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 60 

ABSTRACT: 61 

 Four gene expression subtypes of high-grade serous ovarian cancer (HGSC) have been 62 

described in several previous studies. In these studies, a fraction of samples that did not fit well 63 

into any of the four subtype classifications were excluded. Therefore, we sought to 64 

systematically determine the concordance of transcriptomic HGSC subtypes across populations 65 

without removing any “hard-to-classify” samples. We created a unified bioinformatics pipeline 66 

to independently cluster the five largest mRNA expression datasets using k-means and non-67 

negative matrix factorization (NMF). Within each population, we summarized differential 68 

expression patterns, which we used to compare clusters across studies. While previous studies 69 

reported four HGSC subtypes, our cross-population comparison does not support four subtypes. 70 

Because these results contrast with previous reports, we attempted to reproduce the analyses 71 

performed in those studies. Our results suggest that early results favoring four subtypes may 72 

have been driven, at least in part, by the inclusion of serous borderline tumors. In summary, our 73 

analysis suggests that either two or three, but not four, distinct gene expression subtypes are most 74 

consistent with the available HGSC data to date. 75 
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 76 

INTRODUCTION: 77 

Invasive ovarian cancer is a heterogeneous disease typically diagnosed at a late stage, 78 

with high mortality [1] . The most aggressive and common histologic type is high-grade serous 79 

(HGSC) [2], characterized by extensive copy number variation and TP53 mutation [3]. Given the 80 

genomic complexity of these tumors, mRNA expression can be thought of as a summary 81 

measurement of these genomic and epigenetic alterations, to the extent that the alterations 82 

influence gene expression in either the cancer or stroma.  83 

Four gene expression subtypes with varying components of mesenchymal, proliferative, 84 

immunoreactive, and differentiated gene expression signatures have been reported in all studies 85 

of HGSC to date [3–7]. Two of these also observed survival differences across subtypes [4,5]. 86 

Tothill et al. first identified four HGSC subtypes (as well as two other subtypes which largely 87 

included low grade serous and serous borderline tumors) in an Australian population using k-88 

means clustering. Later, The Cancer Genome Atlas (TCGA) used non-negative matrix 89 

factorization (NMF) and also reported four subtypes which were labeled as: ‘mesenchymal’, 90 

‘differentiated’, ‘proliferative’, and ‘immunoreactive’ [3]. The TCGA group also applied NMF 91 

clustering to the Tothill data, and observed concordance with four subtypes [3]. Konecny et al. 92 

applied NMF to cluster an independent set of HGSC samples and reported four subtypes, which 93 

they labeled as C1-C4 [5]. These subtypes were similar to those in the TCGA but a subtype 94 

classifier trained on these subtypes better differentiated survival in their own data, and in data 95 

from TCGA and Bonome et al. [6]. 96 

Despite this extensive research in the area, work to date has several limitations. In both 97 

TCGA and Tothill et al., ~8-15% of samples were excluded from analyses. A reanalysis of the 98 

TCGA data showed that over 80% of the samples could be assigned to more than one subtype 99 
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[8]. In more recent TCGA analyses by the Broad Institute Genome Data Analysis Center 100 

(GDAC) Firehose initiative with the largest number of HGSC cases evaluated to date (n = 569), 101 

three subtypes fit the data better than four [9,10]. This uncertainty in HGSC subtyping led us to 102 

determine if four homogeneous subtypes exist across study populations. 103 

To comprehensively characterize subtypes, we analyze data from the five largest 104 

independent studies to date, including our own collection of samples, using a standardized 105 

bioinformatics pipeline. We apply k-means clustering as well as NMF to each population without 106 

removing “hard-to-classify” samples. Our goal is to rigorously assess the number of subtypes. 107 

These independent and parallel within-dataset analyses followed by cross-dataset comparison 108 

sidestep gene expression platform or dataset biases that could affect clustering if under or 109 

overcorrected. This contrasts with earlier work that pooled datasets together to identify subtypes 110 

[7] and ensures that subtypes identified are not induced by dataset or batch effects. We 111 

summarize each subtype’s expression patterns and comprehensively characterize correlations 112 

between subtype-specific gene expression across populations. 113 

Our cross-population comparative analysis does not support that four HGSC subtypes 114 

exist; rather the data more strongly support an interpretation that there are either two or three 115 

subtypes. We show that the support for four subtypes observed in TCGA’s reanalysis of Tothill 116 

et al. [3] is lost when serous borderline tumors, which have very different genomic profiles and 117 

survival than HGSC [11,12], are excluded before clustering. Our work also highlights the impact 118 

that a single study can have on the trajectory of subtyping research and suggests the importance 119 

of periodic histopathologic review and rigorous reanalysis of existing data for cross-study 120 

commonalities. 121 

 122 
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METHODS: 123 

Data inclusion 124 

We applied inclusion criteria as described in the supplementary materials using data from 125 

the R package, curatedOvarianData [13] and our own novel dataset (“Mayo”) [5]  126 

