.0030 
HBB_prom 5248301 5248556 0.0018 0.0150 0.0016 0.0013 0.0003 0.0008 0.0023 
HBD_prom 5255713 5256160 0.0014 0.0005 0.3528 0.0013 0.9999 0.0008 0.0595 
HBG1_3’enh 5268365 5269114 0.0010 0.0005 0.0193 0.0013 0.6284 0.0008 0.0216 
HBG1_prom 5271086 5271290 0.0010 0.0005 0.0017 0.0013 0.0003 0.0008 0.0030 
HBG1_up 5271291 5271813 0.0010 0.0005 0.0201 0.0013 0.0494 0.0008 0.0029 
HBG2_prom 5276011 5276214 0.0010 0.0005 0.0017 0.0013 0.0040 0.0008 0.0030 
HBG2_up 5276215 5276745 0.0010 0.0005 0.0270 0.0013 0.0535 0.0043 0.0204 
HBE1_prom 5291175 5291343 0.0010 0.0011 0.0017 0.0016 0.0003 0.0008 0.0047 
HBE1_up 5291344 5291610 0.0041 0.0006 0.0017 0.0120 0.0008 0.0008 0.0031 
HBE1_PRB 5292690 5292886 0.0010 0.0005 0.0016 0.0021 0.0003 0.0008 0.0015 
HBE1_NRB 5292886 5292928 0.0010 0.0005 0.0017 0.0013 0.0003 0.0008 0.0030 
HBE1_PRA 5293982 5294081 0.0010 0.0005 0.0017 0.0013 0.3566 0.0008 0.0030 
HBE1_NRA 5294082 5294308 0.0010 0.0005 0.0017 0.0013 0.0535 0.0008 0.0030 
HS1 5296894 5297517 0.0010 0.0007 0.0403 0.0013 0.9625 0.0040 0.1062 
HS2_pos 5301795 5302089 0.2231 0.4767 0.0604 0.4046 0.6358 0.0336 0.7855 
HS2_neg 5302090 5302174 0.0833 0.4471 0.0635 0.0094 1.0000 0.0051 0.9195 
HS3 5305882 5306169 0.0010 0.0005 0.0017 0.0013 0.5671 0.0008 0.0044 
HS3.1 5306356 5306418 0.0010 0.0005 0.0022 0.0013 0.0233 0.0008 0.0030 
HS3.2 5306814 5307392 0.0010 0.0005 0.0071 0.0013 0.4680 0.0008 0.9783 
HS4 5309419 5309707 0.0010 0.2965 0.5436 0.0013 0.4414 0.0008 0.9378 
HS5 5312534 5312694 0.0010 0.0163 0.0543 0.0013 0.0890 0.0008 0.8171 

a hg19 coordinates 
 
  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 6, 2015. ; https://doi.org/10.1101/028464doi: bioRxiv preprint 

https://doi.org/10.1101/028464
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Table 4. Mean GS scores for functional elements near MYH6 and MYH7. 
 

Name Locationa Brain GI Lung Heart Blood Muscle Epithelium 
MYH6 chr14: 23851199-23877486 0.0562 0.0055 0.0052 0.6050 0.0356 0.1749 0.0833 
MYH7 chr14: 23881947-23904870 0.2315 0.0199 0.0051 0.9788 0.0028 0.7498 0.0739 
mir208a chr14: 23857805-23857875 0.0010 0.0011 0.0026 0.2331 0.0004 0.0040 0.2066 
mir208b chr14: 23887196-23887272 0.0010 0.0011 0.0028 1.0000 0.0004 0.4221 0.0047 
hs1670 chr14: 23906587-23908214 0.9203 0.9660 0.0306 1.0000 0.1639 1.0000 0.2983 
hs2330 chr14: 23911613-23912923 0.2340 0.2818 0.0024 0.9999 0.0025 0.9999 0.1892 

a Coordinates are based on hg19. 
  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 6, 2015. ; https://doi.org/10.1101/028464doi: bioRxiv preprint 

https://doi.org/10.1101/028464
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Table 5. Cell types used for developing GenoSkyline annotations of 
ESC and fetal cells. 
 
