bioRxiv preprint doi: https://doi.org/10.1101/029843; this version posted October 26, 2015. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Effect of lossy compression of quality scores on variant calling

Idoia Ochoa*, Mikel Hernaez*, Rachel Goldfeder, Tsachy Weissman* and Euan Ashley!

*Department of Electrical Engineering and Department of Medicine
Stanford University, Stanford, CA, 94305

{iochoa,mhernaez,rlg2, tsachy,euan } @stanford.edu

Abstract—Recent advancements in sequencing tech-
nology have led to a drastic reduction in the cost of
genome sequencing. This development has generated
an unprecedented amount of genomic data that must
be stored, processed, and communicated. To facilitate
this effort, compression of genomic files has been pro-
posed. Specifically, lossy compression of quality scores
is emerging as a natural candidate for reducing the
growing costs of storage. A main goal of performing
DNA sequencing in population studies and clinical
settings is to identify genetic variation. Though the
field agrees that smaller files are advantageous, the cost
of lossy compression, in terms of variant discovery, is
unclear.

Bioinformatic algorithms to identify SNPs and IN-
DELs from next-generation DNA sequencing data use
base quality score information; here, we evaluate the
effect of lossy compression of quality scores on SNP and
INDEL detection. We analyze several lossy compres-
sors introduced recently in the literature. Specifically,
we investigate how the output of the variant caller when
using the original data (uncompressed) differs from
that obtained when quality scores are replaced by those
generated by a lossy compressor. Using gold standard
genomic datasets such as the GIAB (Genome In A
Bottle) consensus sequence for NA12878 and simulated
data, we are able to analyze how accurate the output
of the variant calling is, both for the original data
and that previously lossily compressed. We show that
lossy compression can significantly alleviate the storage
while maintaining variant calling performance compa-
rable to that with the uncompressed data. Further,
in some cases lossy compression can lead to variant
calling performance which is superior to that using the
uncompressed file. We envisage our findings and frame-
work serving as a benchmark in future development and
analyses of lossy genomic data compressors.

The Supplementary Data can be found at http://web.
stanford.edu/~iochoa/supplementEffectLossy.zip.

I. INTRODUCTION

Recent advancements in Next Generation high-
throughput Sequencing (NGS) have led to a drastic
reduction in the cost of sequencing a genome
(http://goo.gl/kKvinD1).  This has generated an
unprecedented amount of genomic data that must
be stored, processed, and transmitted. To facilitate this
effort, data compression techniques that allow for more
efficient storage as well as fast exchange and dissemination
of these data have been proposed in the literature.

Genome sequencing files, such as FASTQ and
SAM/BAM, are mainly composed of nucleotide sequences

(called reads) and quality scores that indicate the
reliability of each of the nucleotides. According to SAM
file specifications [1], the quality scores are stored using
the Phred score, which corresponds to the number
Q@ = —10log,y P (rounded to the closest integer), where
P indicates the probability that the corresponding
nucleotide in the read is in error. These scores are
commonly represented using the ASCII alphabet [33 : 73]
or [64 : 104], where the value corresponds to @ + 33 or
Q + 64, respectively.

When losslessly compressed, quality scores comprise
more than half of the compressed file [2]. In addition, it
has been shown that the quality scores are inherently noisy
[2], and downstream applications that use them do so in
a heuristic manner. For these reasons, lossy compression
of quality scores has been proposed to further reduce the
storage requirements at the cost of introducing a distortion
(i-e., the reconstructed quality scores may differ from the
original ones).

Several lossy compressors of quality values have been
proposed in the recent literature. These lossy compressors
can be divided into two categories depending on whether
or not they use biological information for the compression.
While the majority of the proposed algorithms do not
rely on such side information (see the survey on lossy
compressors described in [3]), examples of compressors
that do are in [4], [5].

Traditionally, lossy compressors have been analyzed in
terms of their rate-distortion performance. Such analysis
provides a yardstick for comparison of lossy compressors
of quality scores that is oblivious to the multitude of
downstream applications, which use the quality scores in
different ways. However, the data compressed is used for
biological inference. Researchers are thus more interested
in understanding the effect that the distortion introduced
in the quality scores has on the subsequent analysis per-
formed on the data.

To date, there is not a standard practice on how this
analysis should be performed. Proof of this is the variety
of analyses presented in the literature when a new lossy
compressor for quality scores is introduced (see [6], [7],
[3], [5] and references therein). Moreover, it is not yet
well understood how lossy compression of quality scores
affects the downstream analysis performed on the data.
This can be understood not only by the lack of a standard
practice, but also by the variety of applications that exist


{iochoa, mhernaez, rlg2, tsachy, euan}@stanford.edu
http://web.stanford.edu/~iochoa/supplementEffectLossy.zip
http://web.stanford.edu/~iochoa/supplementEffectLossy.zip
https://doi.org/10.1101/029843
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/029843; this version posted October 26, 2015. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

and the different manner in which they use quality scores.
In addition, the fact that lossy compressors can work
at different rates and be optimized for several distortion
metrics make the analysis more challenging. However, such
an analysis is important if lossy compression is to become
a viable mode for coping with the surging requirements of
genomic data storage.

With this in mind, in this work we propose a method-
ology to analyze how lossy compression of quality scores
affects the output of one of the most widely used down-
stream applications: variant calling, which compromises
Single Nucleotide Polymorphism (SNP) and INDEL call-
ing. Furthermore, we use the proposed methodology to
compare the performance of the recently proposed lossy
compressors for quality scores, which to our knowledge is
the first in depth comparison available in the literature.

