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Abstract 
Given a massive collection of sequences, it is infeasible to perform pairwise alignment for basic 
tasks like sequence clustering and search. To address this problem, we demonstrate that the 
MinHash technique, first applied to clustering web pages, can be applied to biological sequences 
with similar effect, and extend this idea to include biologically relevant distance and significance 
measures. Our new tool, Mash, uses MinHash locality-sensitive hashing to reduce large 
sequences to a representative sketch and rapidly estimate pairwise distances between genomes or 
metagenomes. Using Mash, we explored several use cases, including a 5,000-fold size reduction 
and clustering of all ~55,000 NCBI RefSeq genomes in 46 CPU hours. The resulting 93 MB 
sketch database includes all RefSeq genomes, effectively delineates known species boundaries, 
reconstructs approximate phylogenies, and can be searched in seconds using assembled genomes 
or raw sequencing runs from Illumina, Pacific Biosciences, and Oxford Nanopore. For 
metagenomics, Mash scales to thousands of samples and can replicate Human Microbiome 
Project and Global Ocean Survey results in a fraction of the time. Other potential applications 
include any problem where an approximate, global sequence distance is acceptable, e.g. to triage 
and cluster sequence data, assign species labels to unknown genomes, quickly identify mis-
tracked samples, and search massive genomic databases. In addition, the Mash distance metric is 
based on simple set intersections, which are compatible with homomorphic encryption schemes. 
To facilitate integration with other software, Mash is implemented as a lightweight C++ toolkit 
and freely released under a BSD license at https://github.com/marbl/mash. 

Introduction 
When BLAST was first published in 19901, there were less than 50 million bases of nucleotide 
sequence in the public archives (http://www.ncbi.nlm.nih.gov/genbank/statistics); now a single 
sequencing instrument can produce over 1 trillion bases per run2. New methods are needed that 
can manage and help organize this scale of data. To address this, we consider the general 
problem of computing an approximate distance between two sequences and describe Mash, a 
general-purpose toolkit that utilizes the MinHash technique3 to reduce large sequences (or 
sequence sets) to compressed sketch representations. Using only the sketches, which can be 
thousands of fold smaller, the similarity of the original sequences can be rapidly estimated with 
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bounded error. Importantly, the error of this computation depends only on the size of the sketch 
and is independent of the genome size. Thus, sketches comprising just a few hundred values can 
be used to approximate the similarity of arbitrarily large datasets. This has important applications 
for large-scale genomic data management and emerging long-read, single-molecule sequencing 
technologies. 
 
The MinHash technique is a form of locality-sensitive hashing4 that has been widely used for the 
detection of near-duplicate Web pages and images5, 6, but has seen limited use in genomics 
despite initial applications over ten years ago7. More recently, MinHash has been applied to the 
relevant problems of genome assembly8, 16S rDNA gene clustering9, and metagenomic sequence 
clustering10. Because of the extremely low memory and CPU requirements of this probabilistic 
approach, MinHash is well suited for data-intensive problems in genomics. To facilitate this, we 
have developed the Mash toolkit for flexible construction, manipulation, and comparison of 
MinHash sketches from genomic data. We build upon past applications of MinHash by deriving 
a new significance test and distance metric, the Mash distance, which estimates a simple 
evolutionary distance. Similar ‘alignment-free’ methods have a long history in bioinformatics11, 

12. However, methods based on string matching must process the entire sequence with each 
comparison13-16, while methods based on short word counts have lacked the ability to 
differentiate closely related sequences17-20. In contrast, the Mash distance can be quickly 
computed from the size-reduced sketches alone, producing a result that strongly correlates with 
Average Nucleotide Identity (ANI)21. Thus, Mash combines the high specificity of matching-
based approaches with the dimensionality reduction of statistical approaches. 
 
Mash provides two basic functions for sequence comparisons: sketch and dist. The sketch 
function converts a sequence or collection of sequences into a MinHash sketch (Figure 1). The 
dist function compares two sketches and returns for the original sequences an estimate of the 
Jaccard index (i.e. the fraction of shared k-mers), a P-value, and the Mash distance, which 
estimates the rate of sequence mutation under a simple evolutionary model16 (Methods). Since 
Mash relies only on comparing length k substrings, or k-mers, the inputs can be whole genomes, 
metagenomes, nucleotide sequences, amino acid sequences, or raw sequencing reads. Each input 
is simply treated as a collection of k-mers taken from some known alphabet, allowing many 
applications. Here we examine three specific use cases, (1) sketching and clustering the entire 
NCBI RefSeq genome database, (2) searching assembled and unassembled genomes against the 
sketched RefSeq database, and (3) computing a distance between metagenomic samples using 
both assembled and unassembled read sets. Additional applications can be envisioned and are 
covered in the Discussion. 
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Results 