(Supplementary Table S1). These criteria selected HGCS samples that were not duplicates from 127 

studies including at least 130 HGSC cases assayed on standard microarrays. Data from the new 128 

Mayo HGSC samples as well as other samples with mixed histologies and grades, for a total of 129 

528 additional ovarian tumor samples, was deposited in NCBI’s Gene Expression Omnibus 130 

(GEO) [14]; these data can be accessed with the accession number GSE74357 131 

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE74357).  All study participants 132 

provided written informed consent, and this work was approved by the Mayo Clinic and 133 

Dartmouth College Institutional Review Boards. 134 

After applying the unified inclusion criteria, our final analytic datasets include: TCGA (n 135 

= 499) [3,9]; Mayo (n = 379; GSE74357) [5]; Yoshihara (n = 256; GSE32062.GPL6480) [15]; 136 

Tothill (n = 242; GSE9891) [4]; and Bonome (n = 185; GSE26712) [6] (Table 1). We restricted 137 

analyses to the 10,930 genes measured successfully in all five populations (Supplementary Fig. 138 

S1).  139 

 140 

Clustering 141 

We performed independent clustering within each dataset to avoid potential biases from 142 

different platforms or studies.  As detailed in the Supplementary Methods, we identified the 143 

1,500 genes with the highest variance from each dataset and used the union of these genes (n = 144 

3,698) for clustering. We performed clustering within each dataset using each potential k from 2-145 
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8 clusters. We performed k-means clustering in each population using the R package “cluster” 146 

(version 2.0.1) [16] with 20 initializations. We repeated these analyses using NMF in the R 147 

package “NMF” (version 0.20.5) [17] with 100 different random initializations for each k. As 148 

done in prior studies, we calculated cophenetic correlation coefficients to select appropriate k for 149 

each dataset after NMF clustering with 10 consensus runs for k = 2 through 8. 150 

 151 

Identification of analogous clusters within and across studies 152 

 We performed significance analysis of microarray (SAM) [18,19] analysis on all clusters 153 

from each study using all 10,930 genes. This resulted in a cluster-specific moderated t statistic 154 

for each of the input genes [20]. To summarize the expression patterns of all 10,930 genes for a 155 

specific cluster in a specific population, we combined gene-wise moderated t statistics into a 156 

vector of length 10,930. The TCGA subtype labels have become widely used in the field. To 157 

generate comparable labels across k and across studies, we mapped our TCGA subtype 158 

assignments back to the original TCGA labels to define reference clusters at k = 4 (that is, 159 

mesenchymal-like, proliferative-like, etc.). Clusters in other populations that were most strongly 160 

correlated with the TCGA clusters were assigned the same label.  161 

 162 

Clustering analysis of randomized data 163 

 Any clustering procedure is expected to induce strong correlational structure across 164 

clusters within a dataset even if there is no true underlying structure. However, if there is no true 165 

underlying structure, clusters across datasets are not expected to be correlated. To assess this, we 166 

used the same datasets but shuffled each gene’s expression vector to disrupt the correlative 167 
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structure. We performed within and cross-study analyses of cluster identification using this set of 168 

data that were parallel to those performed using the non-randomized data. 169 

 170 

Assessing the reproducibility of single-population studies 171 

 We compared our sample assignments at k = 2 – 4 to the four subtypes reported in the 172 

Tothill, TCGA, and Konecny publications [3–5]. Because the labels that were assigned in 173 

TCGA’s reanalysis of the Tothill data were not available, we performed NMF consensus 174 

clustering of Tothill’s data without removing LMP samples in order to generate labels for 175 

comparison.  176 

 177 

Reproducibility of our analyses 178 

We provide software to download the required data and reproduce our analyses. The 179 

software is provided under a permissive open source license [21]. Analyses were run in a Docker 180 

container, allowing the computing environment to be recreated [22]. Our Docker image can be 181 

pulled from here: https://hub.docker.com/r/gregway/hgsc_subtypes/. This allows interested users 182 

to freely download the software, reproduce the analyses, and then build on this work. 183 