We focus on those lossy compressors that use only the
quality scores for compression, as it would be too difficult
to draw conclusions about the underlying source that
generates the quality scores from analyzing algorithms like
[5], where the lossy compression is done mainly using the
information from the reads. Note also that in these cases
it is not possible to specify a rate or a distortion to be
minimized.

For the study, we compare the output of the variant
caller when the quality scores of the original (uncom-
pressed) data are replaced by the reconstructed ones.
Specifically, for SNP calling we use the human dataset
NA12878, which has been thoroughly characterized by
GIAB [8], and for which a gold standard (consensus of
SNPs) is available. To evaluate the effect of lossy compres-
sion on INDEL identification, we simulated genomes that
contain biologically realistic SNPs and INDELs, creating a
ground truth dataset. We then computationally generated
sequencing reads for these genomes. In the following we
assume these indels and the SNPs of the gold standard
are the true ones and refer to them as the “ground
truth”. This allows us to analyze which lossy compressor,
distortion metric and rate produces the more accurate set
of variants. We also show that in some cases applying
lossy compression to the quality scores instead of lossless
compression results in a set of variants that is more
accurate. This suggests that lossy compression of quality
scores can be beneficial not only for compression, but
also to improve the inference performed on the data. The
results presented in the manuscript also provide insight
into the characteristics that a lossy compressor should
have so that the reconstructed quality scores from which
the set of variants is inferred do not differ much from those
called based on the original quality scores.

We hope the methodology for variant calling analysis
presented in this work will be of use in the future when in-
troducing new lossy compressors. We leave the extensions
of the investigations presented herein to other downstream
applications for future work.

II. METHODOLOGY FOR VARIANT CALLING

In this section we describe the methods used to test
the effect of lossy compressors on variant calling. The
methodologies suggested for SNPs and indels differ, and
thus we introduce each of them separately.

A. SNP calling

Based on the most recent literature that compares
different SNP calling pipelines ([9], [10], [L1], [12], [13]) we
have selected three pipelines for our study. Specifically, we
propose the use of: i) the SNP calling pipeline suggested
by the Broad Institute, which uses the Genome Analysis
Toolkit (GATK) software package [14], [15], [16]; ii) the
pipeline presented in the Hight Throughput Sequencing
LIBrary (htslib.org), which uses the Samtools suit devel-
oped by The Wellcome Trust Sanger Institute [17]; and
iii) the recently proposed variant caller named Platypus
developed by Oxford University [18]. In the following
we refer to these pipelines as GATK, htslib.org' and
Platypus, respectively.

In all pipelines we use BWA-mem [19] to align the
FASTQ files to the reference (NCBI build 37, in our
case), as stated in all best practices. For specific steps
and the respective commands we refer the reader to the
Suplementary Data.

Regarding the GATK pipeline, we note that the best
practices recommends to further filter the variants found
by the Haplotype caller by either applying the Variant
Quality Score Recalibration (VQSR) or the Hard Filter.
The VQSR filter is only recommended if the data set is
big enough (more than 100K variants), since otherwise one
of the steps of the VQSR, the Gaussian mixture model,
may be inaccurate. Therefore, in our analysis we consider
the use of both the VQSR and the Hard Filter after the
Haplotype caller, both as specified in the best practices.

B. INDEL detection

To evaluate the effect of lossy compression of base qual-
ity scores on INDEL calling, we employ popular INDEL
detection pipelines: Pindel [20], Dindel [21], Unified Geno-
typer, Haplotype Caller [14], [15], [16] and Freebayes [22].
First, reads were aligned to the reference genome, NCBI
build 37, with BWA [23]. We replaced the quality scores
of the corresponding SAM/BAM file by those obtained
after applying various lossy compressors, and then we
performed the INDEL calling with each of the five tools.
The Supplementary Data contains the detailed description
of the commands necessary to run each pipeline. Note
that several of these pipelines can be used to call both
SNPs and INDELSs, but the commands or parameters are
different for each variant type.

IMore commonly referred to as samtools.
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C. Datasets for SNP calling

A crucial part of the analysis is the ground truth, as
it serves as the baseline for comparing the performance
of the different lossy compressors against the lossless
case. Thus, for the SNP calling analysis, we consider
datasets from the H. Sapiens individual NA12878, for
which two “ground truth” of SNPs have been released.
In particular, we consider the datasets ERR174324
and ERR262997, which correspond to a 15x-coverage
pair-end WGS dataset and a 30x-coverage pair-end WGS
dataset, respectively. For each of them we extracted the
chromosomes 11 and 20. Regarding the two “ground
truths”, they are the one released by the Genome
in a Bottle consortium (GIAB) [8], which has been
adapted by the National Institute of Standardizations
and Technology (NIST); and the ground truth released
by Illumina as part of the Platinium Genomes project
(http://www.illumina.com/platinumgenomes). Fig. 1
summarizes the differences between the two. As can be
observed, most of the SNPs contained in the NIST ground
truth are also included in Illumina’s ground truth, for
both chromosomes. Note also that the number of SNPs
on chromosome 20 is almost half of chromosome 11, for
both “ground truths”?.