Clustering all genomes in NCBI RefSeq 
Mash enables scalable whole-genome clustering, which is an important application for the future 
of genomic data management. As genome databases increase in size, and whole-genome 
sequencing becomes routine, it will become infeasible to manually assign taxonomic labels for 
all genomes. Thus, generalized and automated methods will be useful for constructing and 
partitioning groups of related genomes, e.g. for the automated detection of outbreak clusters22. 
To illustrate the utility of Mash, we sketched and clustered all of NCBI RefSeq Release 7023, 
totaling 54,118 organisms and 618 Gbp of genomic sequence. The resulting sketches total only 
93 MB, yielding a compression factor of >5,000-fold versus the uncompressed FASTA (674 
GB). Sketching all genomes and computing all ~1.5 billion pairwise distances required just 26.1 
and 20.3 CPU hours, respectively (the sketch database is provided as Supplementary Data 1). 
This process is easily parallelized, which can reduce the wall clock time to minutes with 
sufficient compute resources. Once constructed, additional genomes can be added incrementally 
to the full RefSeq database in just 0.9 CPU seconds per 5 MB genome (or 4 CPU minutes for a 3 
GB genome). 
 
The resulting Mash distances correlate well with ANI, with D≈1–ANI over multiple sketch sizes 
and sizes of k (Figure 2). Due to the high cost of computing ANI, a subset of 500 Escherichia 
genomes was selected for comparison (Supplementary Table 1). For ANI in the range 90–100%, 
the correlation with Mash distance is very strong across multiple sketch sizes and choices of k. 
For the default sketch size of s=1,000 and k=21, Mash approximates 1–ANI with a root-mean-
square error of 0.00274 on this dataset. This correlation begins to degrade for more divergent 
genomes because the Mash estimate becomes more variable and penalizes for genome size 
differences, whereas ANI is based solely on the core genome. Increasing the sketch size reduces 
the variance of the Mash estimates, especially for divergent genomes (Supplementary Figures 1 
and 2), while the choice of k is a tradeoff between sensitivity and specificity. Smaller values of k 
are more sensitive for divergent genomes, but lose specificity for large genomes due to chance k-
mer collisions (Supplementary Figure 3). Such chance collisions will skew the Mash distance, 
but given a known genome size, undesirable k-mer collisions can be avoided by choosing a 
suitably large value of k (Methods); however, too large of a k-mer size could result in no shared 
k-mers found. 
 
Approximate species clusters can be generated from the all-pairs distance matrix by graph 
clustering methods or simple thresholding of the Mash distance to create connected components. 
To illustrate, we linked all RefSeq genomes with a pairwise Mash distance ≤0.05, which equates 
to an ANI of ≥95%. This threshold roughly corresponds to a 70% DNA-DNA reassociation 
value—a historical, albeit debatable, definition of bacterial species21. Figure 3 shows the 
resulting graph of significant (P≤10-10) pairwise distances with D≤0.05 for all microbial 
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genomes. Simply considering the connected components of the resulting graph yields a 
partitioning that largely agrees with the current NCBI bacterial species taxonomy. Eukaryotic 
and plasmid components are shown in Supplementary Figures 4 and 5, but would require 
alternate parameters for species-specific clustering due to their varying characteristics. Beyond 
simple clustering, the Mash distance is an approximation of the mutation rate that can also be 
used to rapidly approximate phylogenies using hierarchical clustering. For example, all pairwise 
Mash distances for 17 RefSeq primate genomes were computed in just 2.5 CPU hours (11 
minutes wall clock on 17 cores) with default parameters (s=1,000 and k=21) and used to build a 
neighbor-joining tree24. Figure 4 compares this tree to an alignment-based phylogenetic tree 
model downloaded from the UCSC genome browser25. The Mash and UCSC primate trees are 
topologically consistent for everything except the Homo/Pan split, for which the Mash topology 
is more similar to past phylogenetic studies26 and mitochondrial trees12. On average the Mash 
branch lengths are slightly longer, with a Branch Score Distance27 of 0.10 between the two trees, 
but additional distance corrections are possible for k-mer based models16. However, due to 
limitations of both the k-mer approach and simple distance model, we emphasize that Mash is 
not explicitly designed for phylogeny reconstruction, especially for genomes with large size 
differences, and should be used only in cases where such approximations are sufficient. 

Rapid genome identification from assemblies or reads 
With a pre-computed sketch database, Mash is able to rapidly identify unknown genomes from 
both genome assemblies and raw sequencing reads. To illustrate, we computed Mash distances 
for multiple Escherichia coli datasets compared against the RefSeq sketch database (Table 1). 
This test included the K12 MG1655 reference genome as well as assembled and unassembled 
sequencing runs from the ABI 3730, Roche 454, Ion PGM, Illumina MiSeq, PacBio RSII, and 
Oxford Nanopore MinION instruments. For assembled genomes, the correct strain was identified 
in a few seconds using Lowest Common Ancestor (LCA) classification. For raw sequencing 
reads, the correct species was identified in all cases, including 1D MinION reads28, which had an 
average sequencing error rate of ~40%. The reduced resolution obtained when using raw 
sequences is due to erroneous k-mers, which introduce noise into the sketch. To mitigate this 
problem, Mash uses a streaming Bloom filter to probabilistically ignore single-copy k-mers from 
raw reads sets, but some fraction of erroneous k-mers will persist and skew the Mash distance. 
Increasing the sketch and Bloom filter sizes will improve accuracy when dealing with raw 
sequencing data, as well as read trimming and/or correction. 
 
