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Abstract

Face space provides a popular metaphor for the representation of individual faces.
Although computer-graphics models of face space have a long history, their relationship
to the cortical code for individual faces remains unclear. We used such a model to
generate animations of faces with realistic 3D shape and texture and analyzed fMRI
responses to each individual face. We developed and evaluated multiple
neurobiologically plausible computational models of face-space coding, each of which
predicts a representational geometry and a regional-mean activation profile. A
population code of units with sigmoidal ramp tuning over the face-space dimensions
explained both pattern and regional-mean fMRI effects better than alternative models,
but only in conjunction with a readout-level population averaging mechanism. This
model also accounted for perceptual similarity judgments. Our study demonstrates the
importance of modeling readout-level population averaging and provides a

computational account of the cortical representation underlying human face processing.
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Introduction

Humans are expert at recognizing individual faces, but the neural mechanisms that
support this ability are poorly understood. Multiple areas in human occipital and
temporal cortex exhibit representations that discriminate between individual faces, as
indicated by successful classification of brain responses in pattern information analyses
of functional MRI (fMRI) data (1-10). However, the nature of this representation
remains obscure because individual faces differ along multiple stimulus dimensions,
which renders successful classification of any particular face pair inherently ambiguous.
Here, we address this challenge by using representational similarity analysis (RSA) (11)
to fit computational models of face coding to the multivariate discrimination
performance of cortical regions in visual cortex as well as to perceptual similarity
judgments. Our aim is to better understand the underlying computations for face coding
by inspecting the properties of the model that best predicts cortical and perceptual face

representations.

A key challenge for the application of RSA to face representations is that most
cognitive and neuroscientific models of face processing do not make predictions at the
level of distances between particular faces (12,13). However, such predictions can be
obtained from models based on the notion that faces are encoded as vectors in a space
(14). Most face-space implementations apply principal components analysis (PCA) to
images or laser scans in order to obtain a space where each component is a dimension
and the average face for the training sample is located at the origin (15,16). In such PCA
face spaces, eccentricity is associated with judgments of distinctiveness while vector
direction is associated with perceived identity (17-19). Initial evidence from macaque
single unit recordings and human fMRI suggests that brain responses to faces are
strongly modulated by face-space eccentricity, with most studies finding increasing

responses with distinctiveness (20-23). However, there has been no attempt to develop
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a unified account for how a single underlying face-space representation can support

both multivariate direction sensitivity and region-mean eccentricity sensitivity.

Here, we characterize how distances in a PCA face space relate to the psychophysical
similarity judgments and to region-mean as well as multivariate fMRI effects. Our
approach is inspired by circuits-level studies of early visual cortex, where insights are
obtained from the manner in which visual responses deviate from the predictions of a
simplified reference model (24-26). We use an analogous RSA approach where
Euclidean distances in a PCA face space acts as a reference against which distances
estimated from cortical representation and perception are compared. Anticipating our
results, we demonstrate a substantial over-representation of eccentricity information in
cortical face-space reconstructions, consistent with previous fMRI adaptation results
(21). We then fit multiple computational models to the data in order to demonstrate that
such warped representations are consistent with a sigmoidal ramp-based face-space

coding scheme combined with a readout-level population averaging mechanism.
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Results

Sampling face space with photorealistic but physically-controlled

animations

We generated a set of realistic face animations by rendering horizontally rotating
meshes obtained from a PCA model of 3D face shape and texture (27). Each frame of the
animations was cropped with a feathered aperture and processed to equate low-level
image properties across the stimulus set (Experimental Procedures). We generated 12
faces from a slice through the high-dimensional PCA model (Figure 1b). Euclidean
distances between the Cartesian coordinates for each face were summarized in a
distance matrix (Figure 1a), which served as the reference for comparisons against
distances in the reconstructed perceptual and neural face spaces (Figure 1c-h). A
physically distinct stimulus set with the same underlying similarity structure was
constructed for each participant by randomizing the orientation of the slice through the
PCA space (for examples, see Figure S1). This ensured that group-level effects of face-
space direction and eccentricity were not strongly influenced by idiosyncrasies of

particular face exemplars.

Figure 1. Face spaces obtained from a reference PCA model,
perceptual judgments and fMRI response patterns in human visual
cortex. (a-b) We generated 12 faces in a polar grid arrangement on a
2D slice through the reference PCA space (3 eccentricity levels and 4
directions). The grid was centered on the stimulus space norm (not
shown). Euclidean distances between the 12 faces are illustrated in a
distance matrix (a) and in a 2D reconstruction of these distances (b,
multidimensional scaling, metric-stress criterion). (c) Group-average
perceptual face space reconstruction (N=10) estimated from
psychophysical similarity judgments. The distance matrix depicts the
percentage of trials on which each pair of faces was rated as relatively
more dissimilar. (d-h) Group-average cortical face-space
reconstructions (N=10 except for occipital face area, N=9) estimated
from fMRI response patterns in human visual cortex. The distance
matrices depict a cross-validated estimate of multivariate
discriminability where 0 corresponds to chance-level performance
(Experimental Procedures). Each cortical region was defined in
individual volunteers using independent data.
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Reconstructed cortical and perceptual face spaces are warped with

regard to the reference PCA space

Human volunteers participated in a perceptual judgment task followed by fMRI
scans (Experimental Procedures). Perceptual dissimilarity judgments were correlated
with Euclidean distances in the reference PCA space (Figure 1c, Figure 4a, gray bar).
Face spaces reconstructed from fMRI responses also correlated with the reference PCA
space (Figure 1d-h, Figure 4b-f, gray bars). However, although statistically significant
(all p<=0.002), these correlations did not reach the estimated noise ceiling in the sample
(shaded region in Figure 4b-f, Experimental Procedures), which indicates that a linear
relationship with the reference PCA space could not capture all the explainable variance

in cortical face spaces.