 184 

RESULTS: 185 

Clustering 186 

To visually inspect the consistency and distinctness of clusters, we compared sample-by-187 

sample correlation heatmaps. For k = 2 to 4 within each study, we observed high sample-by-188 

sample correlations within clusters and relatively low sample-by-sample correlations across 189 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 19, 2016. ; https://doi.org/10.1101/030239doi: bioRxiv preprint 

https://doi.org/10.1101/030239
http://creativecommons.org/licenses/by/4.0/


 

8 
 

clusters (Supplementary Fig. S2). Clustering results using NMF were similar to k means results 190 

(Supplementary Fig S3.) 191 

 192 

Correlation of cluster-specific expression patterns 193 

Across datasets, we observed strong positive correlations of moderated t score vectors 194 

between analogous clusters in TCGA, Tothill, Mayo, and Yoshihara (Fig. 1; Table 2). However, 195 

clustering of the Bonome data did not correlate strongly with clusters identified in the other 196 

datasets (Table 2). We believe that we were unable to assign parallel subtypes in Bonome 197 

because of either RNA contamination or inappropriate grading assignments. However, more 198 

work is required in order to identify exactly why we were unable to classify.  199 

To assess our analytical approach, we performed an analysis using randomized data. This 200 

showed that within-population correlation structure was induced by clustering, but structure 201 

between populations was not (Supplementary Fig. S4). Comparing Figure 1 with S4, we 202 

observed much higher correlation across datasets (Fig. 1), which was lost after randomization 203 

(Supplementary Fig. S4). For example, for k = 2, the TCGA and Mayo cluster correlations for 204 

analogous clusters was high (top left panel in Fig. 1). Conversely, the same relationship in 205 

randomized data (second row, first column panel in Supplementary Fig. S4) showed correlations 206 

near zero. This indicates that the high correlations observed across datasets in Figure 1 are 207 

induced by similar underlying structure in the data.  208 

Across studies, positive correlations between analogous clusters and negative correlations 209 

between non-analogous clusters were stronger for clusters identified when k = 2 and k = 3 than 210 

when k = 4 (Fig. 1), with comparable statistical precision (Supplementary Table S2). These 211 
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cross-population comparisons suggested that two and three subtypes fit HGSC gene expression 212 

data more consistently than the four widely accepted subtypes. 213 

Within each population, clusters identified by NMF were very similar to those identified 214 

using k-means clustering (Fig. 2) suggesting that these results were independent of clustering 215 

algorithm. With NMF, both positive and negative correlations were stronger for k = 2 and k = 3 216 

than for k = 4. Across k = 3 and k = 4, correlations were strongest for clusters 1 and 2. Sample 217 

cluster assignments for both k-means and NMF clusters are provided in Supplementary Table S3. 218 

 219 

Comparison with previously-identified HGSC clusters 220 

Our clustering results for the Tothill, TCGA, and Mayo datasets were highly concordant 221 

with the clustering described in the original publications [3–5], as evidenced by the high degree 222 

of consistent overlap in sample assignments to the previously-defined clusters (Table 3). Our 223 

cross-study cluster 1 was mostly mapped to the “Mesenchymal” label from TCGA, “C1” from 224 

Tothill, and “C4” from Mayo. This cluster was the most stable in our analysis within all datasets, 225 

across k = 2, 3 and 4, and across clustering algorithms. Cross-study cluster 2, which was also 226 

observed consistently, was most similar to the “Proliferative” label from TCGA, “C5” from 227 

Tothill, and “C3” from Mayo. Cross-study cluster 3 for k = 3 was associated with both the 228 

“Immunoreactive” and “Differentiated” TCGA labels, “C2” and “C4” in Tothill, and “C1” and 229 

“C2” in Mayo. For analyses where k = 4, the third cluster was associated with 230 

“Immunoreactive”, “C2”, and “C1” while the fourth cluster was associated with “Differentiated”, 231 

“C4”, and “C2” for TCGA, Tothill, and Mayo respectively. 232 

 233 

Meta-research into previous HGSC subtyping studies 234 
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Each of the publications that only considered high-grade samples (TCGA and Konecny et 235 

al.) found clustering coefficients consistent with k = 2, k = 3, and k = 4. Nevertheless, each 236 

publication concludes the existence of four subtypes, while our cross-population analysis 237 

suggested that two or three clusters fit HGSC data better than four clusters. 238 