To further test Mash’s discriminatory power, we searched MinION reads collected from two 
closely related Bacillus species (ANI≈95%) against the full RefSeq sketch database. In both 
cases Mash was able to correctly identify the species, using 43,806 and 91,379 sequences 
collected from single MinION R7.3 runs of Bacillus anthracis Ames and Bacillus cereus ATCC 
10987, respectively (combined 1D and 2D reads). In the case of the higher quality B. cereus 
reads, processed with a more recent ONT workflow (1.10.1 vs. 1.6.3), the correct strain was 
identified with simple LCA classification. These two searches both required just one minute of 
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CPU and 209 MB of RAM. Such low-overhead searches could be used for quickly triaging 
unknown samples or to rapidly select a reference genome for performing further, more detailed 
comparative analyses. 

Clustering massive metagenomic datasets 
Mash can also replicate the function of k-mer based metagenomic comparison tools, but in a 
fraction of the time previously required. The metagenomic comparison tool DSM, for example, 
computes an exact Jaccard index using all k-mers that occur more than twice per sample29. By 
definition, Mash rapidly approximates this result by filtering unique k-mers with a Bloom filter 
and estimating the Jaccard index via MinHashing. COMMET also uses k-mers to approximate 
similarity, but attempts to identify a set of similar reads between two samples using Bloom 
filters30, 31. The similarity of two samples is then defined as the fraction of similar reads that the 
two datasets share, which is essentially a read-level Jaccard index. Figure 5a replicates the 
analysis in Maillet et al.30 using both Mash and COMMET to cluster Global Ocean Survey 
(GOS) data32. Mash is over 50-fold faster than COMMET and correctly identifies clusters from 
the original GOS study. This illustrates the incremental scalability of Mash where the primary 
overhead is sketching, which occurs only once per each sample. After sketching, computing 
pairwise distances is near instantaneous. Thus, Mash avoids the quadratic barrier usually 
associated with all-pairs comparisons and scales well to many samples. For example, a new GOS 
sample could be added to the Mash distance table in less than a minute, compared to an hour 
required for COMMET, making Mash ideal for real-time sample analysis. 
 
For a large-scale test, samples from the Human Microbiome Project33 (HMP) and Metagenomics 
of the Human Intestinal Tract34 (MetaHIT) were combined to create a ~10 TB 888-sample 
dataset. Importantly, the size of a Mash sketch is independent of the input size, requiring only 70 
MB to store the combined sketches (s=10,000, k=21) for these datasets. Both assembled and 
unassembled samples were analyzed, requiring 4.4 CPU hours to process all assemblies and 
279.6 CPU hours to process all read sets. The two clusterings are remarkably similar, with all 
samples clearly grouped by body site (Figure 5b). However, because the Mash distance is based 
on k-mer sets, it is not sensitive to changes in relative abundance and may be more prone to 
batch effects, such as sequencing error rate. For example, Mash does not cluster MetaHIT 
samples by health status, as previously reported34, and MetaHIT samples appear to preferentially 
cluster with one another. It is not clear if this reflects true sample differences (e.g. American vs. 
European stool) or batch effect. Additionally, Mash identified outlier samples that were 
independently excluded by the HMP’s quality control process. When included in the clustering, 
these samples were the only ones that failed to cluster by body site (Supplementary Figure 6). 

Discussion 
Mash enables the comparison and clustering of whole genomes on a massive scale. Potential 
applications include the rapid triage and clustering of sequence data, for example, to quickly 
select the most appropriate reference genome for read mapping or to identify mis-tracked or low 
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quality samples that fail to cluster as expected. The strong correlation between Mash distance 
and ANI promise approximate phylogeny construction, which could be used to rapidly determine 
outbreak clusters for thousands of genomes in real time. Additionally, because the Mash distance 
is based upon simple set intersections, it can be computed using homomorphic encryption 
schemes35, enabling privacy-preserving genomic tests36. 
 