Visual inspection of the reconstructed face spaces suggests that relative to the
reference PCA space, cortical face spaces systematically over-represent eccentricity
relative to direction (Figure 1d-h). However, we also observed clear evidence for effects
of direction independent of eccentricity. Discriminant distances for faces that differed in
direction but not eccentricity exceeded chance-level performance (p<0.05) for typical
and caricatured faces in all regions (Figure S2), while sub-caricatured faces were less
consistently discriminable. Indeed, direction discrimination increased linearly with
eccentricity in each region except the parahippocampal place area
(sub>typical>caricature, all p<0.036, Figure S2), suggesting a dose-dependent
relationship between face identity information and caricaturing. Thus cortical regions
discriminate identity even in the absence of a difference in eccentricity, suggesting that
cortical face representations cannot be reduced to a one-dimensional code based on

distinctiveness.
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Face-space warping reflects an over-representation of eccentricity

information

We quantified the apparent warps in the cortical face space reconstructions by
constructing a multiple regression RSA model where the effects of eccentricity and
direction were estimated separately (Figure 2a). A group-level analysis of the resulting
parameter estimates showed that both eccentricity and direction made reliable
contributions to cortical and perceptual face spaces (Figure 2b-g, all p<0.047). However,
eccentricity estimates were reliably greater than direction estimates (all p<0.001). This
pattern could be observed in both cortical and perceptual face space reconstructions
and in each individual volunteer (gray lines in Figure 2), although the eccentricity-
direction difference was considerably larger in cortical face spaces. For instance, the
fusiform face area (FFA) exhibited a 6.4 times greater effect of eccentricity than
direction (Figure 2f), while this ratio was 1.5 for the perceptual face space (Figure 2b).
In each case, inspection of the residual distances showed that little structure remained
after modeling eccentricity and direction. Thus, face space warping with regard to the
reference PCA space could be safely attributed to the estimated imbalance between
eccentricity and direction coding, rather than being driven by other idiosyncratic
components such as low-level features of the stimuli. Taken together, cortical face
spaces exhibited a substantial over-representation of distinctiveness-related

eccentricity information over identity-related direction information.
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Figure 2. Face-space warping reflects an over-representation of
eccentricity over direction information. (a) Squared distances in the
reference PCA space were parameterized into a predictor coding
variance associated with eccentricity (green) and a predictor coding
variance associated with direction (blue). The resulting model was
fitted each volunteer’s face-space reconstructions (Experimental
Procedures). Importantly, the scaling of the eccentricity and direction
predictors ensures that equal parameter estimates corresponds to a
preserved reference PCA space. (b) Multiple regression fit to the
reconstructed perceptual face space with group-average parameter
estimates (top), fitted distances (middle) and residuals (bottom). Gray
lines reflect single volunteer parameter estimates and p values above
each bar are obtained from T tests (N=10). Significant differences
(paired T test, p<0.05) are indicated with horizontal connectors. (c-g)
Multiple regression fit to the reconstructed cortical face spaces,
plotted as in b (N=10 for all panels except d, N=9).

Cortical face-space warping could not be explained by region-mean activation
preferences for caricatures. We performed a region-mean analysis of responses in each
cortical area, which confirmed previous reports that fMRI responses increase with
distinctiveness across much of visual cortex (Figure S3) (23). However, a control
discriminant analysis where we corrected for region-mean biases showed similar
results as the original analysis (Experimental, Procedures, Figure S4), suggesting that
the eccentricity over-representation in the discriminant analysis could not be reduced to
a single response pattern scaling or shifting with the conditions. Thus, although region-
mean eccentricity effects were apparent in all visual areas, the warping of the cortical
face spaces could not be attributed to region-mean effects alone. Furthermore, region-
mean fMRI effects cannot explain the presence of smaller but reliable warps in the

perceptual face space (Figure 2b).

A sigmoidal ramp-coding model with population averaging explains
face-space warping

We developed a computational model to describe how eccentricity over-
representation can be explained as an emergent property of partial averaging over a

population of sigmoidal ramp-tuned model units. The model, which is inspired by
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known preferences for extreme feature values in single units recorded from area V4 and
face-selective patches in the macaque visual cortex (28,29), proposes that the
representational space is tiled with randomly oriented ramps, each of which exhibits a
monotonically increasing response along its preferred direction (Figure 3a). We
modeled the response along the preferred direction using a sigmoidal function with two
free parameters (horizontal offset 0 and response saturation s, Experimental
Procedures). The random orientation of the sigmoidal ramp summarizes our
expectation that single neurons in the underlying face representation are tuned to linear
combinations of the principal components in the reference PCA space. We approximated
the effects of individual unit responses being partially averaged prior to readout with a
parameter that controlled the extent to which each individual model unit’s response
vector was translated toward the population-mean response vector (population
averaging p, Figure 3b-c). In practice, the consequence of such readout-level population
averaging was that individual ramps exhibited a substantial U-shape in their response
functions, with only a minor deflect in favor of their preferred face-space direction
(Figure 3a, right panel). Such readout-level effects may arise from extrinsic
measurement sources such as insufficient spatial precision in fMRI responses or from
intrinsic neural circuits mechanisms such as pooling over inputs in a cortical hierarchy.
We fitted the 3 global parameters to each volunteer’s face-space reconstructions using a
grid search procedure that identified the parameter values that maximized the median
Pearson correlation between the reconstructed face space and Euclidean distances in
the ramp model’s response to the 12 faces over 100 initializations of the model (for