To compare with previous results, we evaluated the number of subtypes that fit the data 239 

best within each study by calculating cophenetic correlation coefficients at k = 2 through k=8 240 

clusters inclusively. We observed a similar pattern in each population (Supplementary Fig S5 – 241 

S7; Fig. 3A) in which the highest cophenetic correlation was reached for two clusters and, based 242 

on the heatmaps, appeared to have the highest consensus. In every dataset, four clusters were not 243 

observed to represent the data better than two or three. The only results in previous studies that 244 

contradicted this work were from TCGA’s reanalysis of the Tothill data. According to 245 

supplemental figure S6.2 in the TCGA paper, the reanalysis included serous borderline tumors 246 

(i.e., tumors with low malignant potential) (n = 18). The inclusion of these tumors in the TCGA 247 

HGSC analyses was done even though, in the original Tothill paper, the serous borderline tumors 248 

had a unique gene expression patterns and clustered entirely in a group labeled “C3”. 249 

To assess the extent to which serous borderline tumors inclusion drove the TCGA results, 250 

we reproduced TCGA’s reanalysis of Tothill et al., including the serous borderline tumors (n = 251 

18); we indeed observed that the cophenetic correlation is higher for k = 4 than k = 3 (Fig. 3A). 252 

However, when we appropriately removed these serous borderline tumors we observed an 253 

increase in the k = 3 cophenetic correlation (Fig. 3B). The results that support four subtypes were 254 

generated during clustering of HGSC and serous borderline tumors combined. Subtyping 255 

analyses of HGSC alone reveal less than four subtypes. Even after subtyping there remains a 256 

complex and nuanced portrait of the disease. 257 
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 258 

DISCUSSION: 259 

Although prior studies have reported the existence of four molecular subtypes of HGSC 260 

ovarian cancer [3–5,9], our analysis suggests the existence of only two or three subtypes. This 261 

conclusion is based on our observation that concordance of analogous subtypes across study 262 

populations was stronger for two or three clusters as opposed to four. Previous studies used 263 

either k-means or NMF clustering, and because our results contradicted prior work, we 264 

performed analyses using both of these methods. Results for each population were similar for the 265 

k means and NMF clustering algorithms suggesting that the clustering algorithm did not drive the 266 

observed differences. 267 

Because cross-population comparisons suggest that two and three clusters show more 268 

consistency than four, we explored within-study heuristics (cophenetic correlation coefficients) 269 

that suggested four subtypes in previous research. The cophenetic coefficient measures how 270 

precisely a dendrogram retains sample by sample pairwise distances and can be used to compare 271 

clustering accuracy [23]. While both Konecny and TCGA reported four subtypes, in both 272 

analyses k = 2 and k = 3 resulted in  higher cophenetic coefficients than k = 4 (Konecny Figure 273 

2A and TCGA Figure S6.1) [3, 5]. We observed the same patterns in our own reanalysis of 274 

TCGA and analysis of the expanded Mayo cohort (Supplementary Figs. S5 and S6). Yoshihara 275 

and Tothill did not report cophenetic coefficients, but our analysis of each (Supplementary Fig 276 

S7 and Fig 3A) revealed similar patterns to TCGA and Konecny. 277 

In the previous literature, the only report to suggest that three subtypes were 278 

inappropriate was TCGA’s reanalysis of the Tothill et al. data (supplemental Figure S6.2 in their 279 

publication); the cophenetic coefficient dropped dramatically at k = 3 before recovering at k = 4 280 
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[3]. Notably, TCGA’s figure legend for this supplemental result indicates that they did not 281 

remove serous borderline tumors from the Tothill data. Our analysis of Tothill et al. differed 282 

from TCGA’s in that we excluded serous borderline tumors and instead supports the existence of 283 

two or three subtypes. To evaluate the influence of these serous borderline tumors in the Tothill 284 

data, we repeated our analyses including serous borderline tumors, and observed a drop in the 285 

cophenetic coefficient for k = 3 relative to k = 4 (Fig. 3). This suggests that the four subtypes 286 

observed in TCGA’s analysis of the Tothill data may be due, in part, to the inclusion of serous 287 

borderline tumors.  288 

There are several limitations to note in the HGSC data we analyzed. Given the intra-289 

tumor heterogeneity that is likely to exist [24], our approach would be strengthened by having 290 

data on multiple areas of the tumors. Additionally, since histology and grade classification have 291 

changed over time [25,26], it is unclear whether the populations we studied used comparable 292 

guidelines to determine histology and grade. We attempted to exclude all low grade serous and 293 

low grade endometrioid samples because they often have very different gene expression patterns 294 

and more favorable survival compared to their higher grade counterparts [2]. While the Bonome 295 

publication specified that they included only high-grade tumors, grade is not included in the 296 

