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Abstract

Local non-linearities in dendrites render neuronal output dependent on the spatial dis-
tribution of synapses. A neuron will activate differently depending on whether active
synapses are spatially clustered or dispersed. While this sensitivity can in principle
expand neuronal computational capacity, it has thus far been employed in very few
learning paradigms. To make use of this sensitivity, groups of correlated neurons need
to make contact with distinct dendrites, and this requires a mechanism to ensure the
correct distribution of synapses contacting from distinct ensembles. To address this
problem, we introduce the requirement that on a short time scale, a pre-synaptic neuron
makes a constant number of synapses with the same strength on a post-synaptic neu-
ron. We find that this property enables clusters to distribute correctly and guarantees
their functionality. Furthermore, we demonstrate that a change in the input statistics can
reshape the spatial distribution of synapses. Finally, we show under which conditions
clusters do not distribute correctly, e.g. when cross-talk between dendrites is too strong.
As well as providing insight into potential biological mechanisms of learning, this work
paves the way for new learning algorithms for artificial neural networks that exploit the
spatial distribution of synapses.


https://doi.org/10.1101/029330
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/029330; this version posted March 14, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

1 Introduction

Active synapses distribute non-randomly on dendrites: synaptic contacts from nearby
neurons have been observed to form clusters (Druckmann et al., 2014; Rah et al., 2015).
Functional synaptic clustering has been observed. Takahashi et al. (2012) demonstrated
that nearby synapses tend to activate more often during spontaneous activity in adult
rats, and (Kleindienst et al., 2011) also reported synaptic clustering in organotypic slices
from neonatal rats during development. Finally, Makino and Malinow (2011) reported
that synaptic clustering can evolve during sensory experience. These reports leave open
the functional role of such a non-random synaptic distribution.

Theoretical studies have predicted the existence of synaptic clusters (Mel, 1992;
Poirazi and Mel, 2001; Poirazi et al., 2003). Because dendrites, even if they are pas-
sive (Koch et al., 1982), integrate non-linearly, the relative position of synapses exerts a
salient influence on the neuronal input-output function. Therefore, a clustered synaptic
spatial distribution can enhance the computational capacity of single neurons. In par-
ticular, clustered synaptic configurations allow neurons to compute linearly inseparable
functions (Zador et al., 1993; Caze et al., 2012), can enhance auditory coincidence de-
tection (Agmon-Snir et al., 1998) and can help to compute binocular disparity (Archie
and Mel, 2000), as well as contribute to whisker directional tuning in the barrel cor-
tex (Lavzin et al., 2012). All these interesting computational properties, however, arise
when synaptic clusters distribute evenly on a neuron. Correlated ensembles of neurons
need to generate distinct clusters, and a single ensemble should not predominate.

We present here a learning algorithm that guarantees a useful distribution of synaptic
clusters. Several previously proposed learning algorithms are capable of generating
synaptic clusters (Iannella and Tanaka, 2006; Wu and Mel, 2009; Legenstein and Maass,
2011). To guarantee that the same cluster does not form twice they gate learning using
somatic or dendritic spiking. This strategy has at least one unavoidable constraint: the
action potential needs to invade the entire dendritic arbor. It is known, however, that the
somatic action potential can fail to reach terminal dendrites (Spruston et al., 1995; Vetter
etal., 2012), which makes this an unsatisfactory solution. Here we instead guarantee the
uniqueness of synaptic clusters by supposing that, on a short time scale, a presynaptic
neuron makes a constant number of synapses on a postsynaptic neuron.

Materials and Methods

Controlling correlation in ensembles of input spikes

We used correlated Poisson processes to model the input spikes (Brette, 2009). Each
process is the sum of an independent process with a frequency f(1— c) and of a process
common to the ensemble with a frequency f x ¢ (f in hertz and ¢ € [0, 1] without units).
Fig. 1A shows input spikes that were generated using this method. In this study, input
spikes are grouped in seven ensembles, each composed of 100 neurons, with a mean
firing rate of 10 Hz and 80% of their spikes correlated within the ensemble. These input
spikes lasted 40s, made up of 4000 bins of 10ms. During the last 20s of each set of
input spikes, we rotated the set of ensembles by 50.
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Figure 1: A multi-subunit model for studying the spatial distribution of synaptic
clusters. A. Raster plot showing the activity of three ensembles, each with a different
level of internal correlation. Neurons 0-19, 20-41 and 42-61 have correlation coeffi-
cients of 0, 0.4 and 0.8 respectively. B The input sites (red circles) are where the con-
nections are most numerous on dendritic compartments (black vertical lines). C The
non-linear transfer function of the dendritic compartment. The input is the weighted
sum of the presynaptic activity, and the output of this function is transmitted to the
soma. D Co-activation probability of a synapse pair either within (black) or between
(gray) compartments given a synaptic architecture (column) vs a set of input spikes
(row). There are four synapses coming from four neurons during two time steps.

