1 2 3 4	<u>TITLE:</u> Comprehensive cross-population analysis of high-grade serous ovarian cancer supports no more than three subtypes
5 6 7 8	<u>AUTHORS:</u> Gregory P. Way ^{a,b,c} , James Rudd ^{c,d} , Chen Wang ^e , Habib Hamidi ^f , Brooke L. Fridley ^g , Gottfried Konecny ^f , Ellen L. Goode ^e , Casey S. Greene ^{b,c,h,1} , Jennifer A. Doherty ^{c,d,2}
9	AFFILIATIONS:
10 11	^a Genomics and Computational Biology Graduate Program, University of Pennsylvania, Philadelphia, PA 19103, USA
12	^b Department of Systems Pharmacology and Translational Therapeutics, Perelman School
13	of Medicine, University of Pennsylvania, Philadelphia, PA
14	^c Quantitative Biomedical Sciences, Norris Cotton Cancer Center, Geisel School of
15	Medicine at Dartmouth, Lebanon, NH
16 17	^d Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH ^e Department of Health Sciences Research, Mayo Clinic, Rochester, MN
18	^f Department of Medicine, David Geffen School of Medicine, University of California,
19	Los Angeles, CA
20	^g Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS
21	^h Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH
22	
23	CO-CORRESPONDING AUTHORS:
24	¹ 10-131 SCTR 34 th and Civic Center Blvd, Philadelphia, PA 19104; Phone: 215-573-
25 26	2991; Fax: 215-573-9135; csgreene@upenn.edu ² One Medical Center Drive, Laborer, NUL02766; Phone: 602,652,0065; Fax: 602,652
26 27	² One Medical Center Drive, Lebanon, NH 03766; Phone: 603-653-9065; Fax: 603-653- 9093; Jennifer.A.Doherty@Dartmouth.edu
28	7075, Jenniel.A.Donerty @Dartmouth.edu
29	AUTHOR EMAIL ADDRESSES
30	GW: gregway@upenn.edu
31	JR: james.e.rudd.gr@dartmouth.edu
32	CW: Wang.Chen@mayo.edu
33	HH: HHamidi@mednet.ucla.edu
34	BF: bfridley@kumc.edu
35	GK: GKonecny@mednet.ucla.edu
36 37	EG: egoode@mayo.edu CG: csgreene@upenn.edu
38	JD: Jennifer.A.Doherty@dartmouth.edu
39	J. Formior Donorty C durthouniedu
40	CONFLICTS OF INTEREST:
41	The authors do not declare any conflicts of interest.
42	
43	OTHER PRESENTATIONS:
44	Aspects of this study were presented at the 2015 AACR Conference and the 2015 Rocky
45 46	Mountain Bioinformatics Conference.
46	

47 **RUNNING HEAD:** 48 Cross-population analysis supports no more than three ovarian cancer subtypes 49 50 **KEYWORDS**: Ovarian Cancer; Molecular Subtypes; Unsupervised Clustering; Reproducibility 51 52 53 NOTES: 54 Words: 2,926; Figures: 3; Tables 3; Sup. Figures: 9; Sup. Tables: 6; Sup. Methods 55 AUTHORS' CONTRIBUTIONS 56 Study concept and design: GW, JR, CG, JD. Original data collection and processing: 57 CW, HH, BF, GK, EG. Data analysis: GW, JR, CG, JD. Manuscript drafting and editing: GW, JR, CG, JD. All authors read, commented on, and approved the final manuscript. 58 59 60 61 **ABSTRACT**: 62 Four gene expression subtypes of high-grade serous ovarian cancer (HGSC) have been 63 previously described. In these studies, a fraction of samples that did not fit well into the four

64 subtype classifications were excluded. Therefore, we sought to systematically determine the

65 concordance of transcriptomic HGSC subtypes across populations without removing any

samples. We created a bioinformatics pipeline to independently cluster the five largest mRNA

67 expression datasets using *k*-means and non-negative matrix factorization (NMF). We

68 summarized differential expression patterns to compare clusters across studies. While previous

69 studies reported four subtypes, our cross-population comparison does not support four. Because

these results contrast with previous reports, we attempted to reproduce analyses performed in

those studies. Our results suggest that early results favoring four subtypes may have been driven

by including serous borderline tumors. In summary, our analysis suggests that either two or

three, but not four, gene expression subtypes are most consistent across datasets.

74

76 <u>INTRODUCTION:</u>

Invasive ovarian cancer is a heterogeneous disease typically diagnosed at a late stage,
with high mortality [1]. The most aggressive and common histologic type is high-grade serous
(HGSC) [2], characterized by extensive copy number variation and *TP53* mutation [3]. Given the
genomic complexity of these tumors, mRNA expression can be thought of as a summary
measurement of these genomic and epigenetic alterations, to the extent that the alterations
influence gene expression in either the cancer or stroma.