 

Group EIDa Anatomy Standardized Epigenome Name Type 

ESC 

E002 ESC ES-WA7 Cells PrimaryCulture 
E008 ESC H9 Cells PrimaryCulture 
E001 ESC ES-I3 Cells PrimaryCulture 
E015 ESC HUES6 Cells PrimaryCulture 
E014 ESC HUES48 Cells PrimaryCulture 
E016 ESC HUES64 Cells PrimaryCulture 
E003 ESC H1 Cells PrimaryCulture 
E024 ESC ES-UCSF4  Cells PrimaryCulture 

Fetal 
cells 

E017 LUNG IMR90 fetal lung fibroblasts Cell Line CellLine 
E093 THYMUS Fetal Thymus PrimaryTissue 
E082 BRAIN Fetal Brain Female PrimaryTissue 
E081 BRAIN Fetal Brain Male PrimaryTissue 
E089 MUSCLE Fetal Muscle Trunk PrimaryTissue 
E090 MUSCLE_LEG Fetal Muscle Leg PrimaryTissue 
E083 HEART Fetal Heart PrimaryTissue 
E092 GI_STOMACH Fetal Stomach PrimaryTissue 
E085 GI_INTESTINE Fetal Intestine Small PrimaryTissue 
E084 GI_INTESTINE Fetal Intestine Large PrimaryTissue 
E086 KIDNEY Fetal Kidney PrimaryTissue 
E088 LUNG Fetal Lung PrimaryTissue 
E080 ADRENAL Fetal Adrenal Gland PrimaryTissue 
E099 PLACENTA Placenta Amnion PrimaryTissue 
E091 PLACENTA Placenta PrimaryTissue 

a Epigenome ID in Roadmap project 
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Supplementary Table 6. List of 15 complex diseases and traits. 
 

Trait/Disease Category Data source Data Link Ref. 

Schizophrenia Psychiatric disease PGC http://www.med.unc.edu/pgc/downloads 31 

Anorexia nervosa Psychiatric disease GCAN http://www.med.unc.edu/pgc/files/resultfiles/gcan_meta-out.gz 44 

Coronary artery 
disease Cardiovascular disease CARDIoGRAM http://www.cardiogramplusc4d.org/downloads/ 33 

Crohn's disease IBD IIBDGC http://www.ibdgenetics.org/downloads.html 45 

Ulcerative colitis IBD IIBDGC http://www.ibdgenetics.org/downloads.html 46 

Rheumatoid arthritis Inflammatory disorder Stahl et al http://www.broadinstitute.org/ftp/pub/rheumatoid_arthritis/Stahl_etal_2010NG/ 47 

LDL cholesterol Lipids Global lipids 
consortium http://csg.sph.umich.edu/abecasis/public/lipids2013/ 48 

HDL cholesterol Lipids Global lipids 
consortium http://csg.sph.umich.edu/abecasis/public/lipids2013/ 48 

Triglycerides Lipids Global lipids 
consortium http://csg.sph.umich.edu/abecasis/public/lipids2013/ 48 

Total cholesterol Lipids Global lipids 
consortium http://csg.sph.umich.edu/abecasis/public/lipids2013/ 48 

Type 2 diabetes Metabolic disorder DIAGRAM http://diagram-consortium.org/downloads.html 49 

Bone mineral density Osteoporosis GEFOS http://www.gefos.org/?q=content/data-release 50 

BMI Anthropometric traits GIANT http://www.broadinstitute.org/collaboration/giant/index.php 51 

WHR adjusted for 
BMI Anthropometric traits GIANT http://www.broadinstitute.org/collaboration/giant/index.php 29 

Height Anthropometric traits GIANT http://www.broadinstitute.org/collaboration/giant/index.php 52 
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Supplementary Table 7. Ranks of top signals under different criteria at 105 
schizophrenia-associated loci. 
 