Future applications of Mash could include read mapping and metagenomic sequence 
classification via windowed sketches or a containment score3 to test for the presence of one 
sequence within another. However, both of these approaches would require additional sketch 
overhead to achieve acceptable sensitivity. Improvements in database construction are also 
expected. For example, rather than storing a single sketch per sequence (or window), similar 
sketches could be merged to further reduce space and improve search times. Obvious strategies 
include choosing a representative sketch per cluster or hierarchically merging sketches via a 
Bloom tree37. Finally, both the sketch and dist functions are designed as online algorithms, 
enabling, for example, dist to continually update a sketch from a streaming input. The program 
could then be modified to terminate when enough data has been collected to make a species 
identification at a predefined significance threshold. This functionality is designed to support the 
analysis of real-time data streams, as is expected from nanopore-based sequencing sensors22. 

METHODS 
The Mash version 1.0 codebase is provided as Supplementary Data 2. Precompiled binary 
releases and source code updates are available from https://github.com/marbl/mash. 
 
Mash sketch 
To construct a MinHash sketch, Mash first determines the set of constituent k-mers by sliding a 
window of length k across the sequence. Mash supports arbitrary alphabets (e.g. nucleotide or 
amino acid) and both assembled and unassembled sequences. Without loss of generality, here we 
will assume a nucleotide alphabet Σ={A,C,G,T}. Depending on the alphabet size and choice of k, 
each k-mer is hashed to either a 32-bit or 64-bit value via a hash function, h. For nucleotide 
sequence, Mash uses canonical k-mers by default to allow strand-neutral comparisons. In this 
case, only the lexicographically smaller of the forward and reverse complement representations 
of a k-mer is hashed. For a given sketch size s, Mash uses a “bottom sketch” strategy returning 
the s smallest hashes output by h over all k-mers in the genome (Figure 1). For a sketch size s 
and genome size n, this can be efficiently computed in O(n log s) time by maintaining a sorted 
list of size s and updating the current sketch only when a new hash is smaller than the current 
sketch maximum. Further, the probability that the ith hash of the genome will enter the sketch is 
s/i, so the expected runtime of the algorithm is O(n + s log s log n) (Ref. 3), which becomes 
nearly linear when n >> s. 
 
As demonstrated by Figure 3, a sketch comprising 400 32-bit hash values is sufficient to roughly 
group microbial genomes by species. With these parameters, the sketch for a ~3 billion base-pair 
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human genome represents a million-fold (lossy) compression. However, the probability of a 
given k-mer K appearing in a random genome X of size n is: 
 

𝑃 𝐾 ∈ 𝑋 = 1− 1− Σ !! ! 
(1) 

Thus, for k=16 the probability of observing a given k-mer in a 3 Gbp genome is 0.50, and 25% 
of k-mers are expected to be shared between two random 3 Gbp genomes by chance alone. This 
will skew any k-mer based distance, and make distantly related genomes appear more similar 
than reality. To avoid this phenomenon, it is sufficient to choose a value of k that minimizes the 
probability of observing a random k-mer. Given a known genome size n and the desired 
probability q of observing a random k-mer (e.g. 0.01), this can be computed as38: 
 

𝑘′ = log ! 𝑛(1− 𝑞) 𝑞  
(2) 

which yields k=14 and k=19 for 5 Mbp and 3 Gbp genomes (q=0.01), respectively. We have 
found k=21 gives accurate estimates in most cases (including metagenomes), so this is set as the 
default. However, for constructing the RefSeq database, k=16 was chosen so that each hash 
could fit in 32-bits, minimizing the database size at the expense of reduced specificity for larger 
genomes. The small k also improves sensitivity, which helps with noisy data like single-molecule 
sequencing (Supplementary Figure 3). 
 
Lastly, for sketching raw sequencing reads, Mash provides a streaming Bloom filter to remove 
erroneous k-mers. This approach assumes that redundancy in the data (e.g. depth of coverage >5) 
will result in true k-mers appearing multiple times in the input, while false k-mers will appear 
only once. To probabilistically exclude unique k-mers from the sketch, new hashes are only 
inserted into the sketch if they are found in the Bloom filter. If a new hash would have otherwise 
been inserted in the sketch, but was not found in the Bloom filter, it is inserted into the Bloom 
filter so that subsequent appearances of the hash will pass. 
 
Mash distance 
A MinHash sketch of size s=1 is equivalent to the subsequent ‘minimizer’ concept of Roberts et 
al.39, which has been used in genome assembly40, k-mer counting41, and metagenomics42. 
Importantly, the more general MinHash concept permits an approximation of the Jaccard index 
𝐽 𝐴,𝐵 = !∩!

!∪!
 between two k-mer sets A and B. Mash follows Broder’s original formulation 

and merge-sorts two bottom sketches S(A) and S(B) to estimate the Jaccard index3. The merge is 
terminated after s unique hashes have been processed (or both sketches exhausted), and the 
Jaccard estimate is computed as 𝑗 = !

!!
 for x shared hashes found after processing 𝑠! hashes. 