83 Four gene expression subtypes with varying components of mesenchymal, proliferative, 84 immunoreactive, and differentiated gene expression signatures have been reported in all studies 85 of HGSC to date [3–7]. Two of these also observed survival differences across subtypes [4,5]. 86 Tothill *et al.* first identified four HGSC subtypes (as well as two other subtypes which largely 87 included low grade serous and serous borderline tumors) in an Australian population using k-88 means clustering. Later, The Cancer Genome Atlas (TCGA) used non-negative matrix 89 factorization (NMF) and also reported four subtypes which were labeled as: 'mesenchymal', 'differentiated', 'proliferative', and 'immunoreactive' [3]. The TCGA group also applied NMF 90 91 clustering to the Tothill data, and observed concordance with four subtypes [3]. Konecny et al. 92 applied NMF to cluster an independent set of HGSC samples and reported four subtypes, which 93 they labeled as C1-C4 [5]. These subtypes were similar to those in the TCGA but a subtype 94 classifier trained on these subtypes better differentiated survival in their own data, and in data 95 from TCGA and Bonome et al. [6].

Despite this extensive research in the area, work to date has several limitations. In both
TCGA and Tothill *et al.*, ~8-15% of samples were excluded from analyses. A reanalysis of the
TCGA data showed that over 80% of the samples could be assigned to more than one subtype
[8]. In more recent TCGA analyses by the Broad Institute Genome Data Analysis Center

100(GDAC) Firehose initiative with the largest number of HGSC cases evaluated to date (n = 569),101three subtypes fit the data better than four [9,10]. This uncertainty in HGSC subtyping led us to102determine if four homogeneous subtypes exist across study populations.103To comprehensively characterize subtypes, we analyze data from the five largest104independent studies to date, including our own collection of samples, using a standardized105bioinformatics pipeline. We apply *k*-means clustering as well as NMF to each population without106removing "hard-to-classify" samples. Our goal is to rigorously assess the number of subtypes.

107 These independent and parallel within-dataset analyses followed by cross-dataset comparison

sidestep gene expression platform or dataset biases that could affect clustering if under or

109 overcorrected. This contrasts with earlier work that pooled datasets together to identify subtypes

110 [7] and ensures that subtypes identified are not induced by dataset or batch effects. We

summarize each subtype's expression patterns and comprehensively characterize correlations

between subtype-specific gene expression across populations.

113 Our cross-population comparative analysis does not support that four HGSC subtypes 114 exist; rather the data more strongly support an interpretation that there are either two or three 115 subtypes. We show that the support for four subtypes observed in TCGA's reanalysis of Tothill 116 et al. [3] is lost when serous borderline tumors, which have very different genomic profiles and 117 survival than HGSC [11,12], are excluded before clustering. Our work also highlights the impact that a single study can have on the trajectory of subtyping research and suggests the importance 118 of periodic histopathologic review and rigorous reanalysis of existing data for cross-study 119 120 commonalities.

121

122 <u>METHODS:</u>

123 Data inclusion

124	We applied inclusion criteria as described in the supplementary materials using data from
125	the R package, curatedOvarianData [13] and our own novel dataset ("Mayo") [5]
126	(Supplementary Table S1). These criteria selected HGCS samples that were not duplicates from
127	studies including at least 130 HGSC cases assayed on standard microarrays. Data from the new
128	Mayo HGSC samples as well as other samples with mixed histologies and grades, for a total of
129	528 additional ovarian tumor samples, was deposited in NCBI's Gene Expression Omnibus
130	(GEO) [14]; these data can be accessed with the accession number GSE74357
131	(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE74357). All study participants
132	provided written informed consent, and this work was approved by the Mayo Clinic and
133	Dartmouth College Institutional Review Boards.
134	After applying the unified inclusion criteria, our final analytic datasets include: TCGA (n
135	= 499) [3,9]; Mayo (n = 379; GSE74357) [5]; Yoshihara (n = 256; GSE32062.GPL6480) [15];
136	Tothill (n = 242; GSE9891) [4]; and Bonome (n = 185; GSE26712) [6] (Table 1). We restricted
137	analyses to the 10,930 genes measured successfully in all five populations (Supplementary Fig.
138	S1).
139	
140	Clustering

We performed independent clustering within each dataset to avoid potential biases from different platforms or studies. As detailed in the Supplementary Methods, we identified the 1,500 genes with the highest variance from each dataset and used the union of these genes (n = 3,698) for clustering. We performed clustering within each dataset using each potential k from 2-8 clusters. We performed k-means clustering in each population using the R package "cluster"