   
p-value NSFP score Brain GSP Blood GSP Heart GSP 

Chr. Start Stop p-valuea Rankb Posteriorc Rankb Posteriorc Rankb Posteriorc Rankb Posteriorc Rankb 
1 2,372,401 2,402,501 2.84E-03 12084 0.1056 6249 0.1574 2596 0.0200 27259 0.0229 11615 
1 8,411,184 8,638,984 4.90E-06 714 0.9392 516 0.9416 296 0.9399 376 0.9271 266 
1 30,412,551 30,437,271 5.84E-06 746 0.8895 636 0.6823 662 0.0434 10109 0.3926 864 
1 44,029,384 44,128,084 4.84E-03 17544 0.0548 12702 0.0716 5581 0.0168 34368 0.0065 62012 
1 73,766,426 73,991,366 1.25E-03 7070 0.0043 412743 0.0094 79535 0.0091 76196 0.0137 22944 
1 97,792,625 98,559,084 5.72E-07 395 0.9874 242 0.9857 143 0.9696 294 0.9739 168 
1 149,998,890 150,242,490 1.05E-04 1981 0.5870 1211 0.5175 917 0.5468 926 0.3929 863 
1 177,247,821 177,300,821 2.20E-02 53656 0.0182 59742 0.0474 9045 0.0001 661561 0.0148 20601 
1 207,912,183 208,024,083 3.81E-04 3724 0.3703 2010 0.3362 1371 0.4604 1084 0.2496 1210 
1 243,503,719 244,002,945 3.26E-06 654 0.9308 534 0.9082 368 0.9117 442 0.7326 486 
2 57,943,593 58,502,192 4.07E-06 679 0.8879 640 0.8684 438 0.7826 605 0.7055 510 
2 72,357,335 72,368,185 2.76E-02 64075 0.0322 27702 0.0227 23864 0.0025 252518 0.0155 19397 
2 146,416,922 146,441,832 3.66E-03 14379 0.0045 377737 0.0007 548697 0.0053 141404 0.0018 240571 
2 149,390,778 149,520,178 9.92E-03 29507 0.0474 15941 0.0074 108959 0.0118 54607 0.0037 124999 
2 162,798,555 162,910,255 7.99E-05 1738 0.5070 1434 0.3934 1184 0.4618 1080 0.2412 1253 
2 185,601,420 185,785,420 1.84E-04 2629 0.0273 34285 0.0082 95586 0.0613 6660 0.0120 27282 
2 193,848,340 194,028,340 3.09E-06 645 0.0073 203243 0.0285 17620 0.0124 51011 0.0324 7481 
2 198,148,577 198,835,577 9.97E-04 6166 0.2216 3253 0.2422 1826 0.2971 1598 0.1832 1524 
2 200,161,422 200,309,252 9.31E-02 166270 0.0093 146143 0.0178 33178 0.0002 579606 0.0040 114052 
2 200,715,237 200,848,037 2.15E-03 9958 0.0865 7519 0.0837 4634 0.0856 4572 0.0400 5813 
2 225,334,096 225,467,796 1.35E-02 37243 0.0436 17834 0.0296 16725 0.0579 7117 0.0098 35861 
2 233,559,301 233,753,501 2.57E-06 621 0.9587 450 0.9643 244 0.8407 535 0.8133 411 
3 2,532,786 2,561,686 7.29E-02 136349 0.0069 221634 0.0065 125958 0.0000 856766 0.0016 270704 
3 17,221,366 17,888,266 3.88E-03 14986 0.0630 10203 0.0736 5373 0.0375 12106 0.0233 11371 
3 36,843,183 36,945,783 6.26E-06 762 0.8385 698 0.5470 858 0.6562 770 0.4179 816 