Because the sketches are stored in sorted order, this requires only O(s) time and effectively 
computes: 
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𝐽 𝐴,𝐵 =
𝐴 ∩ 𝐵
𝐴 ∪ 𝐵 ≈

𝑆 𝐴 ∪ 𝐵 ∩ 𝑆 𝐴 ∩ 𝑆 𝐵
𝑆 𝐴 ∪ 𝐵  

(3) 
which is an unbiased estimate of the true Jaccard index, as illustrated in Figure 1. Conveniently, 
the error bound of the Jaccard estimate 𝜀 = 𝑂 !

!
  relies only on the sketch size and is 

independent of genome size43. Specific confidence intervals are given below and in 
Supplementary Figure 1. Note, however, that the relative error can grow quite large for very 
small Jaccard values (i.e. divergent genomes). In these cases, a larger sketch size or smaller k is 
needed to compensate. For flexibility, Mash can also compare sketches of different size, but such 
comparisons are constrained by the smaller of the two sketches s<u and only the s smallest 
values are considered. 
 
The Jaccard index is a useful measure of global sequence similarity because it correlates with 
Average Nucleotide Identity (ANI), the most common metric used to describe global sequence 
similarity. However, like the MUM index13, J is sensitive to genome size and simultaneously 
captures both point mutations and gene content differences. For distance-based applications, the 
Jaccard index can be converted to the Jaccard distance 𝐽! 𝐴,𝐵 = 1− 𝐽 𝐴,𝐵 , which is related 
to the q-gram distance but without occurrence counts44. This can be a useful metric for 
clustering, but is non-linear in terms of the sequence mutation rate. In contrast, the Mash distance 
D seeks to directly estimate a mutation rate under a simple Poisson process of random site 
mutation. As noted by Fan et al.16, given the probability d of a single substitution, the expected 
number of mutations in a k-mer is 𝜆 = 𝑘𝑑. Thus, under a Poisson model (assuming unique k-
mers and random, independent mutation), the probability that no mutation will occur in a given 
k-mer is 𝑒!!", with an expected value equal to the fraction of conserved k-mers w to the total 
number of k-mers t in the genome, !

!
. Solving 𝑒!!" = !

!
 for d gives 𝑑 =   − !

!
ln!

!
. To account for 

two genomes of different sizes, Fan et al.16 set t to the smaller of the two genome’s k-mer counts, 
thereby measuring containment of the k-mer set. However, Mash sets t to the average genome 
size n, thereby penalizing for genome size differences and measuring resemblance (e.g. to avoid 
a distance of zero between a phage and a genome containing that phage). Finally, because the 
Jaccard estimate j can be framed in terms of the average genome size  𝑗 = !

!!!!
, the fraction of 

shared k-mers can be framed in terms of the Jaccard index !
!
= !!

!!!
, yielding the Mash distance: 

  

𝐷 =   −
1
𝑘 ln

2𝑗
1+ 𝑗  

(4) 
Equation 4 carries many assumptions and does not attempt to model more complex evolutionary 
processes, but closely approximates the divergence of real genomes (Figure 2). With appropriate 
choices of s and k, it can be used as a replacement for costly ANI computations. Supplementary 
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Figure 2 gives 99% confidence bounds on the Mash distance for various sketch sizes, and 
Supplementary Figure 3 illustrates the relationship between the Jaccard index, Mash distance, k-
mer size, and genome size. 
 
Mash P-value 
In cases of distantly related genomes it can be difficult to judge the significance of a given 
Jaccard index or Mash distance. As illustrated by Equation 1, for small k and large n there can be 
a high probability of a random k-mer appearing by chance. How many k-mers then are expected 
to match between the sketches of two random genomes? This depends on the sketch size and the 
probability of a random k-mer appearing in the genome. From Equation 1, the expected Jaccard 
index r between two random genomes X and Y is given by: 
 

𝑟 =
𝑃 𝐾 ∈ 𝑋 𝑃 𝐾 ∈ 𝑌

𝑃 𝐾 ∈ 𝑋 + 𝑃 𝐾 ∈ 𝑌 − 𝑃 𝐾 ∈ 𝑋 𝑃 𝐾 ∈ 𝑌  

(5) 
Knowing the expected population size m of all distinct k-mers in X and Y: 
 

𝑚 = 𝑋 ∪ 𝑌 = 𝑋 + 𝑌 − 𝑟 𝑋 ∪ 𝑌 =
𝑋 + 𝑌
1+ 𝑟   

𝑚 =
Σ ! 𝑃 𝐾 ∈ 𝑋 + 𝑃 𝐾 ∈ 𝑌

1+ 𝑟  

(6) 
The probability p of observing x or more matches between the sketches of these two random 
genomes can be computed using the hypergeometric cumulative distribution function. For the 
sketch size s, expected Jaccard index r, and expected population size m: 

 

𝑝 𝑥; 𝑠; 𝑟;𝑚 = 1−
!"
!

!!!"
!!!

!
!

!!!

!!!