A multi-subunit binary neuron model.

We computed the mean somatic depolarization in time bins of 10 ms using our multi-
subunit model. This computation has two steps, as in (Poirazi et al., 2003). For
each bin, the binary inputs x; ; first sum linearly, given a local set of weights w; ; for
the compartment j. We present an example of synaptic architecture (set of synaptic
weights) in Fig 1B. Secondly, we non-linearly transform the normalized sum resulting
inv; = D;(3°, w; ;x; ;). v; denotes a local signal that could be interpreted as either the
mean membrane potential or the mean calcium concentration in compartment . D is a
function with a threshold # at which v jumps to 1. Then all the v are linearly summed
at the soma to determine whether the neuron fires or not: y = S( Y v;), where S'is
a Heaviside function with threshold © = 0.2. This value for © means that 20% of the
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compartments need to reach their maximum depolarization to elicit a somatic spike. We
used here a somatic threshold of © = 0.2, a dendritic threshold of § = 0.2, and synaptic
weights bounded between 0.01 and 1 modeling only excitatory synapses.

In contrast with more detailed biophysical models, our model lacks temporal inte-
gration, and its compartments process inputs independently. We have, however, pre-
viously demonstrated that this model would nonetheless yield the same conclusions if
we were to relax these assumptions (Cazé et al., 2013). This simplicity enables rapid
simulations and in-depth analyses that would be harder in a detailed biophysical model.

A local learning rule and horizontal normalization.

The learning rule uses the local signal v; of the 5 compartment to compute the weight
change Aw; ; = a(2x; — 1)v;, where a@ = 0.1 is the learning rate. Consistent with
experimental data, the learning rule depends only on a local signal in the dendrites.
Plasticity depending only on dendritic spikes, independent of somatic spikes, has been
observed experimentally on a number of occasions (Feldman, 2012; Mehta, 2004; Kim
et al., 2015).

In each time bin, the synaptic weights arising from a given source are normalized
by the total synaptic weight from this source. This is to account for the limited number
of synapses per afferent (Branco and Staras, 2009). We introduced this normalization to
foster an optimal distribution of synaptic clusters on dendrites (compare movie S1 and
S3 respectively with and without normalization), and to focus on the spatial distribution
of synapses rather than the total synaptic strength from an afferent.

Co-activation probability.

We define the co-activation probability as the number of times a pair of synapses are
active, divided by the total number of times either synapse in the pair activates, analo-
gous to previous experimental studies (Kleindienst et al., 2011; Takahashi et al., 2012).
The co-activation probability depends on two distinct variables: the input spike and the
set of synaptic weight values (see Fig. 1D). Here we illustrate a case with two dendrites
receiving input at four synapses over two time steps. For instance, in the middle col-
umn and row, the inputs in both steps activate one synapse on each dendrite, giving a
“between” co-activation probability of one. The “within” co-activation probability here
is zero.

To compute the co-activation probability, we first select the compartment bearing
the highest weight for a given input, indicated by empty circles in subsequent figures.
We then either replay the input spikes, or replay the seven input vectors corresponding
to the seven ensembles. In the latter case, each input vector corresponds to the activation
of one ensemble. We then select every possible pair of synapses, and classify each as
occurring either “within” or “between” compartments. The co-activation probability is
the number of times a pair of synapses are active, divided by the total number of times
either synapse in the pair activates.
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Results

Correlated inputs distribute synapses in multiple distinct clusters
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Figure 2: Vector fields showing the evolution of the mean synaptic weight per clus-
ter. The arrow’s origin is the mean synaptic weight value. It points in the direction
of the average evolution of these means and is color-coded given the intensity of this
movement (blue:low, red:high). We used semi-analytic results to construct this figure.
Note that only (0,1) and (1,0) stay stable in the four situations, with or without nor-
malization and with linear (¢ = 1, d = 1) or non-linear summation in compartments
(@ =0.5,d=0.5).