3 52,541,105 52,903,405 2.25E-06 610 0.9644 427 0.9176 351 0.8988 460 0.9144 282 
3 63,792,650 64,004,050 4.04E-04 3818 0.2571 2831 0.1049 3693 0.3103 1525 0.0670 3434 
3 135,807,405 136,615,405 1.23E-04 2154 0.4755 1548 0.2693 1660 0.2904 1634 0.2130 1384 
3 180,588,843 181,205,585 8.86E-06 836 0.7621 816 0.8113 504 0.7801 608 0.6028 599 
4 23,366,403 23,443,403 2.01E-03 9461 0.0203 51863 0.0045 185235 0.0002 583898 0.0203 13681 
4 103,146,888 103,198,090 9.03E-03 27523 0.0239 41691 0.0031 252957 0.0038 187692 0.0011 338682 
4 170,357,552 170,646,052 2.68E-04 3116 0.4339 1694 0.3201 1427 0.4673 1062 0.2960 1046 
4 176,851,001 176,875,801 4.31E-04 3933 0.0645 9890 0.1732 2424 0.0730 5411 0.0455 5034 
5 45,291,475 45,393,775 1.14E-02 32785 0.0094 143152 0.0023 310985 0.0002 602326 0.0147 20877 
5 60,499,143 60,843,543 8.54E-05 1789 0.5445 1343 0.6016 752 0.4314 1150 0.2724 1106 
5 88,581,331 88,854,331 2.90E-02 66539 0.0289 31739 0.0050 166949 0.0217 24568 0.0030 157458 
5 109,030,036 109,209,066 4.34E-03 16236 0.0856 7598 0.0529 7906 0.0621 6543 0.0107 31835 
5 137,598,121 137,948,092 2.38E-03 10684 0.1077 6135 0.1350 2960 0.0828 4739 0.0628 3661 
5 140,023,664 140,222,664 4.43E-03 16465 0.0807 8014 0.0480 8912 0.0667 6031 0.0286 8731 
5 151,941,104 152,797,656 7.23E-06 791 0.0932 7022 0.0214 25900 0.0098 69165 0.1669 1623 
5 153,671,057 153,688,217 4.31E-02 90406 0.0184 58777 0.0110 64488 0.0054 140385 0.0069 57520 
6 26,000,000 34,000,000 4.30E-11 1 1.0000 1 1.0000 1 1.0000 1 0.9999 1 
6 73,132,701 73,171,901 1.01E-04 1936 0.5363 1367 0.3914 1187 0.0083 85203 0.1884 1491 
6 84,279,922 84,407,274 7.86E-04 5388 0.0280 33156 0.0384 11880 0.0068 110376 0.0031 149664 
6 96,300,000 96,500,000 2.35E-03 10575 0.0059 268799 0.0406 11045 0.0018 299188 0.0056 74562 
7 1,896,096 2,190,096 5.28E-08 141 0.9967 125 0.9878 132 0.9914 151 0.9910 87 
7 24,619,494 24,832,094 5.60E-04 4505 0.2238 3219 0.0886 4384 0.0854 4587 0.1044 2343 
7 86,403,226 86,459,326 4.07E-03 15490 0.0242 40865 0.0888 4369 0.0003 520272 0.0050 87823 
7 104,598,064 105,063,064 9.81E-05 1900 0.6200 1105 0.6050 745 0.6272 811 0.5428 654 
7 110,034,393 110,106,693 1.45E-04 2345 0.0809 7999 0.0263 19576 0.0033 211501 0.1161 2155 
7 110,843,815 111,205,915 2.82E-04 3202 0.4147 1784 0.1106 3500 0.2599 1771 0.0357 6676 
7 131,539,263 131,567,263 6.65E-04 4941 0.0699 9175 0.0635 6426 0.0076 96657 0.0227 11786 