example grid search outputs, see Figure S5).
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Figure 3. A computational model for face-space coding based on
sigmoidal ramp tuning and readout-level population averaging. The
visualization uses the model parameters that were optimal for
predicting the fusiform face area’s face space (Figure 5). (a) Sigmoidal
response function from the model’s internal representation (left
panel) and the readout (right panel) following translation toward the
population-average response function (middle panel). (b) Two-
dimensional generalization of the sigmoidal ramp tuning function to
encode a direction in the face-space slice. An example unit is plotted
in the left and right panels with the population-average response in
the middle panel. (c) The model’s representational dissimilarity
structure was estimated as the Euclidean distance between the
population response vectors elicited by two coordinates in the face-
space slice. The two test face exemplars illustrate how dissimilarity
increases more rapidly with radial (eccentricity) distance than with
tangential (direction) distance in the model’s representation.

The ramp model was a reliably better fit both to cortical and perceptual face spaces
than the Euclidean distances in the reference PCA space (all p<0.006, Figure 4). Indeed,
performance for the ramp model approached the noise-ceiling estimate for each
reconstructed face space, suggesting that a partially averaged population of sigmoidal
ramp-tuned model units provided a complete account of the reliable pattern-level fMRI
and perceptual effects in the sample. By contrast, the fit to coding schemes based on
low-level visual features did not reach the noise ceiling in the cortical face spaces
(Figure 4b-f, purple bars), suggesting that the predictions of the ramp model were
dissociable from accounts based on coding low-level physical similarity between the
faces. In summary, both cortical and perceptual face spaces were consistent with an
underlying representation based on sigmoidal ramp tuning and population averaging.
The ability of this model to fit the reconstructed face spaces suggests that effects of
distinctiveness can arise as an emergent property of an underlying representation
where individual model units encode face space direction rather than eccentricity. Thus,
over-representation of face-space eccentricity can be modeled as a readout-level

phenomenon rather than as a feature of the underlying neuronal representation as such.

10


https://doi.org/10.1101/029603
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/029603; this version posted October 21, 2015. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Figure 4. Distances in a neuronal model based on sigmoidal ramp
tuning and population averaging fits the cortical and perceptual face
spaces better than distances in the reference PCA space or other face
coding schemes. Group-average distance matrices for the best-fitting
models for the cortical and perceptual face spaces (top), and group-
average prediction performance for the ramp model as well as
competing face space coding schemes (bottom). Black lines indicate 1
standard error of the mean, and the shaded area indicates the noise-
ceiling estimate, which is obtained from between-subject distance
matrix correlation (Experimental Procedures). The free parameters of
the ramp model were estimated in individual volunteers from a
training split of the dataset and the resulting model based on the
group-average parameters was correlated with the left-out
volunteer’s face-space reconstruction. This ensured that the ramp
model’s performance could be compared to the remaining face coding
schemes, which are fixed models without free parameters. The ramp
model is plotted together with the performance of the reference PCA
space distances (gray) and two control models based on low-level
features of the stimuli (purple bars, Experimental Procedures).
Horizontal connectors and p values above bars were generated as in
Figure 2.

Differences between cortical and perceptual face spaces are explained

by different degrees of population averaging

The ramp model fit approached the noise ceiling both in cortical and perceptual face
spaces even though these exhibited distinct levels of eccentricity over-representation.
Inspection of the best-fitting ramp model parameters showed that this flexibility in the
model’s representation could be attributed to a higher level of population averaging in
each of the cortical face spaces than in the perceptual space (all p<0.03, Figure 5).
Overall, all cortical face spaces exhibited high proportions of population averaging with
over 70% of the response being attributed to population average responses rather than
unit-specific coding. This high level of averaging is consistent with the low spatial
precision of the blood oxygen level-dependent fMRI response, which may introduce
such readout averaging both by measuring neuronal activity indirectly through vascular
responses and by sub-sampling these hemodynamic responses into a grid of voxels
(30,31). By contrast, the parameters that controlled the shape of the sigmoidal ramp
response function did not differ between any of the face space reconstructions (all

11


https://doi.org/10.1101/029603
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/029603; this version posted October 21, 2015. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

p>0.1), suggesting that cortical and perceptual face spaces did not differ reliably in their
ramp tuning functions. These results suggest that widely distributed cortical face space
representations can support perceptual similarity judgments, with apparent differences
between the cortical and perceptual representations accounted for by readout-level

averaging in fMRI responses.

Figure 5. Cortical and perceptual face spaces were fitted using similar
sigmoidal response functions but distinct levels of population
averaging. The bars depict group-average ramp model parameters for
the cortical and perceptual face spaces. Black lines depict 1 standard
error, and significant differences (paired T test, p<0.05) are indicated
with horizontal connectors. The perceptual face space is fitted with a
lower proportion of population averaging relative to each of the
cortical face spaces. No other pairwise comparisons were statistically
significant.

Additionally, population-averaging effects may reflect mechanisms of the neural
circuits that transform perceptual representations into behavioral outputs. Note that the
perceptual face space reconstruction was fitted with a substantial amount of population
averaging as well, suggesting that averaging occurs during perceptual processing and
not merely as a consequence of fMRI response sampling. Thus, one interpretation of
these population averaging effects is that the perceptual estimate reflects intrinsic
averaging arising from pooling over inputs at multiple stages of the cortical hierarchy,
while the difference between this averaging level and the higher level found in cortical
reconstructions reflects the additional contribution of extrinsic averaging arising from

spatially imprecise fMRI measurements.