We show here that correlated inputs evoke synaptic clusters that distribute evenly on
dendrites. First we examine a neuron receiving inputs from two ensembles and featur-
ing two compartments as in Fig. 2. We describe the evolution of the two mean synaptic
weights, one per ensemble, using a 2D vector field. Importantly, this 2D vector field
demonstrates only two stable point: (0,1) and (1,0) in all conditions. Hence synapses
either from the first or the second ensemble grow together to form a cluster (Fig. 2 up-
per left, ”linear”). Saturation within a compartment when it activates more than 50%
((0 = 0.5,d = 0.5)) sharpens the vector field toward the stable points (Fig. 2 upper
right, "non-linear”). Interestingly, horizontal normalization, in which each input has a
constant total synaptic weight, guarantees that a cluster forms only once. Without hori-
zontal normalization, the same ensemble can form clusters on multiple compartments.
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Figure 3: Correlated inputs generate synaptic clusters on dendrites. A and B A
multi-subunit model where each subunit (vertical lines with §# = d = 0.14) before
(T=0s) and after learning (T=20s). Circles indicate the most probable synaptic sites.
Each color corresponds to a different correlated ensemble. C Input spikes (n = 700)
grouped in seven correlated ensembles. Each ensemble has a distinct color, and 80% of
spikes within an ensemble are correlated.

We scaled up our implementation to show that seven ensembles, made of 100 neu-
rons each, can form evenly distributed synaptic clusters (Fig. 3). Before receiving any
input, synapses distribute randomly on the neuron’s seven subunits (Fig. 3A). Note that
each dendrite (vertical black line) corresponds to only one subunit. The appearance of
spatial clustering within each dendrite is due to the adjacent positioning of correlated
inputs for visual clarity, but inputs could impinge anywhere on the compartment. Af-
ter receiving inputs organized in seven correlated ensembles (Fig. 3C), seven synaptic
clusters form on the neuron with one unique cluster per ensemble (Fig. 3B). Movie S1
illustrates that horizontal normalization gives rise to even cluster distribution. Without
normalization, synaptic clusters form, but the same cluster can occur multiple times as
illustrated by Movie S3.

Non-linear integration in dendrites can render a neuron sensitive to scattered synap-
tic activation. For low dendritic threshold, a clustered learned input ensemble will trig-
ger a single dendritic spike, whereas a scattered ensemble will trigger many. For a
high somatic threshold, a neuron requires multiple dendritic spikes to drive a somatic
spike. Because our learning rule gives rise to evenly distributed clusters on a model with
non-linear compartments, a novel unlearned stimulus can saliently activate the neuron
(Fig 4A).

The sensitivity to the spatial distribution of inputs could render the neuron sensi-
tive to unexpected inputs. We measured the response of two types of neuron models
integrating their inputs either linearly or non-linearly (100 instance of each model).
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Figure 4: Familiar and novel inputs create distinct spatial distribution of synaptic
activity on neurons. A Activity within two subunits (vertical lines) with four synaptic
sites (circles) after learning. Activity distributes differently if the stimulus is famil-
iar (experienced during learning) or novel (never experienced); activity is color-coded
(white:inactive / black:active). B Mean spiking probability (over a hundred model in-
stances) after learning for 9 different input vectors (each vector as a length of 700). The
models feature either linear (gray) or non-linear (black d = ¢ = 0.12) subunits. The
linear models can either have a low (light gray) or high (dark gray) somatic threshold.
That is, fewer or more than a 100 active synapses are required to trigger an action po-
tential, respectively. In the non-linear case, more than half of the subunits need to be
active to trigger an action potential. C Mean spiking probability for each time bin dur-
ing learning (average of over a hundred model instances). In the linear case this would
have been a flat line because of horizontal normalization (see Methods).

In the non-linear case the firing probability increases with the novelty of an input
vector (Fig 4B black line). If the input vector corresponds to the activation of all inputs
from a learned ensemble, then the post-synaptic neuron remains silent. If the vector
corresponds to the activation of inputs from different ensembles, then the neuron fires.
In summary, a neuron integrating its input non-linearly can signal an unfamiliar input
deviating from the learned set of ensembles. This is illustrated by the mean firing prob-
ability plotted as a function of time (Fig 4C) where we present a new ensemble set at
t = 20s.