146	(version 2.0.1) [16] with 20 initializations. We repeated these analyses using NMF in the R
147	package "NMF" (version 0.20.5) [17] with 100 different random initializations for each k. As
148	done in prior studies, we calculated cophenetic correlation coefficients to select appropriate k for
149	each dataset after NMF clustering with 10 consensus runs for $k = 2$ through 8.
150	
151	Identification of analogous clusters within and across studies
152	We performed significance analysis of microarray (SAM) [18,19] analysis on all clusters
153	from each study using all 10,930 genes. This resulted in a cluster-specific moderated t statistic
154	for each of the input genes [20]. To summarize the expression patterns of all 10,930 genes for a
155	specific cluster in a specific population, we combined gene-wise moderated t statistics into a
156	vector of length 10,930. The TCGA subtype labels have become widely used in the field. To
157	generate comparable labels across k and across studies, we mapped our TCGA subtype
158	assignments back to the original TCGA labels to define reference clusters at $k = 4$ (that is,
159	mesenchymal-like, proliferative-like, etc.). Clusters in other populations that were most strongly
160	correlated with the TCGA clusters were assigned the same label.
161	
162	Clustering analysis of randomized data
163	Any clustering procedure is expected to induce strong correlational structure across
164	clusters within a dataset even if there is no true underlying structure. However, if there is no true
165	underlying structure, clusters across datasets are not expected to be correlated. To assess this, we
166	used the same datasets but shuffled each gene's expression vector to disrupt the correlative
167	structure. We performed within and cross-study analyses of cluster identification using this set of
168	data that were parallel to those performed using the non-randomized data.

169	
170	Assessing the reproducibility of single-population studies
171	We compared our sample assignments at $k = 2 - 4$ to the four subtypes reported in the
172	Tothill, TCGA, and Konecny publications [3–5]. Because the labels that were assigned in
173	TCGA's reanalysis of the Tothill data were not available, we performed NMF consensus
174	clustering of Tothill's data without removing LMP samples in order to generate labels for
175	comparison.
176	
177	Reproducibility of our analyses
178	We provide software to download the required data and reproduce our analyses. The
179	software is provided under a permissive open source license [21]. Analyses were run in a Docker
180	container, allowing the computing environment to be recreated [22]. Our Docker image can be
181	pulled from here: https://hub.docker.com/r/gregway/hgsc_subtypes/. This allows interested users
182	to freely download the software, reproduce the analyses, and then build on this work.
183	
184	RESULTS:
185	Clustering
186	To visually inspect the consistency and distinctness of clusters, we compared sample-by-
187	sample correlation heatmaps. For $k = 2$ to 4 within each study, we observed high sample-by-
188	sample correlations within clusters and relatively low sample-by-sample correlations across
189	clusters (Supplementary Fig. S2). Clustering results using NMF were similar to k means results
190	(Supplementary Fig S3).
191	

192 Correlation of cluster-specific expression patterns

193 Across datasets, we observed strong positive correlations of moderated t score vectors 194 between analogous clusters in TCGA, Tothill, Mayo, and Yoshihara (Fig. 1; Table 2). However, 195 clustering of the Bonome data did not correlate strongly with clusters identified in the other datasets (Table 2). We believe that we were unable to assign parallel subtypes in Bonome 196 because of either RNA contamination or inappropriate grading assignments. However, more 197 198 work is required in order to identify exactly why we were unable to classify. To assess our analytical approach, we performed an analysis using randomized data. This 199 200 showed that within-population correlation structure was induced by clustering, but structure between populations was not (Supplementary Fig. S4). Comparing Figure 1 with S4, we 201 observed much higher correlation across datasets (Fig. 1), which was lost after randomization 202 203 (Supplementary Fig. S4). For example, for k = 2, the TCGA and Mayo cluster correlations for 204 analogous clusters was high (top left panel in Fig. 1). Conversely, the same relationship in 205 randomized data (second row, first column panel in Supplementary Fig. S4) showed correlations 206 near zero. This indicates that the high correlations observed across datasets in Figure 1 are induced by similar underlying structure in the data. 207 Across studies, positive correlations between analogous clusters and negative correlations 208

between non-analogous clusters were stronger for clusters identified when k = 2 and k = 3 than when k = 4 (Fig. 1), with comparable statistical precision (Supplementary Table S2). These cross-population comparisons suggested that two and three subtypes fit HGSC gene expression data more consistently than the four widely accepted subtypes.

Within each population, clusters identified by NMF were similar to those identified using *k*-means clustering (Fig. 2) suggesting that these results were independent of clustering

215	algorithm. With NMF, both positive and negative correlations were stronger for $k = 2$ and $k = 3$
216	than for $k = 4$. Across $k = 3$ and $k = 4$, correlations were strongest for clusters 1 and 2. Sample
217	cluster assignments for both k-means and NMF clusters are provided in Supplementary Table S3.
218	