D. Datasets for INDEL detection

To evaluate the effect of lossy compression on INDEL
detection, we simulated a chromosome containing 3000
heterozygous INDELs to use as a ground truth dataset.
This approach gives us full knowledge and control of the
exact location, zygosity, and alternative allele sequence of
each INDEL, allowing us to robustly identify true positive
and true negative variant calls. To best mimic true bio-
logical conditions, our simulated INDELs are drawn from
biologically realistic size distributions, locations (coding vs
non-coding), and insertion to deletion ratios seen in the
Mills and 1000Genomes INDELSs provided as part of the
GATK bundle.

Using this simulated chromosome, we generated 100bp
paired-end sequencing reads (using an Illumina-like error
profile) with ART [24].

E. Performance metrics

The output of each of the pipelines is a VCF file [27]
which contains the set of the called variants. We first
consider the case in which all the variants contained in
the VCF file are positive calls, since the pipelines already
follow their “best practices” to generate the corresponding
VCF file. Since a ground truth exists for the datasets under
consideration, we can compare these variants with those

2As is clear from the discussion in this subsection, the term ground
truth should be taken with a grain of salt and as such should appear
in quotation marks throughout. We omit these marks henceforth for
simplicity.

ILLUMINA

GIAB - NIST 53.1K

132.8K

(a) Chromosome 11

ILLUMINA

GIAB - NIST 14.7K

(b) Chromosome 20

Fig. 1. Difference between the GIAB NIST “ground truth” and the
one from Illumina, for (a) chromosomes 11 and (b) 20.

contained in the ground truth. Specifically, the comparison
is made in terms of True Positives (T.P.), which refer to
those variants contained both in the VCF file under con-
sideration and the ground truth (a match in both position
and genotyping must occur for the call to be declared
T.P., while for INDELSs the criteria were more lenient: any
INDEL within 10bp of the true location was considered a
T.P.); False Positives (F.P.), which refer to those variants
contained in the VCF file under consideration but not
in the ground truth; and False Negatives (F.N.), which
correspond to those variants not contained in the VCF file
under consideration but contained in the ground truth.
The more T.P. (or equivalently the fewer F.N.) and the
fewer F.P. the better. Ideally, we would like to apply a lossy
compressor to the quality scores, such that the resulting
file is smaller than that of the losslessly compressed, while
obtaining a similar number of T.P. and F.P. We will show
that not only is this possible, but that in some cases we
can simultaneously obtain more T.P. and fewer F.P than
with the original data.

To analyze the performance of the lossy compressors on
the proposed pipelines, we employ the widely used metrics
sensitivity and precision, which include in their calculation
the true positives, false positives and false negatives, as
described below:

o Sensitivity: measures the proportion of all the posi-

tives that are correctly called, computed as %
e Precision: measures the proportion of called positives
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T.P.
that are true, computed as TPITP.-

Depending on the application, one may be inclined to
boost the sensitivity at the cost of slightly reducing the
precision, in order to be able to find as many T.P. as
possible. On the other hand, there may be applications
where it is more natural to optimize for precision than
sensitivity. In an attempt to provide a measure that
combines the previous two, we also use the f-score:

e F-score: the harmonic mean of the sensitivity and

precision, computed as 2 x SESLYAYrecson

In the discussion above we have considered that all
the variants contained in a VCF file are positive calls.
However, there is another common approach that consists
of considering as positive calls only those that satisfy a
given constraint, and as negative calls the remaining ones.
In general, this constraint consists of having the value of
one of the parameters associated with a variant above
a certain threshold. This approach is used to construct
the well known Receiver Operating Curves (ROC). In the
case under consideration, the ROC curve shows the per-
formance of the variant caller as a classification problem,
that is, it shows how well the variant caller differentiates
between true and false variants when filtered by a certain
parameter. Specifically, it plots the False Positive Rate
(F.P.R.) versus the True Positive Rate (T.P.R.) (also
denoted as sensitivity) for all thresholding values. Given
a ROC plot with several curves, a common method for
comparing them is by calculating the area under the curve
(AUC) of each of them, such that the larger the AUC the
better.

The main drawback with this approach is the selec-
tion of the thresholding parameter. For instance, in SNP
calling, when using the GATK pipeline, the @D (Quality
by Depth) field is as valid a parameter as the QUAL
field. Moreover, for different choices of the thresholding
parameters, different performances of the AUC are ob-
tained, as shown in the Supplementary Data. Given this,
we believe that this approach is mainly suitable to analyze
the VCEF files that contain a clear thresholding parameter,
like those VCF files obtained by the GATK pipeline after
applying the VQSR filter, since in this case there is a
clear parameter to be selected, namely the VQSLOD.
Moreover, the considered pipelines already performed their
own filtering as part of their “best practice” workflow.

ITI. Lossy COMPRESSORS

To our knowledge, and based on the results presented
in [3], RBlock, PBlock [7] and QVZ [3] are the algorithms
that perform better among the existing lossy compressors
that solely use the quality scores to compress. There-
fore, those are the algorithms that we consider for our
study. In addition, we consider Illumina’s proposed bin-
ning (http://goo.gl/d5TYDk), which is implemented both
by CRAM and DSRC2. In the Results section we refer to
the performance of DSRC2 [20] rather than CRAM [27],
as it generates a compressed file of smaller size (see [3]).

Next, we describe the aforementioned lossy compressors in
more detail.

P/R-Block: The PBlock and RBlock algorithms were
introduced in [7]. Both algorithms represent quality
scores by separating them into blocks of variable size,
such that all the quality scores contained in a block
can be replaced by the same representative value
without violating a given distortion constraint. The
algorithms then store for each block its length and the
representative value, which are losslessly compressed.
What differs between the algorithms is the distortion
constraint, that we specify next.