7 137,039,644 137,085,244 2.51E-04 3023 0.1728 4030 0.2320 1885 0.0027 241954 0.0931 2610 
8 4,177,794 4,192,544 3.84E-07 333 0.5168 1404 0.7306 599 0.0328 14441 0.1769 1559 
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8 27,412,627 27,453,627 1.39E-03 7514 0.0433 18028 0.0119 57853 0.0124 51024 0.0063 64220 
8 60,475,469 60,954,469 9.82E-04 6114 0.0439 17687 0.0155 40016 0.0281 17459 0.0339 7094 
8 89,340,626 89,753,626 1.70E-07 216 0.9642 428 0.9272 335 0.7287 669 0.6640 552 
8 111,460,061 111,630,761 3.91E-03 15059 0.0036 487064 0.0035 233126 0.0018 305453 0.0023 203483 
8 143,309,503 143,330,533 5.42E-06 736 0.7783 789 0.5864 781 0.1934 2227 0.3955 855 
9 84,630,941 84,813,641 7.53E-05 1694 0.5693 1270 0.2540 1746 0.3620 1336 0.0578 3971 
10 18,681,005 18,770,105 8.08E-04 5469 0.0284 32514 0.0382 11985 0.0150 39742 0.1988 1448 
10 104,423,800 104,957,618 2.23E-08 104 0.9989 69 0.9981 42 0.9975 75 0.9971 44 
11 24,367,320 24,412,990 1.17E-04 2107 0.2311 3130 0.0132 50237 0.0951 4058 0.0939 2592 
11 46,342,943 46,751,213 8.95E-04 5801 0.1905 3717 0.2473 1791 0.2683 1734 0.1849 1512 
11 57,386,294 57,682,294 1.66E-05 974 0.8615 676 0.8028 518 0.8586 515 0.7216 495 
11 109,285,471 109,610,071 1.69E-03 8492 0.0109 119181 0.0401 11216 0.0150 39754 0.0163 18188 
11 113,317,794 113,423,994 8.57E-03 26495 0.0260 36705 0.0154 40330 0.0017 310756 0.0030 156299 
11 123,394,636 123,395,986 8.42E-05 1772 0.5832 1228 0.5683 810 0.0691 5783 0.2721 1110 
11 124,610,007 124,620,147 6.39E-02 122871 0.0230 44197 0.0253 20594 0.0235 22066 0.0182 15772 
11 130,714,610 130,749,330 2.17E-04 2853 0.4724 1555 0.0740 5349 0.0100 67071 0.0683 3368 
11 133,808,069 133,852,969 1.99E-04 2736 0.2672 2734 0.4294 1079 0.2092 2101 0.2959 1047 
12 2,321,860 2,523,731 8.92E-07 471 0.9807 321 0.9740 205 0.9322 399 0.9841 119 
12 29,905,265 29,940,365 1.91E-03 9158 0.1361 5014 0.0423 10488 0.0296 16391 0.0410 5651 
12 57,428,314 57,682,971 3.24E-04 3450 0.3985 1857 0.3858 1202 0.4911 1012 0.1840 1515 
12 92,243,186 92,258,286 3.81E-03 14776 0.0195 54405 0.0152 41371 0.0313 15304 0.0066 61029 
12 103,559,855 103,616,655 1.26E-02 35330 0.0044 394586 0.0145 44094 0.0018 303011 0.0020 225327 
12 110,723,245 110,723,245 1.93E-03 9249 0.1474 4640 0.1788 2354 0.2313 1948 0.1828 1525 
12 123,448,113 123,909,113 4.93E-04 4211 0.2575 2825 0.2840 1585 0.3743 1294 0.1796 1539 