Both sigmoidal ramp coding and population averaging are necessary

for a complete account of cortical face-space representations

The two central features of the computational model we propose here are sigmoidal
ramp-tuned model units with preferences for extreme feature values and readout-level

population averaging. We tested whether these features are necessary to account for
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human face-space representations by developing an alternative model based on
exemplar coding and by manipulating the availability of the population averaging
computation to the ramp and exemplar models. The exemplar model proposes that the
representational space is sampled by a Gaussian distribution of exemplars, where each
unit prefers a Cartesian coordinate in the space rather than a direction and the response
of each unit scales with an isotropic Gaussian rather than a sigmoidal ramp (Figure 6a,
Experimental Procedures). We fitted this model similarly to the ramp model with two
free parameters that controlled the width of the Gaussian distribution from which
tuning centers were sampled and the width of a Gaussian controlling the fall-off of each

unit’s response with Euclidean distance from the tuning center.

Figure 6. Only a ramp model with population averaging provides a
complete account of cortical face representations. (a) Response
profile for an example unit from an exemplar model based on the
group-average parameters that were optimal for predicting the
fusiform face area. The filled circle indicates the coordinate of the
example unit’s peak response. Tuning centers from a subset of other
model units are overlaid in black outlines for illustrative purposes
along with the face exemplars (plotted as in Figure 1). (b) Prediction
performance for the ramp and exemplar models fitted to the
perceptual face-space reconstruction. Gray bars indicate performance
with population averaging, white bars performance with no
averaging. These cross-validated estimates were calculated as in
Figure 4. (c-g) Left: prediction performance for the ramp and
exemplar models fitted to the cortical face space reconstructions.
Plotted as in panel b. It can be seen that the ramp model with
population averaging has comparable prediction performance to the
exemplar models, where population averaging has little effect. Middle
and right: Comparison between observed region-mean fMRI response
and population-mean model responses for the exemplar model
(middle, no population averaging) and ramp model (right, with
population averaging). Each point reflects a single-volunteer estimate
for a given eccentricity level (arbitrary image intensity units on y
axis). The slopes provide single-volunteer estimates of the linear
effect of model population-mean response as a predictor for region-
mean fMRI response. Region-mean fMRI responses generally increase
with eccentricity, which is consistent with the ramp model but
inconsistent with the exemplar model.

We found that population averaging was necessary for constructing a ramp model

that could predict the explainable variance in cortical face representations. The ramp
13
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model without population averaging did not reach the noise-ceiling estimate and
performed reliably worse than the full ramp model in each cortical region (all p<0.007,
Figure 6¢-g). This result is consistent with the Johnson-Lindenstrauss lemma, according
to which coordinates in a space constructed from random projections approximately
preserves distances in the original space. Thus, population averaging is necessary to
achieve a ramp model that exaggerates eccentricity relative to direction in the manner
exhibited by the cortical face-space reconstruction. By contrast, the ramp-model fit to
perceptual judgments was similar with and without population averaging (p>0.19),
consistent with the relatively smaller contribution of population averaging to the ramp-
model fit. Population averaging had inconsistent effects on the exemplar model’s
prediction performance. Some reconstructions were better predicted with averaging
(PPA, p=0.012), others without (perceptual judgments, p=0.043), while the remainder
showed no reliable differences (all p>0.24). Thus, population averaging was a necessary
component for successfully fitting the ramp model to cortical face-space
reconstructions, but its advantages were specific to the ramp model and cortical face-

space reconstructions.

The exemplar model’s prediction performance was comparable to the ramp model
with population averaging, but the exemplar model did not accurately predict region-
mean fMRI responses. With sporadic exceptions (early visual cortex, p=0.043), we did
not observe reliable differences in prediction performance between the ramp model
with population averaging and the exemplar model with or without averaging (Figure
6b-g, left panels). Thus, pattern-level cortical and perceptual face-space reconstructions
could not be used to reliably distinguish underlying representations based on exemplar
coding from sigmoidal ramp coding with population averaging. However, an analysis of
the population-mean predictions of the two models provided strong evidence in favor of
the ramp model. Even though these models were fitted to distance matrices rather than

region-mean fMRI responses, we found that they exhibited systematic population-mean
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response preferences as a function of face-space eccentricity. Consistent with the
region-mean fMRI effects (Figure S3), the ramp model with population averaging
exhibited increasing population-mean responses with eccentricity, while the exemplar
model generally predicted decreasing responses with eccentricity (slopes in Figure 6c-g,
middle and right panels). Thus, region-mean fMRI responses enabled us to adjudicate
between the ramp and exemplar models, even though both models had comparable
prediction performance in fits to pattern-level cortical and perceptual face space
reconstructions. This highlights the power of fMRI in distinguishing between

computational models that make equivalent predictions for behavior (see also (32)).

We explored whether the population-mean preference for sub-caricatures in the
exemplar model could be altered, but found that such models do not predict cortical
face-space reconstructions with the same performance as the other models we tested.
The preference for sub-caricatures in the standard exemplar model arises as a necessary
consequence of the Gaussian distribution of tuning centers, which over-samples the
center relative to the periphery of the space. This tendency is further magnified by the
free parameter controlling the width of this tuning-center distribution, where cortical
fits consistently favored compressed distributions with tuning centers close to the
center of the space (see FFA example in Figure 6a). We tested models with inverted
Gaussian tuning-center distributions since such models might produce more
appropriate population-mean response preferences for caricatures. However, the
inverted-Gaussian exemplar model’s prediction performance was reliably worse than
the standard-Gaussian exemplar model for all cortical face-space reconstructions
(Figure S6, all p<0.027). Thus, exemplar models provide accurate fits to pattern-level
cortical face space reconstructions when the tuning-center distribution is Gaussian, but
such distributions necessarily lead to inaccurate predictions for region-mean fMRI

response preferences. In summary, the ramp model with population averaging was the
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only model we evaluated that provided a complete account of pattern-level face-space

reconstructions, region-mean fMRI responses, and perceptual judgments.
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Discussion

This study investigated the representation of individual faces in human visual cortex
and in perceptual judgments by comparing estimated distances in reconstructed face
spaces to distances in a reference PCA model of 3D shape and texture and to
computational models of face-space coding. We found that cortical face spaces
systematically over-represent face-space eccentricity relative to direction. Perceptual
face spaces exhibited similar warping, but to a lesser degree. A simple neuronal model
based on sigmoidal ramp tuning provided a good fit to both cortical and perceptual face
spaces, provided that a parameter was included to account for readout-level population

averaging of the individual model units.