Given a block of quality scores, Qmax and Qmin
denote the largest and smallest quality scores within
the block, respectively. In PBlock, the quality scores
contained in a block should satisfy Qmax — Qmin < 2p,
where p is a user specified parameter. On the other
hand, in RBlock the quality scores contained in a
block should satisfy % < 72, where r is a user
specified parameter. o

The main difference between the two algorithms is
related to the maximum absolute distance allowed
between a quality score and its representative (the
new quality score). Whereas in PBlock this distance
is constant for every quality score, in RBlock a low
quality score will in general be closer to its represen-
tative than a high quality score. That is, the algorithm
is more precise in representing low quality scores than
high ones. Finally, note that in both algorithms the
maximum absolute distance between a quality score
and its representative is controlled by the user.

QVZ - Quality Values Zip: QVZ was introduced in
[3], and it allows the user to choose the rate and
the distortion to be minimized (the built in distor-
tions are Mean Square Error (MSE), Lorentzian and
L1). QVZ assumes a Markov model of order 1 for
compression, and it computes the statistics at each
position empirically from the data. In brief, given
those statistics, the distortion to be minimized and
the rate, the algorithm makes use of the Lloyd-Max
algorithm [28] to compute the best quantizers. Note
that at each position there are as many quantizers
as different values in the previous position (due to
the Markov assumption). A quantizer is composed
of decision regions and the representatives of each
region. Once all the quantizers are computed, QVZ
assigns each quality score to the corresponding deci-
sion region, which is then losslessly compressed by an
adaptive arithmetic encoder. In order to improve the
rate-distortion performance, QVZ has the option of
clustering the data prior to compression.

Illumina’s Binning: Illumina’s proposed binning re-
duces the alphabet size by applying an 8 level map-
ping. The specific mapping is summarized in Table
I. As can be inferred from the table, the applied
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mapping is more precise in representing high quality
scores than low ones (based on the size of the bins).
Also, note that the maximum distance between an

original quality score and the new one is always upper
bounded by 5.

Quality Score Bins  New Quality Score

N (no call) N (no call)

2-9 6
10-19 15
20-24 22
25-29 27
30-34 33
35-39 37

> 40 40

TABLE T

ILLUMINA’S PROPOSED 8 LEVEL MAPPING.

A. Comparison of lossy compressors

There are some important differences between the lossy
compressors introduced above. For example, the com-
pression scheme of Illumina’s proposed binning does not
depend on the statistics of the quality scores, whereas
QVZ and P/R-Block do. Also, in both Illumina’s proposed
binning and P/R-Block the maximum absolute distance
between a quality score and its reconstructed one (after
decompression) can be controlled by the user, whereas
in QVZ this is not the case. The reason is that QVZ
designs the quantizers to minimize a given average dis-
tortion based on a rate constraint, and thus even though
on average the distortion is small, some specific quality
scores may have a reconstructed quality score that is far
from the true one. Also, note that whereas Illumina’s
proposed binning applies more precision to high quality
scores, R-Block does the opposite, and P-Block does it
equally among all the quality scores. Finally, in Illumina’s
proposed binning and P/R-Block the user cannot estimate
the size of the compressed file in advance, whereas this is
possible in QVZ.

IV. RESULTS

We analyze the output of the variant caller (i.e., the
VCF file) for each of the introduced pipelines when the
quality scores are replaced by those generated by a lossy
compressor. We focus on the following lossy compressors:
QVZ, PBlock, RBlock and DSRC2. Recall that in QVZ
we can choose the distortion, the rate and the number
of clusters, and in PBlock and RBlock the parameters p
and r, respectively. DSRC2 uniquely performs Illumina’s
proposed binning. Thus, except for DSRC2, we run each
of the algorithms several times with different parameters,
generating different quality scores for each run. Specifi-
cally, we used QVZ with 1 and 3 clusters, rates ranging
from 0 to 1, and the three built-in distortions MSE, L1 and
Lorentzian (we refer to them as M, A and L, respectively).
For PBlock we considered values of p ranging from 1 to
32, and for RBlock values of r ranging from 3 to 30.

Due to space constraints, here we show the results for
QVZ with MSE distortion and three clusters, denoted as
QVZ-Mc8, RBlock and the lllumina proposed binning. We
selected these as they are good representatives of the over-
all results. We refer the reader to the Supplementary Data
for the results with all the aforementioned parameters.

A. SNP calling

We show that it is possible to perform lossy compression
on the quality values, while simultaneously increasing the
number of true positives and decreasing the number of
false positives with respect to the original dataset, when
using a variant calling pipeline that follows its “best
practice” to generate the corresponding VCF file. Fig. 2
shows the behavior obtained by the different lossy com-
pressors in the GATK pipeline with hard filtering with the
ERR262996 dataset (30 coverage), chromosome 11, when
the ground truth is given by that of Illumina (similar plots
for the remaining cases are shown in the Supplementary
Data). For ease of visualization, we normalize the number
of T.P. and F.P. with those generated with the uncom-
pressed file, such that the number of T.P. and F.P. of the
uncompressed VCF after normalization become 0. We then
join the points that belong to a given algorithm, sorted
by size, such that the point closer to (0,0) corresponds
to the largest size. As is evident from the figure, several
points have a positive number of T.P. and a negative
number of F.P., which corresponds to an improvement over
the uncompressed one. Moreover, in this case storage of
the quality scores is reduced from 1.3 GB (when lossless
compressed with QVZ) to 0.25 GB, which corresponds to
more than 80% reduction. As shown in the Supplementary
Data and in the results that follow, this phenomenon is not
idiosyncratic to this particular dataset and pipeline, but
in fact widely observed in the other datasets and pipelines
as well.