219 Comparison with previously-identified HGSC clusters

Our clustering results for the Tothill, TCGA, and Mayo datasets were highly concordant 220 221 with the clustering described in the original publications [3–5], as evidenced by the high degree 222 of consistent overlap in sample assignments to the previously-defined clusters (Table 3). Our cross-study cluster 1 was mostly mapped to the "Mesenchymal" label from TCGA, "C1" from 223 224 Tothill, and "C4" from Mayo. This cluster was the most stable in our analysis within all datasets, across k = 2, 3 and 4, and across clustering algorithms. Cross-study cluster 2, which was also 225 226 observed consistently, was most similar to the "Proliferative" label from TCGA, "C5" from 227 Tothill, and "C3" from Mayo. Cross-study cluster 3 for k = 3 was associated with both the "Immunoreactive" and "Differentiated" TCGA labels, "C2" and "C4" in Tothill, and "C1" and 228 229 "C2" in Mayo. For analyses where k = 4, the third cluster was associated with "Immunoreactive", "C2", and "C1" while the fourth cluster was associated with "Differentiated", 230 231 "C4", and "C2" for TCGA, Tothill, and Mayo respectively. 232 Meta-research into previous HGSC subtyping studies 233 Each of the publications that only considered high-grade samples (TCGA and Konecny et 234 al.) found clustering coefficients consistent with k = 2, k = 3, and k = 4. Nevertheless, each 235

- publication concludes the existence of four subtypes, while our cross-population analysis
- suggested that two or three clusters fit HGSC data better than four clusters.

238 To compare with previous results, we evaluated the number of subtypes that fit the data 239 best within each study by calculating cophenetic correlation coefficients at k = 2 through k=8 240 clusters inclusively. We observed a similar pattern in each population (Supplementary Fig S5 -241 S7; Fig. 3A) in which the highest cophenetic correlation was reached for two clusters and, based 242 on the heatmaps, appeared to have the highest consensus. In every dataset, four clusters were not 243 observed to represent the data better than two or three. The only results in previous studies that 244 contradicted this work were from TCGA's reanalysis of the Tothill data. According to 245 supplemental figure S6.2 in the TCGA paper, the reanalysis included serous borderline tumors 246 (i.e., tumors with low malignant potential) (n = 18). The inclusion of these tumors in the TCGA 247 HGSC analyses was done even though, in the original Tothill paper, the serous borderline tumors had a unique gene expression patterns and clustered entirely in a group labeled "C3". 248 249 To assess the extent to which serous borderline tumors inclusion drove the TCGA results, 250 we reproduced TCGA's reanalysis of Tothill *et al.*, including the serous borderline tumors (n = 251 18); we indeed observed that the cophenetic correlation is higher for k = 4 than k = 3 (Fig. 3A). 252 However, when we appropriately removed these serous borderline tumors we observed an 253 increase in the k = 3 cophenetic correlation (Fig. 3B). The results that support four subtypes were 254 generated during clustering of HGSC and serous borderline tumors combined. Subtyping 255 analyses of HGSC alone reveal less than four subtypes. Even after subtyping there remains a 256 complex and nuanced portrait of the disease. 257

258 DISCUSSION:

Although prior studies have reported the existence of four molecular subtypes of HGSC ovarian cancer [3–5,9], our analysis suggests the existence of only two or three subtypes. This

conclusion is based on our observation that concordance of analogous subtypes across study
populations was stronger for two or three clusters as opposed to four. Previous studies used
either *k*-means or NMF clustering, and because our results contradicted prior work, we
performed analyses using both of these methods. Results for each population were similar for the *k* means and NMF clustering algorithms suggesting that the clustering algorithm did not drive the
observed differences.

Because cross-population comparisons suggest that two and three clusters show more 267 consistency than four, we explored within-study heuristics (cophenetic correlation coefficients) 268 269 that suggested four subtypes in previous research. The cophenetic coefficient measures how 270 precisely a dendrogram retains sample by sample pairwise distances and can be used to compare clustering accuracy [23]. While both Konecny and TCGA reported four subtypes, in both 271 analyses k = 2 and k = 3 resulted in higher cophenetic coefficients than k = 4 (Konecny Figure 272 273 2A and TCGA Figure S6.1) [3, 5]. We observed the same patterns in our own reanalysis of 274 TCGA and analysis of the expanded Mayo cohort (Supplementary Figs. S5 and S6). Yoshihara 275 and Tothill did not report cophenetic coefficients, but our analysis of each (Supplementary Fig 276 S7 and Fig 3A) revealed similar patterns to TCGA and Konecny. 277 In the previous literature, the only report to suggest that three subtypes were 278 inappropriate was TCGA's reanalysis of the Tothill et al. data (supplemental Figure S6.2 in their publication); the cophenetic coefficient dropped dramatically at k = 3 before recovering at k = 4279 280 [3]. Notably, TCGA's figure legend for this supplemental result indicates that they did not 281 remove serous borderline tumors from the Tothill data. Our analysis of Tothill et al. differed from TCGA's in that we excluded serous borderline tumors and instead supports the existence of 282

two or three subtypes. To evaluate the influence of these serous borderline tumors in the Tothill

data, we repeated our analyses including serous borderline tumors, and observed a drop in the cophenetic coefficient for k = 3 relative to k = 4 (Fig. 3). This suggests that the four subtypes observed in TCGA's analysis of the Tothill data may be due, in part, to the inclusion of serous borderline tumors.