Sigmoidal ramp tuning explains human face-space representation

Our findings suggest that sigmoidal ramp tuning supports human face-space coding.
Although we showed that Euclidean distances in the reference PCA space correlates
with cortical and perceptual face-space reconstructions, this relationship was imperfect
relative to the ramp model’s performance. Importantly, the advantage for the ramp
model arises from its ability to capture readout-level population averaging effects, not
because its internal representation in the absence of averaging differs substantially from
coding Euclidean distances in the reference face space. Instead, the key contribution of
our model is to provide a description of a face-space coding scheme that recapitulates
these reference face-space distances while also exhibiting over-representation of
eccentricity as a consequence of readout-level population averaging. Thus, the ramp
model provides a computational account for how face-space coding is structured in
cortical representation and for how readout-level effects might warp this

representation.
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Distinctiveness effects as an emergent property of a neuronal

population with sigmoidal ramp tuning

Our results are consistent with a model where sensitivity to face-space eccentricity at
the region-mean activation level is supported by a population of direction-tuned units
rather than an explicit representation of face distinctiveness or associated psychological
constructs. This view is also supported by evidence from single-unit recording studies,
where cells generally are tuned to particular features with a preference for extreme
values rather than responding to eccentricity regardless of direction (28,29). Our model
exemplifies how neuronal representations may differ qualitatively from estimates of
these representations at the level of fMRI voxels. Related effects have been reported in
attention research, where response-gain and contrast-modulation effects at the single
neuron level may sum to similar additive-offset effects at the fMRI-response level (33).
In summary, direct interpretation of fMRI effects in terms of representations of

distinctiveness may be misleading.

Cortical face space representations are widely distributed

We observed highly similar face space representations across visual cortex, including
scene-selective, face-selective and early visual cortex. Such widely-distributed effects
are consistent with previous face identity decoding studies (2,4). Unlike the clear
anatomical clustering of region-mean selectivity for faces relative to other categories in
regions such as FFA, multivariate within-category discrimination of face exemplars

appears to involve a widespread network of visual areas.

It may appear surprising that a face-space coding model should explain
representations in regions that are unlikely to encode faces specifically. However, the
ramp-tuning model is agnostic with regard to the features encoded by the dimensions of
the representational space, which need not be face-specific. For instance, local curvature

increases with face space eccentricity and is encoded in a ramp-like manner at
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intermediate stages of visual processing in macaque V4 (28). Similarly, even a Gabor
filter-based representation as envisioned by classic models of V1 simple cells (34,35)
would likely possess some sensitivity to face-space direction because the contrast of
local orientation content varies with major face features such as eyebrow or lip
thickness. There are thus multiple mechanisms by which regions without specialized
face processing may still exhibit the type of face-space coding we observed here. A
corollary of this point is that the face-space effects we report are likely to reflect a
general mechanism for object individuation in visual cortex rather than specialized

processing for face recognition as such.

Population averaging has wide-spread applicability in computational

modeling of perception and cortical representation

We found that manipulation of a global population averaging parameter was sufficient
to reconcile disparate distance estimates from perceptual judgments and cortical
representation with a single underlying representation based on sigmoidal ramp coding.
By contrast, a mechanistic account of how population-averaging effects arise in
perceptual judgments or fMRI responses is likely intractable at present since the circuit-
level properties of these transformations are poorly understood, and the set of
parameters involved would be large. For instance, a complete account of how fMRI
responses sample neuronal activity remains a topic for on-going research (36-38), and a
model that fits all likely parameters is unlikely to yield a unique solution. Instead of
estimating such a complete model we approximate its effects at the population distance-
matrix level by specifying a single parameter that controls the extent to which individual
model unit responses are translated toward the population-average response. Despite
its simplicity, the model captures nearly all the explainable variance in the current

study, suggesting that population averaging is a reasonable approximation for how

19


https://doi.org/10.1101/029603
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/029603; this version posted October 21, 2015. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

readout effects affect perception and cortical representations at the distance-matrix

level.

Although the current study concerns face representations we expect similar
modeling approaches to have broad applicability in related fields. The model we
estimate is specified at the level of dimensional feature coding with unimodal tunings
and does not explicitly encode any face-specific mechanisms. Thus, it could be applied to
a wide range of perceptual representations including coding of color, shape and non-
face objects. Consistent with this possibility, we found that the model could account for
effects outside of face-specific cortex. We expect population averaging to prove a useful
concept for modeling representations across a range of perceptual domains and

recording modalities.
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Materials and Methods

Sampling the reference PCA face space

We generated faces using a norm-based model of 3D face shape and texture, which
has been described in detail previously (15,27). Briefly, the model comprises two
principal components analyses (N=200 faces), one based on 3D shape estimated from
laser scans and one based on texture estimated from digital photographs. The
components of each PCA solution are considered dimensions in a space that describes
natural variation in facial appearance. We yoked the shape and texture solutions in all

subsequent analyses since we did not have distinct hypotheses for these.