As mentioned in the methodology, we start by showing
the value of the sensitivity, precision and f-score achieved
by each of the algorithms for each of the pipelines, dataset
and ground truth, together with the compression ratio
(e.g., a reduction from 100MB to 80MB corresponds to
a 20% compression ratio). The latter is computed with
respect to the lossless compressed quality scores, computed
using QVZ in lossless mode (which, as shown in [3],
performs similarly to the state-of-the-art lossless compres-
sors for quality scores). We choose to show the results
using tables as they help visualize which lossy compressors
and/or parameters work better for a specific setting. We
color in red (will appear as a shaded cell) the values of the
sensitivity, precision and f-score that improve upon the
uncompressed. We also generated a table for each pipeline
and/or ground truth that contains the average behavior
of each of the algorithms with the different data sets. Due
to the large amount of tables and their size, we provide
excel files (.xIsx) as Supplementary Data that contain all
the generated tables.
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TABLE II
SENSITIVITY, PRECISION, F-SCORE AND COMPRESSION RATIO FOR THE 30X AND 15X COVERAGE DATASETS FOR THE GATK PIPELINE, USING
THE NIST GROUND TRUTH.

GATK ERR262996 (30x): Chr11,Chr20 ERR174310 (15X ): Chr11,Chr20
Sensitivity  Precision  F-Score  Compression Sensitivity  Precision  F-Score  Compression
Lossless 0.9829 0.7422 0.8456 0 0.9699 0.7332 0.8351 0
Rblock
3 0.9828 0.7424 0.8457 -16.7 0.97 0.7331 0.835 -16.9
8 0.983 0.7421 0.8456 31 0.9708 0.733 0.8353 31.6
10 0.983 0.7422 0.8457 42 0.9708 0.733 0.8353 43
20 0.9831 0.7422 0.8457 67.4 0.971 0.7328 0.8352 70.7
30 0.9833 0.7422 0.8458 76.4 0.9709 0.7326 0.8351 78.9
QVZ-Mc3
0.9 0.9829 0.7421 0.8456 10.2 0.9699 0.7332 0.8351 10
0.8 0.983 0.7425 0.8459 14.7 0.9699 0.7333 0.8351 19
0.6 0.9828 0.7424 0.8457 37.6 0.97 0.7326 0.8347 38.3
0.4 0.9833 0.7422 0.8458 57.5 0.9691 0.7321 0.8341 58.6
0.2 0.9831 0.7418 0.8454 77.7 0.9679 0.7309 0.8328 77.9
Ilumina-DSRC2 0.9827 0.7424 0.8457 54.78 0.9694 0.7345 0.8357 55.66
TABLE III

SENSITIVITY, PRECISION, F-SCORE AND COMPRESSION RATIO FOR THE 30X AND 15X COVERAGE DATASETS FOR THE HTSLIB.ORG PIPELINE,
USING THE NIST GROUND TRUTH.

htslib.org ERR262996 (30X): Chr11,Chr20 ERR174310 (15X): Chr11,Chr20
Sensitivity Precision F-Score Compression Sensitivity Precision F-Score Compression
Lossless 0.9939 0.7058 0.8254 0 0.9704 0.7188 0.8258 0
Rblock
3 0.9939 0.706 0.8255 -16.7 0.9706 0.7186 0.8258 -16.9
8 0.9942 0.7046 0.8246 31 0.9722 0.7177 0.8257 31.6
10 0.9942 0.7046 0.8247 42 0.9724 0.7177 0.8258 43
20 0.9942 0.7045 0.8246 67.4 0.9726 0.7174 0.8257 70.7
30 0.9942 0.7041 0.8244 76.4 0.9725 0.7173 0.8256 78.9
QVZ-Mc3
0.9 0.994 0.7058 0.8254 10.2 0.9704 0.7187 0.8257 10
0.8 0.994 0.7057 0.8254 19.1 0.9702 0.7187 0.8257 19
0.6 0.9939 0.7058 0.8254 37.6 0.9706 0.7186 0.8257 38.3
0.4 0.9938 0.7063 0.8257 57.5 0.9695 0.7192 0.8257 58.6
0.2 0.9936 0.7071 0.8261 TT.7 0.9682 0.7192 0.8253 77.9
Illumina-DSRC2 0.994 0.7052 0.825 54.78 0.9715 0.718 0.8256 55.66
TABLE IV

SENSITIVITY, PRECISION, F-SCORE AND COMPRESSION RATIO FOR THE 30X AND 15X COVERAGE DATASETS FOR THE PLATYPUS PIPELINE,
USING THE NIST GROUND TRUTH.