288 There are several limitations to note in the HGSC data we analyzed. Given the intra-289 tumor heterogeneity that is likely to exist [24], our approach would be strengthened by having 290 data on multiple areas of the tumors. Additionally, since histology and grade classification have 291 changed over time [25,26], it is unclear whether the populations we studied used comparable 292 guidelines to determine histology and grade. We attempted to exclude all low grade serous and 293 low grade endometrioid samples because they often have very different gene expression patterns and more favorable survival compared to their higher grade counterparts [2]. While the Bonome 294 295 publication specified that they included only high-grade tumors, grade is not included in the 296 Bonome GSE26712 data set, so we were unable to determine whether the grade distribution 297 differs from the other studies [6]. It is unclear why the Bonome clusters did not correspond to the 298 clusters observed in other populations. Lack of consistency could result from a different 299 distribution of grade or other unreported biological differences.

In summary, our study demonstrates that two clusters of HGSC, "mesenchymal-like" and "proliferative-like", are clearly and consistently identified within and between populations. This suggests that there are two reproducible HGSC subtypes that are either etiologically distinct, or acquire phenotypically determinant alterations through their development. Our study also suggests that the previously described "immunoreactive-like" and "differentiated-like" subtypes appear more variable across populations, and tend to be collapsed into a single category when

306	three subtypes are specified. These may represent, for example, steps along an immunoreactive
307	continuum or could represent the basis of a third, but more variable subtype.
308	Our analysis also reveals the importance of critically reassessing molecular subtypes
309	across multiple large study populations using parallel analyses and consistent inclusion criteria.
310	New systematic approaches hold promise for the implementation of such analyses [27]. Our
311	results underscore the importance of ovarian cancer histopathology, contradict the four HGSC
312	subtype hypothesis, and suggest that there may be fewer HGSC molecular subtypes with variable
313	immunoreactivity and stromal infiltration.
314	
315	ACKNOWLEDGEMENTS:
316	We would like to thank Sebastian Armasu and Hsiao-Wang Chen for help with statistical
317	analyses and data processing and Emily Kate Shea for helpful discussions.
318	
319	FUNDING:
320	This work was supported the National Cancer Institute at the National Institutes of Health
321	(R01 CA168758 to J.A.D., F31 CA186625 to J.R., R01 CA122443 to E.L.G.); the Mayo Clinic
322	Ovarian Cancer SPORE (P50 CA136393 to E.L.G.); the Mayo Clinic Comprehensive Cancer
323	Center-Gene Analysis Shared Resource (P30 CA15083); the Gordon and Betty Moore
324	Foundation's Data-Driven Discovery Initiative (grant number GBMF 4552 to C.S.G.); and the
325	American Cancer Society (grant number IRG 8200327 to C.S.G.), and by Norris Cotton Cancer
326	Center Developmental Funds.
327	

328 FIGURE LEGENDS:

3	2	9

330	Figure 1. Significance analysis of microarray (SAM) moderated <i>t</i> score Pearson correlation
331	heatmaps reveal consistency across datasets. (A) Correlations across datasets for k means $k = 2$.
332	(B) Correlations across datasets for k means $k = 3$. (C) Correlations across datasets for k means k
333	=4
334	
335	Figure 2. Significance analysis of microarray (SAM) moderated <i>t</i> score Pearson correlation
336	heatmaps of clusters formed by k means clustering and NMF clustering reveals consistency
337	across clustering methods. Within dataset results are shown for both methods when setting each
338	algorithm to find 2, 3, and 4 clusters.
339	
340	Figure 3. Comparing NMF consensus clustering in the Tothill dataset. Data displays consensus
340 341	Figure 3. Comparing NMF consensus clustering in the Tothill dataset. Data displays consensus clustering for $k = 2$ to $k = 6$ for 10 NMF initializations alongside the cophenetic correlation
341	clustering for $k = 2$ to $k = 6$ for 10 NMF initializations alongside the cophenetic correlation
341 342	clustering for $k = 2$ to $k = 6$ for 10 NMF initializations alongside the cophenetic correlation results for $k = 2$ to $k = 8$. (A) Tothill dataset (n = 260) with low malignant potential (LMP)
341 342 343	clustering for $k = 2$ to $k = 6$ for 10 NMF initializations alongside the cophenetic correlation results for $k = 2$ to $k = 8$. (A) Tothill dataset (n = 260) with low malignant potential (LMP) samples (n = 18) not removed prior to clustering. (B) Tothill dataset with LMP samples removed
341 342 343 344	clustering for $k = 2$ to $k = 6$ for 10 NMF initializations alongside the cophenetic correlation results for $k = 2$ to $k = 8$. (A) Tothill dataset (n = 260) with low malignant potential (LMP) samples (n = 18) not removed prior to clustering. (B) Tothill dataset with LMP samples removed
341 342 343 344 345	clustering for $k = 2$ to $k = 6$ for 10 NMF initializations alongside the cophenetic correlation results for $k = 2$ to $k = 8$. (A) Tothill dataset (n = 260) with low malignant potential (LMP) samples (n = 18) not removed prior to clustering. (B) Tothill dataset with LMP samples removed (n = 242).
341 342 343 344 345 346	clustering for $k = 2$ to $k = 6$ for 10 NMF initializations alongside the cophenetic correlation results for $k = 2$ to $k = 8$. (A) Tothill dataset (n = 260) with low malignant potential (LMP) samples (n = 18) not removed prior to clustering. (B) Tothill dataset with LMP samples removed (n = 242). Supplementary Figure S1. Overlapping genes assayed using either the HG-U1133 Affymetrix