In the linear case, however, the neuron responds to all input vectors equally because
each source of input spikes makes a contact with a total synaptic weight always equal
to one (see Methods). Therefore, for a somatic threshold larger than 100/700 (the size
of an ensemble being n = 100), a linear neuron fires for all input vectors, and for a
threshold lower than 100/700, a linear neuron stays silent for all input vectors (Fig 4B
grey lines).

Next we examine how changes in input statistics affects the reshaping of synaptic
clusters.

Changes in input statistics can reshape synaptic clusters

We started from a model displaying synaptic clusters (f = 20s in Fig SA), and then ex-
posed it to inputs organized into a new set of ensembles between ¢t = 20s and ¢ = 40s
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(Fig 5C), shifting the set of ensembles by 50 neurons to obtain the new set of ensembles.
For instance, while neurons 1 to 100 were correlated between Os and 20s, after the ro-
tation, neurons 51 to 151 are correlated. This rotation reshaped the spatial distribution
of synapses to reflect the new set of ensembles (Fig 5B). Thus, long-lasting changes
to input statistics reshape the synaptic architecture. In contrast to classical unsuper-
vised algorithms, this learning occurs continuously in our model. These changes can be
visualized in Movie S3 and S4, respectively, with or without horizontal normalization.
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Figure 5: Changes in input statistics can reshape synaptic clusters. A and B A
multi-subunit model at time 7' = 20s and T = 40s. All subunits (vertical lines) are
non-linear (f = d = 0.14). Empty circles indicate synaptic sites (color-coded given the
ensemble set at ¢ < 20s). C Input spikes between ¢ = 20s and ¢ = 40s.

Co-activation probability quantifies the distribution and formation
of synaptic clusters

We show that the formation of synaptic clusters in our model recapitulates co-activation
probabilities measured in experiments (Kleindienst et al., 2011; Takahashi et al., 2012)
(Fig. 6). The co-activation probability is the fraction of time bins in which both synapses
activate (see Methods for examples). Kleindienst et al. reported that co-activation prob-
ability depends on the distance between spines (Fig. 6A). Similarly in our model, co-
activation probability is higher for “within” compared to "between” subunits. ACo-ac
is the difference between these two cases. Moreover, ACo-ac becomes null in the ab-
sence of previous correlated activity as reported experimentally (compare “TTX” in
Fig. 6A and “naive” in Fig. 6B).

We use co-activation probability to investigate which parameters influence the dis-
tribution of synaptic clusters. We identified four parameters with which ACoac varies:
(A) the input correlation (B) the number of compartments (C) the number of learning
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Figure 6: Co-activation probability quantifies synaptic cluster distribution. A.
Measurements of spines co-activation probability in hippocampal slices, control situ-
ation and cultured within a TTX environment, washed out during measurement (replot-
ted from Kleindienst et al 2011). B. Co-activation probability obtained in silico (see
methods). Difference of co-activation “between” and “within” subunits, depending on
the input correlation.

parameters (dimensionality of learning) and (D) non-linear summation within a com-
partment (four panels in Fig.7). While varying each parameter in turn, we kept all other
parameters constant.

Correlation within an ensemble of input spikes must be sufficiently high to generate
synaptic clustering. We found that in our model only input correlation greater or equal
to 60% achieved a ACoac larger than 5% (Fig.7A). The more correlated the input, the
higher the ACoac observed. We infer that correlations are necessary for the formation
of synaptic clusters. Moreover, the formation of multiple synaptic cluster requires mul-
tiple compartments. Even in an integrate and fire model, synapses cluster in response
to correlated inputs, and a single cluster forms. However, ACoac is always zero in that
case, as all synapses target only one compartment. For example, in the case of seven
input ensembles, three or more compartments are required for a ACoac larger than 5%
(Fig.7B).

Even in a model with multiple compartments, it is possible to use a single v (e.g.
membrane voltage or calcium concentration) that results from synaptic integration. In
this case, v applies to all compartments and the learning dimensionality is one (i.e.,
maximum intra-compartmental cross-talk). Alternately, one can use multiple vs each
assigned to distinct sets of compartments. For seven input ensembles, we found that
three or more distinct vs are required for a ACoac larger than 5% (Fig.7C).