Platypus ERR262996 (30X ): Chr11,Chr20 ERR174310 (15X ): Chr11,Chr20
Sensitivity Precision F-Score Compression Sensitivity Precision F-Score Compression
Lossless 0.9368 0.7261 0.818 0 0.921 0.7426 0.822 0

Rblock
3 0.9368 0.7263 0.8181 -16.7 0.9206 0.7427 0.822 -16.871
8 0.9367 0.7268 0.8184 31 0.9202 0.7431 0.822 31.5852
10 0.9367 0.7268 0.8184 42 0.9201 0.7431 0.822 42.9952
20 0.9365 0.7276 0.8188 67.4 0.9193 0.7434 0.8219 70.685
30 0.9363 0.7277 0.8188 76.4 0.9184 0.7436 0.8216 78.9077
QVZ-Mc3

0.9 0.9368 0.7262 0.8181 10.2 0.9205 0.7427 0.8219 10.0149
0.8 0.9368 0.7262 0.8180 19.1 0.9206 0.7427 0.8219 19.0204
0.6 0.9368 0.7265 0.8182 37.6 0.9206 0.7428 0.8220 38.2550
0.4 0.9369 0.725 0.8173 57.5 0.9206 0.7406 0.8206 58.5607
0.2 0.9368 0.7219 0.8153 TT.7 0.9206 0.734 0.8166 77.9354
Illumina-DSRC2 0.9368 0.7261 0.8179 54.78 0.9208 0.7425 0.8219 55.6

Table II, IIT and IV show the results for algorithms
RBlock, QVZ-Mc3 (MSE distortion criteria and 3 clusters)
and [lumina binning-DSRC2 for the GATK with hard
filtering, htslib.org and Platypus pipelines, respectively,
when using the NIST ground truth. The two columns
refer to the average results of Chromosomes 11 and 20
of the ERR262996 and ERR174310 datasets, respectively.
We refer to the Supplementary Data (.xlsz) for the results
of QVZ using other distortions and rates, and for PBlock,
as well as for the results of individual chromosomes.

It is worth noting that with the GATK pipeline, several
points improve simultaneously the sensitivity, precision

and f-score when compared to the uncompressed (orig-
inal) quality scores. For example, in the 30X coverage
dataset, RBlock improves the performance while reducing
the size by more than 76% (PBlock manages to boost the
compression to more than 80%, see Supplementary Data
(-zlsz)). In the 15x coverage dataset QVZ improves upon
the uncompressed and reduces its size by 20%. With the
htslib.org pipeline, it is interesting to see that most of the
points improve the sensitivity parameter, meaning that
they are able to find more T.P. than with the uncom-
pressed quality scores. As shown in the Supplementary
Data (.xlsx), QVZ with L1 and Lorentzian distortion
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Fig. 2. T.P. vs F.P., with respect to illumina’s ground truth, for the
GATK pipeline and 30x coverage dataset ERR262996, chromosome
11. Different points within a given lossy compressor correspond to
the use of different parameters (and thus compression rate). For ease
of visualization, we added a line that joins the different points from
smaller to higher rate, where the point furthest from (0,0) is the one
with lowest rate.

achieves better performance than the uncompressed (in
all three metrics) while reducing the quality scores by
more than 10%, for the 30x coverage dataset. Finally,
with the Platypus pipeline, the parameters that improve
in general are the precision and the f-score, which indicates
that a bigger percentage of the calls are T.P. rather than
F.P. Some points also improve upon the uncompressed,
like QVZ with L1 distortion, which achieves almost 38%
compression (in the 30x coverage dataset).

Similar tables when the ground truth is provided by Il-
lumina are contained in the Supplementary Data (.zlsz). In
that case, with the GATK pipeline, R/P-Block improves
mainly the sensitivity and f-score, with PBlock improving
the precision as well in the 30x coverage dataset. QVZ
seems to perform better in this case, improving upon the
uncompressed for several rates. It also achieves a perfor-
mance better than that of Illumina’s proposed binning for
a similar compression rate. With the htslib.org pipeline
R/P-Block improve mainly the sensitivity, while QVZ
improves the precision and the f-score (in the 30x coverage
dataset). The performance on Platypus is similar to the
one obtained when the NIST ground truth is used instead.

In summary, the performance of QVZ with 3 clusters is
in general better than with 1 cluster, especially for small
rates. In terms of the distortion metric that QVZ aims to
minimize, MSE works significantly better for small rates
(in most of the cases), whereas for higher rates the three
analyzed distortions offer a similar performance. Thus
the compression rate seems much more significant to the
variability in the performance than the choice of distortion
criterion. RBlock offers in general better performance than

%107

|
|
|
|
|
|
|
€

Lossy F-score — Lossless F-score
o
:

1 1 1 1 1 1

10 17 37 43 68 7
Compression (%)

Fig. 3. Box plot of f-score differences between the lossless case and
six lossy compression algorithms. The x-axis shows the compression
rate achieved by the algorithm. The three left-most boxes correspond
to QVZ-Mc3 with parameters 0.9, 0.8 and 0.6; while the three right-
most boxes correspond to RBlock with parameters 30, 20 and 10.
The blue line indicates the mean value, and the red one the median.

PBlock for similar compression rates. Finally, in most of
the analyzed cases, Illumina’s binning is outperformed by
at least one other lossy compressor, while offering a similar
compression rate. Overall, for high compression ratios
(30%-70%), RBlock seems to perform the best, whereas
QVZ is preferred for lower compression rates (>70%).

To get more insight into the possible benefits of using
lossy compression, we show the distribution of the f-score
difference between the lossy and lossless case for differ-
ent lossy compressors and rates (thus a positive number
indicates an improvement over the lossless case). The
distribution is computed by averaging over all simulations
(24 values in total). Figure 3 shows the box-plot and
the mean value of the f-score difference for six different
compression rates. Since QVZ performs better for low
compression rates, we show the results for QVZ-Mc3 with
parameters 0.9, 0.8 and 0.6 (left-most side of the figure).
Analogously, for high compression ratios we show the
results of RBlock with parameters 30, 20, and 10 (right-
most side of the figure).