14 30,189,985 30,190,316 2.54E-02 60026 0.0376 22470 0.0095 77670 0.0004 502684 0.0019 233466 
14 72,417,326 72,450,526 2.80E-04 3191 0.1055 6258 0.1715 2445 0.0048 155736 0.2152 1375 
14 99,707,919 99,719,219 3.42E-01 490951 0.0082 176098 0.0159 38805 0.0155 38176 0.0058 72338 
14 103,996,234 104,184,834 8.41E-04 5586 0.2379 3040 0.2980 1518 0.2307 1953 0.1838 1517 
15 40,566,759 40,602,237 3.49E-07 323 0.9911 194 0.9702 215 0.9905 160 0.9813 134 
15 61,831,663 61,909,663 4.01E-06 677 0.2979 2468 0.5435 864 0.0516 8187 0.4856 715 
15 70,573,672 70,628,872 3.27E-02 72789 0.0313 28593 0.0102 71003 0.0143 42332 0.0028 165433 
15 78,803,032 78,859,610 6.08E-04 4729 0.2858 2566 0.1636 2519 0.2923 1623 0.2095 1398 
15 84,661,161 85,153,461 4.59E-04 4061 0.2832 2588 0.2511 1766 0.3249 1468 0.1304 1964 
15 91,416,560 91,429,040 2.84E-03 12100 0.1144 5836 0.1359 2936 0.1604 2607 0.0792 2958 
16 9,875,519 9,970,219 6.22E-04 4776 0.2373 3046 0.1860 2263 0.0015 331487 0.0269 9411 
16 13,728,459 13,761,359 1.68E-03 8477 0.0004 892172 0.0007 529431 0.0003 546403 0.0020 228263 
16 29,924,377 30,144,877 2.20E-03 10117 0.1090 6075 0.1205 3246 0.1154 3411 0.0841 2826 
16 58,669,293 58,682,833 3.69E-02 80047 0.0101 131547 0.0001 791714 0.0029 230810 0.0004 547506 
16 67,709,340 68,311,340 3.28E-03 13303 0.1038 6354 0.0860 4515 0.1434 2843 0.0967 2528 
17 2,095,899 2,220,799 9.46E-04 5987 0.2285 3159 0.1995 2127 0.2611 1765 0.2229 1338 
17 17,722,402 18,030,202 5.23E-03 18490 0.0571 11854 0.0801 4875 0.0804 4879 0.0522 4388 
18 52,747,686 53,200,117 2.35E-08 106 0.9989 73 0.9948 77 0.9619 323 0.9885 102 
18 53,453,389 53,804,154 9.33E-04 5943 0.0851 7632 0.0197 29033 0.0082 87830 0.0320 7618 
19 19,374,022 19,658,022 1.57E-04 2439 0.5334 1373 0.5187 914 0.6273 810 0.4148 820 
19 30,981,643 31,039,023 2.56E-02 60492 0.0111 116888 0.0266 19320 0.0005 486139 0.0024 190514 
19 50,067,499 50,135,399 1.61E-04 2465 0.3551 2096 0.3299 1385 0.4655 1069 0.2772 1088 
20 37,361,494 37,485,994 3.69E-04 3671 0.3643 2046 0.4222 1102 0.4345 1144 0.1492 1756 
20 48,114,136 48,131,649 1.85E-03 8994 0.1357 5027 0.0644 6310 0.0110 59613 0.0384 6117 
22 39,975,317 40,016,817 3.67E-04 3661 0.2671 2735 0.1155 3381 0.2309 1950 0.0357 6677 
22 41,408,556 41,675,156 8.39E-06 826 0.6889 971 0.4121 1141 0.8327 544 0.2278 1312 
22 42,315,744 42,689,414 1.85E-04 2635 0.4690 1568 0.4215 1106 0.4540 1097 0.2495 1211 