Finally, we studied the influence of the dendritic threshold on cluster distribution.
Unlike the three other parameters, ACoac reaches its highest value in a large range (here
between 0.1 and 0.4). For a high threshold (0.7 and above) integration is quasi-linear
because synaptic activity does not reach the compartment’s threshold. Synaptic clusters
can form even in this case (Fig.7D). Local non-linear integration is not necessary for
synaptic cluster formation, but it guarantees their even distribution across compartments
and novelty detection capacity.
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Figure 7: ACoac probability determines conditions favorable to the formation of
synaptic clusters. ACoac is the difference between within and between co-activation
probabilities. The mean ACoac probabilities (dots) are averaged over 100 model in-
stances. We fix the value of all other parameters (red dot) while varying each in turn.
We quantify the effect of A Input correlation within each ensemble; B The number of
subunits in the neuron model; C Learning dimensionality which is the number of dis-
tinct values used in learning, e.g. a low learning dimensionality implies a high crosstalk
between subunits; D the threshold (6) within a non-linear subunit.
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Discussion

Here we have demonstrated an unsupervised learning algorithm that generates synap-
tic clusters distributed evenly across compartments. This distribution is made possi-
ble by maintaining constant synaptic weights. Indeed, in our learning algorithm, each
pre-synaptic neuron makes the same number of identical synaptic contacts on the post-
synaptic neuron. Moreover, clusters organized in this way enable the neuron to differen-
tiate novel from familiar stimuli, depending on dendritic and somatic spike thresholds.

We set a high somatic threshold requiring multiple dendritic spikes to trigger a so-
matic spike. In this case, the neuron detects novel stimuli and stays silent for familiar
stimuli. Alternatively, a single dendritic spike might suffice to generate an action poten-
tial. Wu and Mel studied this scenario and described how dendrites could boost memory
capacity at the network level (Wu and Mel, 2009). In this dual case, the neuron will fire
for familiar stimuli and stay silent for novel stimuli and requires supra-linear summa-
tion in dendrites (Caze et al., 2012). Both cluster and scatter sensitivities could prevail
depending on the cell type and the brain area.

A result of the learning scheme here is that neuronal ability to detect novelty will
depend upon the intrinsic properties of each cell. A neuron with high dendritic thresh-
old and low somatic threshold will detect familiar inputs, whereas a neuron with low
dendritic threshold and high somatic threshold will detect novel inputs. Flexible com-
putation is thus enabled by tuning cellular properties.

The learning algorithm presented here is unsupervised, but differs significantly from
previous examples of this type of algorithm (Legenstein and Maass, 2011). Our work
differs in two principle respects. First, we introduced horizontal normalization, in which
an input makes a constant number of synapses on a post-synaptic neuron. This was
initially introduced for biological realism as each neuron makes a limited number of
synapses (Branco and Staras, 2009). This normalization turns out to avoid synaptic
cluster repetition in multiple compartments of the post-synaptic neuron; with cluster
repetition, detection of novel stimuli would be compromised. Second, rather than split-
ting inputs into training and test sets, we use a continuous learning paradigm. This ren-
ders our neuron model more realistic and enables it to continuously adapt to a changing
sensory environment.

This computational work yields two immediate predictions: (1) A given neuron
can display both clustered and scattered synaptic activity. This could be tested by in
vivo two-photon imaging of the same neuron across periods of both spontaneous and
sensory-evoked activity. (2) The number of synapses from a pre- to a post-synaptic
neuron remains constant on short time scale. Time lapse imaging of synapses from a
single afferent could test this prediction.

In conclusion, we have proposed a learning mechanism to organize the distribu-
tion of synapses in space. This mechanism could possibly underpin the emergence of
stimulus selectivity underlying a wide range of neural computations.
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Supporting Information

S1 Video

Formation and distribution of synaptic clusters. Activity is color-coded (white:inactive
/ black:active). The diameter of a circle relates to the number of spines on an input site.
Triangle describes somatic activity.

S2 Video

Redistribution of synaptic clusters.

S3 Video

Formation of synaptic clusters without horizontal normalization.

S4 Video

Redistribution of synaptic clusters without horizontal normalization.

Software and code availability

. We used Python v2.7, Numpy v1.3 and Matplotlib v1.4.0 to code, process and display
the result of all our simulations. This code is available on a git repository (link to be
supplied after acceptance of this manuscript, we uploaded this code for review with a
README file).
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