We developed a method for sampling faces from the reference PCA space in a
manner that would maximize dissimilarity variance. This is related to the concept of
design efficiency in univariate general linear modeling (39), and involves maximizing
the variance of hypothesized distances across the stimulus set. Because randomly
sampled distances in high dimensional spaces tend to fall in a narrow range of distances
relative to the norm (40), we reduced each participant’s effective face space to 2D by
specifying a plane which was centered on the norm of the space and extended at a
random orientation. The face exemplars constituted a polar grid with 4 directions at 60
degrees separation and 3 eccentricity levels (scaled at 30%, 100% and 170% of the
mean eccentricity in the training faces set). The resulting half-circle grid on a plane
through the high-dimensional space is adequate for addressing our hypotheses
concerning the relative role of direction and eccentricity coding under the assumption
that the high-dimensional space is isotropic. In preliminary tests we observed that this
method yielded substantially greater dissimilarity variance estimates than methods

based on Gaussian or uniform sampling of the space.
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Face animation preparation

We used Matlab software to generate a 3D face mesh for each exemplar. This mesh
was rendered at each of the viewpoints of interest in the study in a manner that
centered the axis of rotation on the bridge of the nose for each face. This procedure
ensured that the eye region remained centered on the fixation point throughout each
animation in order to discourage eye movements. Renders were performed at sufficient
increments to enable 24 frames per second temporal resolution in the resulting
animations. Frames were converted to gray-scale and cropped with a feathered oval
aperture to standardize the outline of each face and to remove high-contrast mesh edges
from the stimulus set. Finally, we performed a frame-by-frame histogram equalization
procedure where the average histogram for each frame was imposed on each individual
face. Thus, the histogram was allowed to vary across time but not across faces. Note that
histogram matching implies that the animations also have identical mean gray-scale

intensity and root-mean-square contrast.

A potential concern with these matching procedures is that they could affect the
validity of the comparison to the reference PCA space. However, we found that the
opposite appeared to be true: distances in the reference PCA space were more
predictive of pixelwise correlation distances in the matched space than in the original
frames. Thus, the matching procedure did not remove features that were encoded in the

PCA space and may in fact have acted to emphasize such features.

Participants

10 healthy human volunteers participated in a similarity judgment task and fMRI
scans. The psychophysical task comprised 3-4 separate days of data collection which
were completed prior to 4 separate days of fMRI scans. All procedures were performed
under a protocol approved by the Cambridge Psychology Research Ethics Committee

(CPREC). Volunteers were recruited from the local area (Cambridge, UK) and were naive
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with regard to the purposes of the study. Five additional volunteers participated in
initial data collection but were not invited to complete the study due to difficulties with
vigilance, fixation stability, claustrophobia and/or head movements inside the scanner.
The analyses reported here include all complete datasets that were collected for the

study.

Perceptual similarity judgment experiment

We used a pair-of-pairs task to characterize perceptual similarity. Volunteers were
presented with two vertically offset pairs of faces on a standard LCD monitor under free
viewing conditions and judged which pair were relatively more dissimilar with a button
press on a USB keyboard (two-alternative force choice). Each face rotated continuously
between a leftward and a rightward viewpoint (45 degrees left to 45 degrees right over
3 seconds). Ratings across all possible pairings of face pairs (2145 trials: all pairings of
the 66 possible pairs of the 12 faces) were combined into a distance matrix for each
volunteer where each entry reflects the percentage of trials on which that face pair was

rated as relatively more dissimilar.

Functional MRI experiment

We measured brain response patterns evoked by faces in a rapid event-related design.
Volunteers fixated on a central point of the screen where a pseudo-random sequence of
face animations appeared (7 degrees visual angle in height, 2s on, 1s fixation interval).
We verified fixation accuracy online and offline using an infrared eye tracking system
(Sensomotoric Instruments, 50Hz monocular acquisition). The faces rotated leftward
and rightward on separate trials (18-45 degrees rotation), and volunteers responded
with a button press to occasional face repetitions regardless of rotation (one-back task).
This served to encourage attention to facial identity rather than to incidental low-level

physical features. Consistent with a task strategy based on identity recognition rather
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than image matching, volunteers were sensitive to repetitions both within viewpoint

(mean d’+-1 standard deviation 2.68+-0.62) and across viewpoint (2.39+-0.52).

The experiment was divided into 16 runs and each run comprised 156 trials bookended
by 10s fixation intervals. The trial order in each run was first-order counterbalanced
over the 12 faces using a De Bruijn sequence (41) with 1 additional repetition (diagonal
entries in transfer matrix) added to each face in order to make the one-back repetition
task more engaging and to increase design efficiency (39). The viewpoint in which each
face appeared was randomized separately, since a full 24-stimulus De Bruijn sequence
would have been over-long (576 trials), and the analyses we report concern identity
rather than viewpoint effects. Although the resulting 24-stimulus sequences were not
fully counter-balanced, we used an iterative procedure to minimize any resulting
inhomogeneity by rejecting viewpoint randomizations that generated off-diagonal
values other than 0 and 1 in the 24-condition transfer matrix (that is, each possible
stimulus-to-stimulus transfer in the sequence could appear only once or not at all).
These homogeneous trial sequences served to enhance cross-validation performance by
minimizing over-fitting to idiosyncratic trial sequence biases in particular runs. We

modeled the data in each run with one predictor per face exemplar.