Bonome GSE26712 data set, so we were unable to determine whether the grade distribution 297 

differs from the other studies [6]. It is unclear why the Bonome clusters did not correspond to the 298 

clusters observed in other populations. Lack of consistency could result from a different 299 

distribution of grade or other unreported biological differences.  300 

In summary, our study demonstrates that two clusters of HGSC, “mesenchymal-like” and 301 

“proliferative-like”, are clearly and consistently identified within and between populations. This 302 

suggests that there are two reproducible HGSC subtypes that are either etiologically distinct, or 303 
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acquire phenotypically determinant alterations through their development. Our study also 304 

suggests that the previously described “immunoreactive-like” and “differentiated-like” subtypes 305 

appear more variable across populations, and tend to be collapsed into a single category when 306 

three subtypes are specified. These may represent, for example, steps along an immunoreactive 307 

continuum or could represent the basis of a third, but more variable subtype. 308 

Our analysis also reveals the importance of critically reassessing molecular subtypes 309 

across multiple large study populations using parallel analyses and consistent inclusion criteria. 310 

New systematic approaches hold promise for the implementation of such analyses [27]. Our 311 

results underscore the importance of ovarian cancer histopathology, contradict the four HGSC 312 

subtype hypothesis, and suggest that there may be fewer HGSC molecular subtypes with variable 313 

immunoreactivity and stromal infiltration. 314 
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 328 

FIGURE LEGENDS: 329 

 330 

Figure 1. Significance analysis of microarray (SAM) moderated t score Pearson correlation 331 

heatmaps reveal consistency across datasets. (A) Correlations across datasets for k means k = 2. 332 

(B) Correlations across datasets for k means k = 3. (C) Correlations across datasets for k means k 333 

= 4  334 

 335 

Figure 2. Significance analysis of microarray (SAM) moderated t score Pearson correlation 336 

heatmaps of clusters formed by k means clustering and NMF clustering reveals consistency 337 

across clustering methods. Within dataset results are shown for both methods when setting each 338 

algorithm to find 2, 3, and 4 clusters.  339 

 340 

Figure 3.  Comparing NMF consensus clustering in the Tothill dataset. Data displays consensus 341 

clustering for k = 2 to k = 6 for 10 NMF initializations alongside the cophenetic correlation 342 

results for k = 2 to k = 8. (A) Tothill dataset (n = 260) with low malignant potential (LMP) 343 

samples (n = 18) not removed prior to clustering. (B) Tothill dataset with LMP samples removed 344 

(n = 242).  345 

 346 

Supplementary Figure S1. Overlapping genes assayed using either the HG-U1133 Affymetrix 347 

platform (TCGA, Tothill, Bonome) or the Agilent 4x44K platform (Mayo, Yoshihara). 348 
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Differences across datasets arise from inherent array differences and/or differences in quality 349 

control preprocessing. 350 

 351 

Supplementary Figure S2. Sample by sample Pearson correlation matrices. Top panel: k = 2. 352 

Middle panel: k = 3. Bottom panel: k = 4. The color bars are coded as blue for cluster 1, red for 353 

cluster 2, green for cluster 3, and purple for cluster 4. In the matrices, red represents high 354 

correlation, blue low correlation, and white intermediate correlation. The scales are slightly 355 

different in each population because of different correlational structures. The clusters in the 356 

Bonome study are depicted in gray scale because in cross-population analyses to identify 357 

analogous clusters, those from Bonome did not correlate with those observed in the four other 358 

studies.  359 

 360 

Supplementary Figure S3. NMF consensus matrices for datasets when k = 2, k = 3, and k = 4. 361 

The first track represents cluster membership for k means clusters and the second track 362 

represents silhouette widths. Note that NMF clusters are not ordered in the same way as the k 363 

means clusters. 364 

 365 

Supplementary Figure S4. Significance analysis of microarray (SAM) moderated t score 366 

Pearson correlation heatmaps are not consistent across datasets for randomly shuffled gene 367 

expression values for k = 2, k = 3, or k = 4. The within dataset correlations are artificially 368 

induced because the clustering algorithm will find clusters even without true underlying 369 

structure. However, the across dataset clusters are not correlated in the randomized data 370 

indicating that the results we observe in Figure 1 are not artifacts of the clustering algorithm.  371 
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 372 