Remarkably, for all the rates the median is positive,
which indicates that in at least 50% of the cases lossy
compression improved upon the uncompressed quality
scores. Moreover, the mean is also positive, except for
the point with highest compression. This suggests that
lossy compression may be used to reduce the size of the
quality scores without compromising the performance on
the SNP calling. These findings are in line with the results
provided above, where we showed that in several cases
the sensitivity, precision and f-score could be improved
simultaneously while significantly reducing the quality
score storage requirements.


https://doi.org/10.1101/029843
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/029843; this version posted October 26, 2015. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

o e o 9
o N o © =
T T T T |
\
)

True Positive Rate
o o
N
T T
N

——QVZ-Mc3 [0 = 0.4] (AUC =0.6662)

— PBlock [p = 8] (AUC =0.66667)
RBlock [r = 25] (AUC =0.66548)

——DSRC2-Illumina Bin. (AUC =0.66428)

- - Lossless (AUC =0.6649)

o
w
T

o
o
T

o
T

. . . . . . . . . |
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
False Positive Rate

o
o

Fig. 4. ROC curve of chromosome 11 (ERR262996) with the NIST
ground truth and the GATK pipeline with the VQSR filter. The
ROC curve was generated with respect to the VQSLOD field. The
results are for the original quality scores (uncompressed), and those
generated by QVZ-Mc3 (MSE distortion and 3 clusters), PBlock
(p = 8) and RBlock (r = 25).

In the previously analyzed cases we have assumed that
all the SNPs contained in the VCF file are positive calls,
since the pipelines already follow their “best practice” to
generate the corresponding VCF file. As discussed in the
Methodology, another possibility is to select a parameter
and consider positive calls only those whose parameter is
above a certain threshold. Varying the threshold results
in the ROC curve. We believe this approach is of interest
to analyze the VCF files generated by the GATK pipeline
followed by the VQSR filter, with thresholding parameter
given the VQSLOD field, and thus we present the results
for this case. For completeness, we also generated the ROC
curves of the remaining cases (see Supplementary Data).
Fig. 4 shows the ROC curve of chromosome 11 of the 30x
coverage dataset (ERR262996), with the NIST ground
truth. The results correspond to those obtained when the
quality scores are the original ones (lossless), and the ones
generated by QVZ-Mc3 (MSE distortion and 3 clusters),
PBlock with parameter 8, RBlock with parameter 25 and
the Illumina binning (as the results of applying the DSRC2
algorithm). As shown in the figure, each of the algorithms
outperform the rest in at least one point of the curve.
This is not the case for the Illumina Binning, as it is
outperformed by at least one other algorithm in all points.
Moreover, the AUC of all the lossy compressors except
that of the Illumina Binning outperform that of the lossless
case.

B. INDEL calling

Similar to SNP calling, we show that lossy compression
can lead to files of smaller size while obtaining INDEL
detection accuracy that is similar to that obtained with
the uncompressed data.

We observe that Pindel does not use the quality scores to
perform the INDEL calling, and thus the results obtained
with the data previously lossily compressed and the un-
compressed are exactly the same (see Supplementary Data
(indels.zls)). Therefore, in the following discussion we
focus on the remaining pipelines. Table V displays results
for Dindel and Unified Genotyper pipelines (see Supple-
mentary Data for results for other lossy compressors).
Shadowed in red are the points that outperform the results
obtained with the uncompressed data. We observe that
Rblock has higher sensitivity, precision, and F-score for
identifying INDELs than the uncompressed data. Notice
that the file size in this case increases with respect to the
uncompressed. We believe the file size could be reduced by
improving the entropy encoder of the Rblock algorithm.
With QVZ it is possible to reduce the size by 10% while
still improving with respect to the uncompressed. Finally,
Illumina’s proposed binning maintains the precision, but
obtains smaller values for both the sensitivity and the f-
score. Unified Genotyper gives similar results to those from
Dindel. The main differences are that in this case Pblock
outperforms the uncompressed while obtaining a reduction
in size of 29%, and Illumina is not able to improve with
respect to the uncompressed (see Supplementary Data).

Table VI shows the results for the remaining pipelines,
that is, Haplotype Caller and Freebayes. With the Haplo-
type Caller more true positives are found, but also more
false positives, so only sensitivity improves. For Freebayes
the results are minimally impacted by varying the com-
pression approach, though, the results are improved with
respect to the uncompressed. The only point for which this
is not true is Illumina proposed binning, which calls only
one variant that is a false positive.

V. DISCUSSION

We have shown that lossy compressors can reduce file
size at a minimal cost - or even benefit - to sensitivity and
precision in SNP and INDEL detection.

Based on the results shown in the previous section,
we conclude that in many cases lossy compression can
significantly reduce the genomic file sizes (with respect
to the losslessly compressed) without compromising the
performance on the variant calling. Moreover, in several
cases we have observed that lossy compression actually
leads to results that improve over the uncompressed ones,
i.e., they generate more true positives and fewer false
positives than with the original quality scores, when com-
pared to the corresponding ground truth. This behavior
is consistent with observations from the recent literature
(see for example [3], [5]).

We have analyzed several lossy compressors introduced
recently in the literature. The main difference among
them relates to the way they use the statistics of the
quality scores for compression. For example, Illumina’s
proposed binning is a fixed mapping that does not use
the underlying properties of the quality scores. In contrast,
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TABLE V
SENSITIVITY, PRECISION AND F-SCORE FOR THE FIRST DATASET FOR THE DINDEL AND UNIFIED GENOTYPER PIPELINES.