Magnetic resonance imaging acquisition

Functional and structural images were collected at the MRC Cognition and Brain
Sciences Unit (Cambridge, UK) using a 3T Siemens Tim Trio system and a 32-channel
head coil. Functional runs used a 3D echoplanar imaging sequence (2mm isotropic
voxels, 30 axial slices, 192 x 192mm field of view, 128 x 128 matrix, TR=53ms,
TE=30ms, 15° flip angle, effective acquisition time 1.06s per volume) with GRAPPA
acceleration (acceleration factor 2 x 2, 40 x 40 PE lines). Each volunteer’s functional
dataset (7376 volumes) was converted to NIFTI format and realigned to the mean of the

first session’s first experimental run using standard functionality in SPM8
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(filion.ucl.ac.uk/spm/software/spm8/). A structural T1-weighted volume was collected
in the first session using a multi-echo MPRAGE sequence (1mm isotropic voxels)(42).
The structural image was de-noised using previously described methods (43), and the
realigned functional dataset’s header was co-registered with the header of the structural
volume using SPM8 functionality. The structural image was then skull-stripped using
the FSL brain extraction tool (fmrib.ox.ac.uk/fsl), and a re-sliced version of the resulting
brain mask was applied to the fMRI dataset to remove artifacts from non-brain tissue.
We constructed design matrices for each run of the experiment by convolving the onsets
of experimental events with the SPM8 canonical hemodynamic response function. Slow
temporal drifts in MR signal were removed by projecting out the contribution of a set of
nuisance trend regressors (polynomials of degrees 0-4) from the design matrix and the

fMRI data in each run.

Cross-validated discriminant analysis

We estimated the neural discriminability of each face pair for each region of interest
using a cross-validated version of the Mahalanobis distance (44). This analysis improves
on the related Fisher’s linear discriminant classifier by providing a continuous metric of
discriminability without ceiling effects. Similarly to the linear discriminant, classifier
weights were estimated as the contrast between each condition pair multiplied by the
inverse of the covariance matrix of the residual time courses, which was estimated using
a sparse prior (45). This discriminant was estimated separately for the concatenated
design matrix and fMRI data in each possible leave-one-run-out training split, and the
resulting weights were projected onto the contrast estimates from each training split’s
corresponding test run (16 estimates per contrast). The absolute value of each resulting
distance estimate was square root transformed and then returned to original sign before
being averaged across the splits to obtain the final neural discriminability estimate for

that volunteer and region. When the same data is used to estimate the discriminant and
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evaluate its performance, this algorithm returns the Mahalanobis distance provided that
a full rather than sparse covariance estimator is used (44). However, unlike a true
distance measure, the cross-validated version that we use here is centered on 0 under
the null hypothesis. This motivates group-level inference for above-chance performance

using conventional T tests.

We developed a variant of this discriminant analysis where effects that might be
broadly described as univariate-level are removed (Figure S4). This control analysis
involved two modifications to how contrasts were calculated at the level of forming the
discriminant and at the level of evaluating the discriminant on independent data. First,
the mean pattern across voxels was subtracted from each parameter estimate in order
to remove any region-mean offsets between the conditions. Second, the mean response
pattern across pairs of conditions was subtracted from each member of the pair before
calculating the contrast estimate, in order to correct for any scaling effects. The resulting
control analysis is insensitive to patterns that differ in simple additive offsets as well as

cases where a single pattern is multiplicatively scaled between the conditions.

Multiple regression RSA

We used a multiple regression model to estimate the relative contribution of
eccentricity and direction to cortical and perceptual face-space representations.
Multiple regression fits to distance estimates can be performed using squared values,
since squared distances sum according to the Pythagorean theorem. We partitioned the
squared distances in the reference PCA space into variance associated with eccentricity
changes by creating a distance matrix where each entry reflected the minimum distance
for its eccentricity group in the squared reference PCA matrix (that is, cases along the
group’s diagonal where there was no direction change). The direction matrix was then
constructed as the difference between the squared reference PCA matrix and the

eccentricity matrix (Figure 2a). These predictors were vectorized and entered into a
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multiple regression model together with a constant term. The absolute values of the
cortical and perceptual distance matrices were squared and then transformed back to
their original sign before being regressed on the predictor matrix using ordinary least
squares. Finally, the absolute values of the resulting parameter estimates were square-
root transformed and returned to their original signs. These sign transforms served to
preserve symmetry about zero under the null hypothesis for the resulting parameter

estimates.

Functional regions of interest

We used a conventional block-based functional localizer experiment to identify
category-selective and visually-responsive regions of interest in human visual cortex.
Volunteers fixated a central cross on the screen while blocks of full-color images were
presented (36 images per block presented with 222ms on, 222ms off, 16 s fixation).
Volunteers were instructed to respond to exact image repetitions within the block. Each
run comprised 3 blocks each of faces, scenes, objects and phase-scrambled versions of
the scene images. Each volunteer’s data (8 runs of 380 volumes) was smoothed with a
Gaussian kernel (6mm full width at half maximum) and responses to each condition
were estimated using standard SPMS8 first level modeling. Regions of interest were
masked in individual volunteers using statistical thresholds that yielded separable
activated regions. We defined the face-selective occipital and fusiform face areas with
the contrast of faces over objects, the scene-selective parahippocampal place area and
transverse occipital sulcus as the contrast of scenes over objects, and the early visual
cortex as the contrast of scrambled stimuli over the fixation baseline. We also attempted
to localize a face-selective region in the posterior superior temporal sulcus, a face-
selective region in anterior inferotemporal cortex and a scene-selective region in
retrosplenial cortex, but do not report results for these regions here since they could

only be identified in a minority of the volunteers.
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Ramp model

The ramp model comprises 1000 model units, each of which exhibits a
monotonically increasing response in a random direction extending from the origin of
the face space (Figure 3). The response y at position x along the preferred direction is

described by the sigmoid

y[raw] =1 / (1+exp((-x+0)/s));

where the free parameters are o, which specifies the horizontal offset of the
response function (zero places the midpoint of the response function at the norm of the
space, values greater than zero corresponds to responses shifted away from the norm),
and s, which defines the amount of response function saturation (4 corresponds to a
near-linear response in the domain of the face exemplars used here, while values near
zero correspond to a step-like increase in response). The raw output of each model unit

is then translated toward the population-mean response

y[final] = y[raw]-y[mean] * (1-p) + y[mean]

where p defines the strength of readout-level population averaging (0 corresponds
to no averaging, 1 corresponds to each model unit returning the population-mean

response).