 

(7) 
However, because m is typically very large and the sketch size is relatively much smaller, it is 
more practical to approximate the hypergeometric distribution with the binomial distribution: 
 

𝑝 𝑥; 𝑠; 𝑟 = 1−
𝑠
𝑖 𝑟!(1− 𝑟)!!!   

!!!

!!!

 

(8) 
Mash uses Equation 8 to compute the P-value of observing a given Mash distance (or less) under 
the null hypothesis of both genomes being purely random with uniform character frequencies. Of 
course biological sequences are not random and this equation does not account for compositional 
characteristics like GC bias, but it is useful in practice for ruling out clearly insignificant results 
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(especially for small values of k and j). Note, this only describes the significance of a single 
comparison, and multiple testing must be considered when searching against a large database. 
 
RefSeq clustering 
By default, Mash uses 32-bit hashes for k-mers where Σ ! ≤ 2!" and 64-bit hashes for 
Σ ! ≤ 2!". Thus, to minimize the resulting size of the all-RefSeq sketches, k=16 was chosen 

along with a sketch size s=400. While not ideal for large genomes (due to the small k) or highly 
divergent genomes (due to the small sketch), these parameters are well suited for determining 
species-level relationships between the microbial genomes that currently constitute the majority 
of RefSeq. For similar genomes (e.g. ANI>95%), sketches of a few hundred hashes are sufficient 
for basic clustering. As ANI drops further, the Jaccard index rapidly becomes very small and 
larger sketches are required for accurate estimates. Confidence bounds for the Jaccard estimate 
can be computed using the inverse cumulative distribution function for the hypergeometric or 
binomial distributions (Supplementary Figure 1). For example, with a sketch size of 400, two 
genomes with a true Jaccard index of 0.1 (x=40) are very likely to have a Jaccard estimate 
between 0.075 and 0.125 (P>0.9, binomial density for 30≤x≤50). For k=16, this corresponds to a 
Mash distance between 0.09 and 0.12. 
 
RefSeq Complete release 70 was downloaded from NCBI FTP (ftp://ftp.ncbi.nlm.nih.gov). 
Using FASTA and Genbank records, replicons and contigs were grouped by organism using a 
combination of two-letter accession prefix, taxonomy ID, BioProject, BioSample, assembly ID, 
plasmid ID, and organism name fields to ensure distinct genomes were not combined. In rare 
cases this strategy resulted in over-separation due to database mislabeling. Plasmids and 
organelles were grouped with their corresponding nuclear genomes when available; otherwise 
they were kept as separate entries. Sequences assigned to each resulting ‘organism’ group were 
combined into multi-FASTA files and chunked for easy parallelization. Each chunk was 
sketched with: 
mash sketch -s 400 -k 16 -f -o chunk *.fasta 
This required 26.1 CPU hours on a heterogeneous cluster of AMD processors. The resulting, 
chunked sketch files were combined with the Mash paste function to create a single ‘refseq.msh’ 
file containing all sketches. Each chunked sketch file was then compared against the combined 
sketch file, again in parallel, using: 
mash dist -t refseq.msh chunk.msh 
This required 20.3 CPU hours to create pairwise distance tables for each chunk. The resulting 
chunk tables were concatenated and formatted to create a PHYLIP formatted distance table. 
 
For the ANI comparison, a subset of 500 Escherichia genomes were selected to present a range 
of distances yet bound the runtime of the comparatively expensive ANI computation 
(Supplementary Table 1). ANI was computed using MUMmer’s ‘dnadiff’ program and 
extracting the 1-to-1 ‘AvgIdentity’ field from the resulting report files45. The corresponding 
Mash distances were taken from the all-vs-all distance table as described above. 
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For the primate phylogeny, the FASTA files were sketched separately, in parallel, taking an 
average time of 8.9 minutes each and a maximum time of 11 minutes (Intel Xeon E5-4620 2.2 
GHz processor and solid-state drive). The sketches were combined with Mash paste and the 
combined sketch given to dist. These operations took insignificant amounts of time, and table 
output from dist was given to PHYLIP46 neighbor to produce the phylogeny. Accessions for the 
17 genomes used are given in Supplementary Table 2. The UCSC tree was downloaded from: 

http://hgdownload.cse.ucsc.edu/goldenPath/hg38/multiz20way/ 
 
RefSeq search 
Each dataset listed in Table 1 was compared against the full RefSeq Mash database using the 
following command for assemblies: 
mash dist refseq.msh seq.fasta 
and the following command for raw reads: 
mash dist -u refseq.msh seq.fasta 
which enabled the Bloom filter to remove erroneous, single-copy k-mers. Hits were sorted by 
distance and all hits within one order of magnitude of the most significant hit (P≤10-10) were 
used to compute the lowest common ancestor using an NCBI taxonomy tree. The smallest 
significant distance, with ties broken by P-value, was also reported. 
 