351	Supplementary Figure S2. Sample by sample Pearson correlation matrices. Top panel: $k = 2$.
352	Middle panel: $k = 3$. Bottom panel: $k = 4$. The color bars are coded as blue for cluster 1, red for
353	cluster 2, green for cluster 3, and purple for cluster 4. In the matrices, red represents high
354	correlation, blue low correlation, and white intermediate correlation. The scales are slightly
355	different in each population because of different correlational structures. The clusters in the
356	Bonome study are depicted in gray scale because in cross-population analyses to identify
357	analogous clusters, those from Bonome did not correlate with those observed in the four other
358	studies.
359	
360	Supplementary Figure S3. NMF consensus matrices for datasets when $k = 2$, $k = 3$, and $k = 4$.
361	The first track represents cluster membership for k means clusters and the second track
362	represents silhouette widths. Note that NMF clusters are not ordered in the same way as the k
363	means clusters.
364	
365	Supplementary Figure S4. Significance analysis of microarray (SAM) moderated t score
366	Pearson correlation heatmaps are not consistent across datasets for randomly shuffled gene
367	expression values for $k = 2$, $k = 3$, or $k = 4$. The within dataset correlations are artificially
368	induced because the clustering algorithm will find clusters even without true underlying
369	structure. However, the across dataset clusters are not correlated in the randomized data
370	indicating that the results we observe in Figure 1 are not artifacts of the clustering algorithm.

371

Supplementary Figure S5. Consensus NMF clustering of the TCGA dataset (n = 499) for k = 2to k = 6 for 10 NMF runs alongside the cophenetic correlation results for k = 2 to k = 8.

374			
375	Sup	plementary Figure S6. Consensus NMF clustering of the Mayo dataset ($n = 379$ for $k = 2$ to	
376	<i>k</i> =	6 for 10 NMF runs alongside the cophenetic correlation results for $k = 2$ to $k = 8$.	
377			
378	Sup	plementary Figure S7. Consensus NMF clustering of the Yoshihara dataset ($n = 256$) for k	
379	= 2	to $k = 6$ for 10 NMF runs alongside the cophenetic correlation results for $k = 2$ to $k = 8$.	
380			
381	Supplementary Figure S8. Silhouette width plots for $k = 2$, $k = 3$, and $k = 4$ for k means		
382	clustering results. Cluster 1 is shown in blue, cluster 2 in red, cluster 3 in green, and cluster 4 in		
383	purple.		
384			
385	Supplementary Figure S9. Kaplan-Meier survival curves for $k = 2$, $k = 3$, and $k = 4$ shown for		
386	clustering solutions using k means and NMF. Cluster 1 is shown in blue, cluster 2 in red, cluster		
387	3 in green, and cluster 4 in purple.		
388			
389	REFERENCES:		
390 391 392	1.	Kurman RJ, Shih I-M. The Origin and Pathogenesis of Epithelial Ovarian Cancer: A Proposed Unifying Theory: Am J Surg Pathol. 2010;34: 433–443. doi:10.1097/PAS.0b013e3181cf3d79	
393 394 395	2.	Vang R, Shih I-M, Kurman RJ. Ovarian Low-grade and High-grade Serous Carcinoma: Pathogenesis, Clinicopathologic and Molecular Biologic Features, and Diagnostic Problems. Adv Anat Pathol. 2009;16: 267–282. doi:10.1097/PAP.0b013e3181b4fffa	
396 397	3.	The Cancer Genome Atlas. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474: 609–615. doi:10.1038/nature10166	
398 399 400	4.	Tothill RW, Tinker AV, George J, Brown R, Fox SB, Lade S, et al. Novel Molecular Subtypes of Serous and Endometrioid Ovarian Cancer Linked to Clinical Outcome. Clin Cancer Res. 2008;14: 5198–5208. doi:10.1158/1078-0432.CCR-08-0196	