Exemplar model

The exemplar model comprises 1000 model units, each of which prefers a Cartesian
coordinate in the face space with response fall-off captured by an isotropic Gaussian.
The free parameters are w, which controls the full width at half-maximum tuning width
of the Gaussian response function, and d, which controls the width of the Gaussian
distribution of tuning centers (0.1 places Z=2.32 at 10% of the eccentricity of the

caricatures while 3 places this tail at 300% of the eccentricity of the caricatures).
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We generated an inverted-Gaussian model where the distribution of distances was
inverted at Z=2.32 and negative distances truncated to zero (1% of exemplars). This

model was fitted with similar parameters as the original Gaussian exemplar model.

Estimating the noise ceiling

We estimated the noise ceiling for Z-transformed Pearson correlation coefficients
based on methods described previously (44). This method estimates the explained
variance that is expected for the true model given noise levels in the data. Although the
true noise level of the data cannot be estimated, it is possible to approximate its upper
and lower bounds in order to produce a range within which the true noise ceiling
resides. The lower bound estimate is obtained by a leave-one-volunteer-out cross-
validation procedure where the mean distance estimates of the training split are
correlated against the left-out-volunteer’s distances, while the upper bound is obtained
by performing the same procedure without splitting the data. These estimates were

visualized as a shaded region in figures after reversing the Z-transform (Figure 4).

Statistical inference

All statistical inference was performed using T-tests at the group-average level
(N=10 in all cases except the occipital face area, N=9). Correlation coefficients were Z-
transformed prior to statistical testing. Averages were reverse-transformed to original

units before visualization for illustrative purposes.

Control models based on low-level physical feature coding

We used two control models to estimate whether coding based on pixelwise features
or low-level visual properties would produce the same face space warping we observed
in our data (Figure 4). The pixelwise distance model was generated by stacking all the
pixels in each of the face animations into vectors and estimating the correlation distance

between these intensity values. The Gabor wavelet pyramid is a neuroscientifically-
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inspired model that has previously been used to successfully predict responses in the
early visual cortex (46). The model is composed of a bank of Gabor filters varying in
spatial position and orientation, and predictions are generated by measuring the filter
outputs to each face exemplar image and estimating the correlation distance between
these model response patterns. We estimated these distances using the last frame for

each animation.
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Supporting information captions

Figure S1. Example stimulus sets for 4 volunteers. Each stimulus set shares the same
underlying distance matrix in the reference PCA space, while the randomization of the
orientation of the plane on which the faces are sampled ensures that each set is visually

distinct.

Figure S2. Direction discriminability as a function of eccentricity level. Each point
reflects the mean performance for all directions at a given eccentricity level (4x4 block
diagonals in Figure 1) for a single volunteer. Small random offsets have been added to
each x coordinate for illustrative purposes. (a) Judged dissimilarity increases with
eccentricity level. The black line indicates the least-squares fit. The p value for the slope
estimate is obtained by group analysis of single volunteer slope estimates (n=10). (b-f)
Cortical discrimination performance increases with eccentricity level in all regions
except the parahippocampal place area (f). The p values above each x coordinate
indicate significance at the group level, while markers denoting non-significant single
volunteer discriminants are filled with gray (p>0.05, permutation test). The slope is

plotted as in a.

Figure S3. Region-mean responses as a function of eccentricity level, estimated by a
regression fit to the mean time course for each region. Each point reflects the mean
parameter estimate for the 4 faces at a given eccentricity level for a single volunteer.

Statistical inference is as Figure S2.

Figure S4. Effects of region-mean effect removal on multiple regression RSA fits.

Effects are plotted as in Figure 2.

Figure S5. Example outputs of grid search procedure. Sections centered on the white

crosshairs are plotted through the full 3-dimensional search space. The color map
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indicates the similarity between the ramp model distance matrix at that parameter

value and the reconstructed face spaces for perceptual judgments (a) and the fusiform
face area (b). It can be seen that both spaces are best fitted with similar parameters for
the shape of the sigmoidal response function (tuning saturation, horizontal offset), but

distinct levels of population averaging.

Figure S6. Fitting exemplar models with Gaussian and inverted-Gaussian
distributions of tuning centers to cortical face space reconstructions. (a) Response
profile for an example unit from an exemplar model with inverted-Gaussian unit-center
distribution based on the group-average parameters that were optimal for predicting
the FFA. The filled circle indicates the coordinate of the example unit’s peak response.
Tuning centers from a subset of other model units are overlaid in black outlines for
illustrative purposes along with the face exemplars (plotted as in Figure 1). See Figure 6
for example unit from the standard Gaussian exemplar model. (b-g) Prediction
performance for exemplar models fitted to the cortical and perceptual face space
reconstructions. Gray bars indicate performance with population averaging, white bars
performance with no averaging. These cross-validated estimates were calculated as in
Figure 4. It can be seen that the inverted Gaussian is consistently outperformed by the

standard Gaussian model.
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