Supplementary Figure S5. Consensus NMF clustering of the TCGA dataset (n = 499) for k = 2 373 

to k = 6 for 10 NMF runs alongside the cophenetic correlation results for k = 2 to k = 8. 374 

 375 

Supplementary Figure S6. Consensus NMF clustering of the Mayo dataset (n = 379 for k = 2 to 376 

k = 6 for 10 NMF runs alongside the cophenetic correlation results for k = 2 to k = 8. 377 

 378 

Supplementary Figure S7. Consensus NMF clustering of the Yoshihara dataset (n = 256) for k 379 

= 2 to k = 6 for 10 NMF runs alongside the cophenetic correlation results for k = 2 to k = 8. 380 

 381 

Supplementary Figure S8. Silhouette width plots for k = 2, k = 3, and k = 4 for k means 382 

clustering results. Cluster 1 is shown in blue, cluster 2 in red, cluster 3 in green, and cluster 4 in 383 

purple. 384 

 385 

Supplementary Figure S9. Kaplan-Meier survival curves for k = 2, k = 3, and k = 4 shown for 386 

clustering solutions using k means and NMF. Cluster 1 is shown in blue, cluster 2 in red, cluster 387 

3 in green, and cluster 4 in purple. 388 

 389 
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 481 

Table 1: Characteristics of the populations included in the five analytic data sets 482 
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NA: Data not reported 484 

 aOne sample was labeled as 'Grade 4' in TCGA   485 

bsamples without survival data were excluded in survival analyses 486 

Table 2: SAM moderated t score vector Pearson correlations between analogous clusters across 487 

populationsa 
488 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 

k = 2a 0.62 – 0.81 0.62 – 0.81 NA NA 

k = 3a 0.77 - 0.85  0.80 - 0.90 0.65 - 0.77 NA 

k = 4a 0.77 - 0.85  0.83 - 0.89 0.51 - 0.76  0.61 - 0.75 
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Bonome k = 2b -0.08 – 0.24 -0.08 – 0.24 NA NA 

Bonome k = 3b 0.45 – 0.46 -0.02 - 0.12 0.22 - 0.42 NA 

Bonome k = 4b 0.50 - 0.57 -0.04 - 0.04 0.13 - 0.29 0.26 - 0.43 

aCorrelation ranges for TCGA, Mayo, Yoshihara, and Tothill. 489 

bBonome is removed from gene set analyses because of low correlating clusters 490 

 491 

 492 

 493 

 494 

 495 

 496 

 497 

 498 

 499 

 500 

Table 3: Distributions of sample membership in the clusters identified in our study by the 501 

original cluster assignments in the TCGA, Tothill, and Konecny studies. Clusters identified in 502 

our study using k-means clustering with k = 2, k = 3, and k = 4 503 

 TCGA Tothill et al. Konecny et al. 
k = 2 Mes Pro Imm Dif NCa C1 C2 C3 C4 C5 C6 NCa C1 C2 C3 C4 NAb 
Cluster 1 98 7 93 68 21 78 39 1 0 0 0 11 36 21 2 26 114 
Cluster 2 1 127 2 60 22 0 5 5 44 35 2 22 6 39 41 0 94 
k = 3                  
Cluster 1 98 2 20 11 6 77 22 0 0 0 0 6 16 13 2 26 82 
Cluster 2 1 111 0 11 16 1 0 0 3 35 2 5 0 16 36 0 56 
Cluster 3 0 21 75 106 21 0 22 6 41 0 0 22 26 31 5 0 70 
k = 4                  
Cluster 1 97 4 12 12 5 74 0 0 0 0 0 0 7 12 3 25 62 
Cluster 2 1 85 0 0 13 1 0 0 1 34 2 5 0 9 31 0 41 
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Cluster 3 0 5 80 3 12 3 42 0 1 1 0 14 29 6 0 1 57 
Cluster 4 1 40 3 113 13 0 2 6 42 0 0 14 6 33 9 0 48 

 
504 

aNC = Samples not clustered in original publication 505 

bNA = Samples not assessed at the time of the original publication 506 

NOTE: The corresponding labels for the generally similar HGSC gene expression subtypes 507 

observed in the TCGA, Tothill, and Konecny studies are, respectively: mesenchymal/C1/C4, 508 

proliferative/C5/C3, immunoreactive/C2/C1, and differentiated/C4/C2) 509 
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