401 402 403	5.	Konecny GE, Wang C, Hamidi H, Winterhoff B, Kalli KR, Dering J, et al. Prognostic and Therapeutic Relevance of Molecular Subtypes in High-Grade Serous Ovarian Cancer. JNCI J Natl Cancer Inst. 2014;106: dju249–dju249. doi:10.1093/jnci/dju249
404 405 406	6.	Bonome T, Levine DA, Shih J, Randonovich M, Pise-Masison CA, Bogomolniy F, et al. A gene signature predicting for survival in suboptimally debulked patients with ovarian cancer. Cancer Res. 2008;68: 5478–5486. doi:10.1158/0008-5472.CAN-07-6595
407 408 409 410	7.	Tan TZ, Miow QH, Huang RY-J, Wong MK, Ye J, Lau JA, et al. Functional genomics identifies five distinct molecular subtypes with clinical relevance and pathways for growth control in epithelial ovarian cancer: A subtyping scheme for epithelial ovarian cancer. EMBO Mol Med. 2013;5: 1051–1066. doi:10.1002/emmm.201201823
411 412 413	8.	Verhaak RGW, Tamayo P, Yang J-Y, Hubbard D, Zhang H, Creighton CJ, et al. Prognostically relevant gene signatures of high-grade serous ovarian carcinoma. J Clin Invest. 2012; doi:10.1172/JCI65833
414 415 416	9.	Broad Institute TCGA Genome Data Analysis Center. Analysis Overview for Ovarian Serous Cystadenocarcinoma (Primary solid tumor cohort) - 15 July 2014. 2014; doi:10.7908/C1QR4VX4
417 418	10.	Broad Institute TCGA Genome Data Analysis Center. Clustering of mRNA expression: consensus NMF. 2015; doi:10.7908/C1BR8R71
419 420 421 422	11.	Ouellet V, Provencher DM, Maugard CM, Le Page C, Ren F, Lussier C, et al. Discrimination between serous low malignant potential and invasive epithelial ovarian tumors using molecular profiling. Oncogene. 2005;24: 4672–4687. doi:10.1038/sj.onc.1208214
423 424 425	12.	Bonome T, Lee J-Y, Park D-C, Radonovich M, Pise-Masison C, Brady J, et al. Expression profiling of serous low malignant potential, low-grade, and high-grade tumors of the ovary. Cancer Res. 2005;65: 10602–10612. doi:10.1158/0008-5472.CAN-05-2240
426 427 428	13.	Ganzfried BF, Riester M, Haibe-Kains B, Risch T, Tyekucheva S, Jazic I, et al. curatedOvarianData: clinically annotated data for the ovarian cancer transcriptome. Database. 2013;2013: bat013–bat013. doi:10.1093/database/bat013
429 430	14.	Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30: 207–210.
431 432 433 434	15.	Yoshihara K, Tsunoda T, Shigemizu D, Fujiwara H, Hatae M, Fujiwara H, et al. High-Risk Ovarian Cancer Based on 126-Gene Expression Signature Is Uniquely Characterized by Downregulation of Antigen Presentation Pathway. Clin Cancer Res. 2012;18: 1374–1385. doi:10.1158/1078-0432.CCR-11-2725
435 436	16.	Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K. cluster: Cluster Analysis Basics and Extensions. 2014;R package version 1.15.3.

437	17.	Brunet J-P, Tamayo P, Golub TR, Mesirov JP. Metagenes and molecular pattern discovery
438		using matrix factorization. Proc Natl Acad Sci. 2004;101: 4164–4169.
439		doi:10.1073/pnas.0308531101

- 18. Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the
 ionizing radiation response. Proc Natl Acad Sci. 2001;98: 5116–5121.
 doi:10.1073/pnas.091062498
- Schwender H, Krause A, Ickstadt K. Identifying interesting genes with sigenes. RNews.
 2006;6: 45–50.
- 20. Schwender H. siggenes: Multiple testing using SAM and Efron's empirical Bayes
 approaches. 2012;R package version 1.40.0.
- 447 21. Gregory Way, James Rudd, Casey Greene. Analytical Code for "Cross-population analysis
 448 of high-grade serous ovarian cancer reveals only two robust subtypes." 2015;
 449 doi:10.5281/zenodo.32906
- Boettiger C. An introduction to Docker for reproducible research. ACM SIGOPS Oper Syst
 Rev. 2015;49: 71–79. doi:10.1145/2723872.2723882
- 452 23. Sokal RR, Rohlf FJ. The Comparison of Dendrograms by Objective Methods. Taxon.
 453 1962;11: 33. doi:10.2307/1217208
- Blagden SP. Harnessing Pandemonium: The Clinical Implications of Tumor Heterogeneity
 in Ovarian Cancer. Front Oncol. 2015;5. doi:10.3389/fonc.2015.00149
- Silverberg SG. Histopathologic grading of ovarian carcinoma: a review and proposal. Int J
 Gynecol Pathol Off J Int Soc Gynecol Pathol. 2000;19: 7–15.
- Soslow RA. Histologic Subtypes of Ovarian Carcinoma: An Overview. Int J Gynecol
 Pathol. 2008;PAP. doi:10.1097/PGP.0b013e31815ea812
- Planey CR, Gevaert O. CoINcIDE: A framework for discovery of patient subtypes across
 multiple datasets. Genome Med. 2016;8. doi:10.1186/s13073-016-0281-4
- 462