Metagenomic clustering 
The Global Ocean Survey (GOS) dataset32 was downloaded from the iMicrobe FTP site 
(ftp://ftp.imicrobe.us/projects/26). The full dataset was split into 44 samples corresponding to 
Table 1 in Rusch et al.32. This is the dataset used for benchmarking in the Compareads paper30, 
and that analysis was replicated using both Mash and COMMET31, the successor to Compareads. 
COMMET was run with default parameters (t=2, m=all, k=33) as: 
python Commet.py read_sets.txt 
where ‘read_sets.txt’ points to the gzipped FASTQ files. This required 34 CPU hours (2,069 
CPU minutes) and 4 GB of RAM. The heatmaps were generated in R using the quartile coloring 
of COMMET31 (Supplementary Note 1). Supplementary Figure 7 shows the original heatmap 
generated by COMMET on this dataset. Mash was run as: 
mash sketch -u -g 3500 -k 21 -s 10000 -o gos *.fa 
This required 0.6 CPU hours (37 CPU minutes) and 19.6 GB of RAM (or 8 MB without Bloom 
filtering). The resulting combined sketch file totaled just 3.4 MB in size, compared to the 20 GB 
FASTA input. Mash distances were computed for all pairs of samples as: 
mash dist -t gos.msh gos.msh 
which required less than 1 CPU second to complete. 
 
All available HMP and MetaHIT samples were downloaded from: 

http://downloads.hmpdacc.org/data/Illumina/ (HMP reads) 
http://downloads.hmpdacc.org/data/HMASM/ (HMP assemblies) 
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ftp://ftp.sra.ebi.ac.uk/vol1/ERA000/ERA000116/fastq/ (MetaHIT reads) 
http://www.bork.embl.de/~arumugam/Qin_et_al_2010/ (MetaHIT assemblies) 

totaling 764 sequencing runs (9.3 TB) and 755 assemblies (60 GB) for HMP, and 124 
sequencing runs (1.1 TB) and 124 assemblies (10 GB) for MetaHIT. Mash was run in parallel 
with the same parameters used for the GOS datasets, and the resulting sketches merged with 
Mash paste. Sketching the 764 HMP sequencing runs required 259.5 CPU hours (average 0.34, 
max 2.01), and the 755 assemblies required 3.7 CPU hours (average 0.005). Sketching the 124 
MetIDBA sequencing runs required 20 CPU hours (average 0.16, max 0.62), and the 124 
assemblies required 0.64 CPU hours (average 0.005). Mash distances were computed for all pairs 
of samples as before for GOS. This required 3.3 CPU minutes for both sequencing runs and 
assemblies. HMP samples that did not pass HMP QC requirements33 were removed from Figure 
5b, but Supplementary Figure 6 shows all HMP assemblies clustered, with several samples that 
did not pass HMP quality controls included. These samples are the only ones that fail to group by 
body site. Thus, Mash can also act as an alternate QC method to identify mis-tracked or low-
quality samples. 
 
Mash engineering 
Mash builds upon the following open-source software packages: kseq47 for FASTA parsing, 
Cap’n Proto for serialized output (https://capnproto.org), MurmurHash3 for k-mer hashing 
(https://code.google.com/p/smhasher), GNU Scientific Library48 (GSL) for P-value computation, 
and the ‘bloom’ Bloom filter library (https://code.google.com/p/bloom). All Mash code is 
licensed with a 3-clause BSD license. If needed, Mash can also be built using the Boost library49 
to avoid the GSL (GPLv3) license requirements. Due to Cap’n Proto requirements, a C++11 
compatible compiler is required to build from source, but precompiled binaries are distributed for 
convenience. 
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Figures and Tables 