a Smallest p-value at risk loci. 
b Rank of the SNP with the smallest p-value or largest NSFP or GSP score at risk loci. 
c Largest NSFP score or tissue-specific GSP score at risk loci 
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Supplementary Table 8. Ranking performance comparison. The value in each cell is the 
p-value acquired from one-sided binomial test.  
 

 
p-value NSFP score Brain GSP Blood GSP Heart GSP 

p-value 
 

1.00E+00 9.99E-01 5.00E-01 9.75E-01 
NSFP score 1.61E-03a 

 
1.00E+00 6.52E-01 1.00E+00 

Brain GSP 3.01E-03 8.30E-04 
 

3.92E-02 5.77E-01 
Blood GSP 6.52E-01 5.00E-01 9.84E-01 

 
1.00E+00 

Heart GSP 5.90E-02 1.61E-03 5.77E-01 1.95E-04 
 a For example, comparing the ranks for all 105 loci based on NSFP score with the ranks 

based on p-values in the PGC2011 study, 68 out of 105 loci have an increased rank. The 
p-value from one-sided binomial test is 1.61E-03, suggesting the better performance of 
NSFP score. 
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Supplementary Table 9. Largest GSP scores for each tissue type at CAD-associated risk 
loci. 
 

Chr Start Stop Brain GI Lung Heart Blood Muscle Epithelium Tissuea 
1 109700000 109900000 0.99980 0.99991 0.99988 0.99966 0.99981 0.99988 0.99990 GI 
2 203600000 204000000 0.99994 0.99999 0.99998 0.99996 0.99997 0.99998 0.99998 GI 
3 137900000 138200000 0.99468 0.98753 0.98791 0.99625 0.97710 0.99517 0.99128 Heart 
6 12700000 13100000 0.99989 0.99997 0.99959 0.99987 0.99965 0.99988 0.99988 GI 
9 21900000 22200000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 NAb 
10 44400000 44900000 0.61747 0.83314 0.65399 0.76752 0.44882 0.81753 0.77258 GI 
19 11000000 11400000 0.99630 0.99958 0.99869 0.99074 0.99967 0.99937 0.99967 Blood 
21 35500000 35700000 0.97074 0.99918 0.99930 0.99885 0.99899 0.99638 0.99902 Lung 
1 56900000 57100000 0.99604 0.99699 0.99606 0.99664 0.98939 0.99418 0.99031 GI 
6 34600000 35300000 0.89477 0.95134 0.90695 0.95156 0.87966 0.91155 0.94269 Heart 
6 134000000 134300000 0.99982 0.99998 0.99997 0.99994 0.99988 0.99995 0.99995 GI 
7 129600000 129900000 0.99291 0.96390 0.98226 0.99718 0.99872 0.99950 0.99832 Muscle 
9 136000000 136400000 0.96826 0.99531 0.97820 0.96826 0.98821 0.98188 0.98024 GI 
10 104400000 105000000 0.91358 0.94966 0.92530 0.90768 0.93213 0.91816 0.91192 GI 
11 116500000 116700000 0.99672 0.99937 0.99845 0.99761 0.99970 0.99917 0.99949 Blood 
13 110700000 111200000 0.99273 0.99698 0.99689 0.99597 0.98510 0.99704 0.99649 Muscle 
14 100000000 100300000 0.97293 0.96188 0.91046 0.86511 0.89987 0.92592 0.96228 Brain 
15 78900000 79200000 0.99655 0.99927 0.99768 0.99859 0.99795 0.99934 0.99883 Muscle 
17 2000000 2300000 0.96108 0.98812 0.98356 0.97961 0.98167 0.98789 0.98272 GI 
17 17400000 18000000 0.93179 0.95199 0.93160 0.94046 0.96864 0.95360 0.95436 Blood 
17 46800000 47200000 0.94037 0.94009 0.93078 0.90609 0.96206 0.94738 0.95791 Blood 

a The tissue type that provides the largest GSP score. 
b Not applicable due to ties. A careful comparison between p-values and the GS score 
pattern is needed in order to infer the relatedness between this locus and tissue types. 
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Supplementary Table 10. GenoSkyline parameter estimates for brain tissue.  
 
Annotation Parameter Raw Estimationa Extra 2,000,000b Extra 6,000,000c 

- 𝜋 0.11550 0.11413 0.11229 

H3K4me1 𝑝!" 0.85643 0.85737 0.85852 
𝑝!! 0.05999 0.05913 0.05803 

H3K4me3 𝑝!" 0.40660 0.40582 0.40474 
𝑝!" 0.00488 0.00473 0.00453 

H3K36me3 𝑝!" 0.22752 0.22749 0.22792 
𝑝!" 0.09690 0.09540 0.09338 

H3K27me3 𝑝!" 0.16558 0.16505 0.16395 
𝑝!" 0.09713 0.09412 0.08995 

H3K9me3 𝑝!" 0.02340 0.02309 0.02259 
𝑝!" 0.07451 0.07304 0.07106 

H3K27ac 𝑝!" 0.76178 0.76365 0.76647 
𝑝!" 0.02214 0.02175 0.02124 

H3K9ac 𝑝!" 0.49093 0.49215 0.49405 
𝑝!" 0.00527 0.00519 0.00504 

DNase I HS 𝑝!" 0.22578 0.21962 0.21124 
𝑝!" 0.01484 0.01387 0.01255 

a Estimation results based on the 12,801,840 bases acquired from GWAS catalog. 
b Estimation results based on the 12,801,840 bases and additional 2,000,000 random 
bases on chromosome 1. 
c Estimation results based on the 12,801,840 bases and additional 6,000,000 random 
bases on chromosome 1. 
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