Algorithm Dindel Unified Genotyper
Compression  Sensitivity  Precision  F-Score Sensitivity  Precision  F-Score
Lossless 0 0.5926 1 0.7442 0.3385 0.9980 0.5056
Rblock
3 -54.04 0.5936 1 0.7449 0.3392 0.9980 0.5063
8 -19.76 0.5939 1 0.7452 0.3399 0.9980 0.5071
10 -9.37 0.5939 1 0.7452 0.3395 0.9980 0.5067
QVZ-Mc3
0.9 9.88 0.5942 1 0.7455 0.3392 0.9980 0.5063
0.7 29.91 0.5661 1 0.7229 0.3355 0.9980 0.5022
0.3 69.70 0.3107 1 0.4741 0.3291 0.9979 0.4950
0 99.61 0.0023 1 0.0046 0.1939 1 0.3249
Ilumina - DSRC2
41.46 0.0922 1 0.1689 0.3251 0.9979 0.4905
TABLE VI

SENSITIVITY, PRECISION AND F-SCORE FOR THE FIRST DATASET FOR THE HAPLOTYPE CALLER AND FREEBAYES PIPELINES.

Algorithm Haplotype Caller Freebayes
Compression Sensitivity Precision F-Score Sensitivity Precision F-Score
Lossless 0 0.1281 0.9769 0.2266 0.5248 0.9930 0.6867
Rblock
3 -54.04 0.1278 0.1913 0.1532 0.5251 0.9930 0.6870
8 -19.76 0.1285 0.1921 0.1540 0.5251 0.9930 0.6870
10 -9.37 0.1281 0.1917 0.1536 0.5251 0.9930 0.6870
QVZ-Mc3
0.9 9.88 0.1288 0.1924 0.1543 0.5251 0.9930 0.6870
0.7 29.91 0.1312 0.1952 0.1569 0.5251 0.9930 0.6870
0.3 69.70 0.0865 0.1735 0.1155 0.5251 0.9930 0.6870
[¢] 99.61 o] [¢] [¢] 0.5241 0.9936 0.6862
Illumina - DSRC2
41.46 0.1 0.1770 0.1278 0 0 0

algorithms like QVZ are fully based on the statistics of the
quality scores to design the corresponding quantizers for
each case. As manifested in the results, lllumina’s binning
is generally outperformed by the other lossy compressors.
This suggests that using the statistics of the quality scores
for compression is beneficial, and that not all datasets
should be treated in the same way.

Our findings put together with the fact that, when
losslessly compressed, quality scores comprise more than
50% of the compressed file [2], seem to indicate that
lossy compression of quality scores could become an ac-
ceptable practice in the future for boosting compression
performance or when operating in bandwidth constrained
environments. The main challenge in such a mode may
be to decide which lossy compressor and/or rate to use
in each case. Part of this is due to the fact that the
results presented so far are experimental, and we have
yet to develop theory that will guide the construction or
choice of compressors geared toward improved inference.
One reason is that the statistics of the noise inherent in
the quality scores have yet to be understood and thus it is
not possible to design lossy compressors tailored to them.
Moreover, the results that show that lossy compression can
lead to inference that improves upon the uncompressed
suggest that the data could be denoised. In that regard, an
understanding of the statistical characteristics of the noise
would enable the design of denoisers/compressors that
remove part of the noise as they compress (see for example
[29]), thus improving the subsequent analysis performed
on it.

Evidently, for lossy compression of quality scores to
become a standard practice, further research is called for.
It should include improved modeling of the statistics of
the noise, construction of lossy compressors and denoisers
tuned to such models, and more experimentation on real
data with additional downstream applications. Further,
the phenomenon observed here where lossy compression
of the quality scores can actually boost the performance
of the downstream applications is highlighting not only
the potential in lossy compression of quality scores, but
also the need for revisiting the design of the downstream
applications to make more principled use of the quality
scores (with and without compression).

VI. CONCLUSION

Recently there has been a growing interest in lossy
compression of quality scores as a way to reduce raw
genomic data storage costs. However, the genomic data
under consideration is used for biological inference, and
thus it is important to first understand the effect that lossy
compression has on the subsequent analysis performed on
it. To date, there is no clear methodology to do so, as
can be inferred from the variety of analyses performed in
the literature when new lossy compressors are introduced.
To alleviate this issue, in this paper we have described
a methodology to analyze the effect that lossy compres-
sion of quality scores has on variant calling, one of the
most widely used downstream applications in practice.
We hope the described methodology will be of use in the
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future when analyzing new lossy compressors and/or new
datasets.

Specifically, the proposed methodology considers the use
of different pipelines for SNP calling and indel calling, and
datasets for which true variants exist (“ground truth”).
We have used this methodology to analyze the behavior
of the state-of-the-art lossy compressors, which to our
knowledge constitutes the most complete analysis to date.
The results demonstrate the potential of lossy compression
as a means to reduce the storage requirements while
obtaining performance close to that based on the original
data. Moreover, in many cases we have shown that it is
possible to improve upon the original data, corroborating
the belief that the quality scores are noisy and thus they
can be denoised (in our case via compression).

Our findings and the growing need for reducing the
storage requirements suggest that lossy compression may
be a viable mode for storing quality scores. However,
further research should be performed to better understand
the statistical properties of the quality scores, as well
as the noise underlying their generation, to enable the
principled design of lossy compressors and/or denoisers
tailored to them. Moreover, methodologies for the analysis
on other important downstream applications should be
developed.
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