 
Figure 1. Overview of the MinHash bottom sketch strategy for estimating the Jaccard index. First, 
two sequences are decomposed into their constituent k-mers (top, blue and red), and each k-mer is 
passed through a hash function h to obtain a 32- or 64-bit hash, depending on the input k-mer size. The 
resulting hash sets, A and B, contain |A| and |B| distinct hashes each (small circles). The Jaccard index is 
simply the fraction of shared hashes (purple) out of all distinct hashes in A and B. This can be 
approximated by considering a much smaller random sample from the union of A and B. MinHash 
sketches S(A) and S(B) of size s=5 are shown for A and B, comprising the 5 smallest hash values for 
each (filled circles). Merging S(A) and S(B) to recover the 5 smallest hash values overall for A∪B (crossed 
circles) yields S(A∪B). The fraction of elements in S(A∪B) that are shared by both S(A) and S(B) forms an 
unbiased estimate of J(A,B). 
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Figure 2. Scatterplots illustrating the relationship between Average Nucleotide Identity and Mash 
distance for a collection of Escherichia genomes. Each plot column shows a different sketch size s, 
and each plot row a different k-mer size k. Gray lines show the model relationship D=1–ANI, and numbers 
in the bottom right of each plot give the root-mean-square error versus this perfect model. Blue lines show 
linear regression models. Increasing the sketch size lowers the variance of the Mash distance, especially 
for more divergent sequences. However, there is a limit on how well the Mash distance can approximate 
ANI, especially for more divergent genomes (e.g. ANI considers only the core genome). 
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Figure 3. Comparison and de novo clustering of all RefSeq genomes using Mash. Each graph node 
represents a genome. Two genomes are connected by an edge if their Mash distance D≤0.05 and P-
value≤10-10. Graph layout was performed using Cytoscape50 organic layout algorithm51. Individual nodes 
are colored by species, and the top two rows of clusters have been annotated with the majority species 
label they contain. Only components containing microbial genomes are shown here (including viruses). 
Supplementary Figures 4 and 5 show eukaryotes, orphan plasmids, and organelles. 
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Figure 4. Primate trees from the UCSC genome browser and Mash. (a) A primate phylogenetic tree 
model from the UCSC genome browser, with branch lengths derived from 4-fold degenerate sites 
extracted from reference gene multiple alignments. (b) A comparable Mash-based tree generated from 
whole genomes using a sketch size of s=1,000 and k-mer size of k=21. 
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Figure 5. Metagenomic clustering of ocean and human metagenomes using Mash. (a) Comparison 
of Global Ocean Survey (GOS) clustering using Mash (top left) and COMMET (top right) using raw 
Sanger sequencing data. Heat maps illustrate the pairwise similarity between samples, scaled between 0 
(white) and 100 (red) for comparison to COMMET. Sample groups are identified and colored using the 
same key as in Rusch et al.32. The Mash clustering identifies two large clusters of temperate and tropical 
water samples as well as subgroupings consistent with the original GOS study. (b) Human metagenomic 
samples combined from the HMP and MetaHIT projects clustered by Mash from 888 sequencing runs 
(bottom left) and 879 assemblies (bottom right). For both sequencing reads and assemblies, Mash 
successfully clusters samples by body site, and appropriately clusters MetaHIT and HMP stool samples 
together, even though these samples are from different projects with different protocols. 
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Table 1. Sequencing runs and assemblies searched against the Mash RefSeq database. 

Organism Technology Type NCBI ID Size 
(Mbp) 

Time 
(s) 

LCA Best Hit 

E. coli 
K12 MG1655 

Illumina MiSeq Assembly 
SPAdes 

N/A 4.6 2.45 Entero. E. coli 
K12 MG1655 

E. coli 
K12 MG1655 

PacBio RSII Assembly 
CA/PBcR 

GCA_000801205 4.6 2.66 Entero. E. coli 
K12 MG1655 

E. coli 
DH1 

ABI 3730 Reads Trace Archive 60 17.08 Entero. E. coli 
DH1 

E. coli 
K12 MG1655 

454 GS FLX Reads SRR797242 233 57.12 Entero. E. coli 
K12 MG1655 

E. coli 
K12 MG1655 

Ion PGM Reads SRR515925 407 72.01 E. coli E. coli 
K12 1655 

E. coli 
K12 MG1655 

Illumina MiSeq Reads SRR1770413 387 72.01 Entero. E. coli 
KLY 

E. coli 
K12 MT203 

Illumina HiSeq Reads SRR490124 2,155 369.86 E. coli E. coli 
GCF_000833635 

E. coli 
K12 MG1655 

PacBio RSII Reads SRR1284073 397 77.96 E. coli  E. coli XH140A 
GCF_000226585 

E. coli 
K12 MG1655 

Oxford 
Nanopore 
MinION 

Reads 
1D 

ERX708228 
ERX708229 
ERX708230 
ERX708231 

248 55.52 Entero. E. coli 
O113 H21 

E. coli 
K12 MG1655 

Oxford 
Nanopore 
MinION 

Reads 
2D 

ERX708228 
ERX708229 
ERX708230 
ERX708231 

134 27.82 E. coli 
 

E. coli 
GCF_000953515 

B. anthracis 
Ames 

Oxford 
Nanopore 
MinION 

Reads 
1D+2D 

SRS1117538 210 44.66 B. anthracis B. anthracis 
str. Carbosap 

B. cereus 
ATCC 10987 

Oxford 
Nanopore 
MinION 

Reads 
1D+2D 

SRS1117539 266 76.85 B. cereus 
ATCC 10987 

B. cereus 
ATCC 10987 

In all cases, Mash search required 21 MB of RAM for genome assemblies and 209 MB of RAM for 
sequencing runs (due to the additional Bloom filter overhead). Size: dataset size in Mbp. LCA: gives the 
lowest common ancestor classification based on the NCBI taxonomy and the resulting hits within a 
significance tolerance of the best. In several cases, the LCA is at the family level due to significant MASH 
hits to both E. coli and S. sonnei species. This is a known species naming conflict within the NCBI 
taxonomy, with some genomes sharing ANI>98% between these species. Best Hit: reports the smallest 
significant distance reported. 
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