- 464
- 465
- 466
- 407
- 467
- 468

Affy HGU1133 Bonome et al. **United States** 61.5 (11.9) GSE26712 146 (80%) 36 (20%) 89 (49%) 93 (51%) (%0) 0 0 (0%) 195 185 ۸A ٩N Affy HGU1133 Tothill *et al*. 60.3 (10.3) 178 (83%) 134 (63%) 132 (62%) Australia GSE9891 80 (37%) 82 (38%) 11 (5%) 17 (8%) 8 (4%) 285 242 Yoshihara *et al.* Agilent 4x44K GSE32062 155 (61%) 202 (79%) 130 (51%) 126 (49%) 101 (39%) 54 (21%) (%0) 0 (%0) 0 Japan 260 256 ٩N Agilent 4x44K **United States** 62.9 (11.3) GSE74357 287 (76%) 275 (73%) 376 (99%) (23%) 86 (23%) 11 (3%) 7 (3%) 3 (1%) Mayo 528 379 87 Affy HGU1133 United States 60.0 (11.6) 386 (88%)^a 325 (74%) 116 (26%) 351 (80%) 63 (14%) 55 (12%) 10 (2%) 17 (4%) TCGA 578 499 Analytic Sample Size^b **Driginal Sample Size** Age [Mean (SD)] Suboptimal Population Optimal Debulking Platform Grade Stage GEO \geq Ξ \sim ς

469 **Table 1**: Characteristics of the populations included in the five analytic data sets

471 NA: Data not reported

- ^aOne sample was labeled as 'Grade 4' in TCGA
- 473 ^bsamples without survival data were excluded in survival analyses

Table 2: SAM moderated *t* score vector Pearson correlations between analogous clusters across

475 populations^a

	Cluster 1	Cluster 2	Cluster 3	Cluster 4
$k = 2^{a}$	0.62 - 0.81	0.62 - 0.81	NA	NA
$k = 3^{\mathrm{a}}$	0.77 - 0.85	0.80 - 0.90	0.65 - 0.77	NA
$k = 4^{a}$	0.77 - 0.85	0.83 - 0.89	0.51 - 0.76	0.61 - 0.75
Bonome $k = 2^{b}$	-0.08 - 0.24	-0.08 - 0.24	NA	NA
Bonome $k = 3^{b}$	0.45 - 0.46	-0.02 - 0.12	0.22 - 0.42	NA
Bonome $k = 4^{b}$	0.50 - 0.57	-0.04 - 0.04	0.13 - 0.29	0.26 - 0.43

476 ^aCorrelation ranges for TCGA, Mayo, Yoshihara, and Tothill.

- ^bBonome is removed from gene set analyses because of low correlating clusters

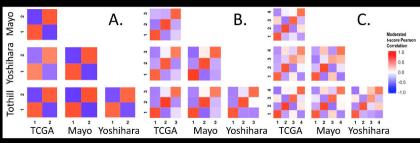
488 **Table 3:** Distributions of sample membership in the clusters identified in our study by the

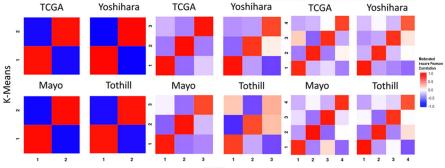
489 original cluster assignments in the TCGA, Tothill, and Konecny studies. Clusters identified in

	TCGA				Tothill <i>et al</i> .					Konecny et al.							
k = 2	Mes	Pro	Imm	Dif	NC ^a	C1	C2	C3	C4	C5	C6	NC ^a	C1	C2	C3	C4	NA^b
Cluster 1	98	7	93	68	21	78	39	1	0	0	0	11	36	21	2	26	114
Cluster 2	2 1	127	2	60	22	0	5	5	44	35	2	22	6	39	41	0	94
<i>k</i> = 3																	
Cluster 1	1 98	2	20	11	6	77	22	0	0	0	0	6	16	13	2	26	82
Cluster 2	2 1	111	0	11	16	1	0	0	3	35	2	5	0	16	36	0	56
Cluster 3	3 0	21	75	106	21	0	22	6	41	0	0	22	26	31	5	0	70
k = 4																	
Cluster 1	l 97	4	12	12	5	74	0	0	0	0	0	0	7	12	3	25	62
Cluster 2	2 1	85	0	0	13	1	0	0	1	34	2	5	0	9	31	0	41
Cluster 3	3 0	5	80	3	12	3	42	0	1	1	0	14	29	6	0	1	57
Cluster 4	4 1	40	3	113	13	0	2	6	42	0	0	14	6	33	9	0	48
						1							1				

490 our study using *k*-means clustering with k = 2, k = 3, and k = 4

- 492 $^{a}NC = Samples not clustered in original publication$
- $^{b}NA =$ Samples not assessed at the time of the original publication
- 494 NOTE: The corresponding labels for the generally similar HGSC gene expression subtypes
- 495 observed in the TCGA, Tothill, and Konecny studies are, respectively: mesenchymal/C1/C4,
- 496 proliferative/C5/C3, immunoreactive/C2/C1, and differentiated/C4/C2)





NMF

A.

0.4 0.2 0

0.8

0.6

0.4

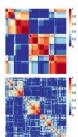
0.2

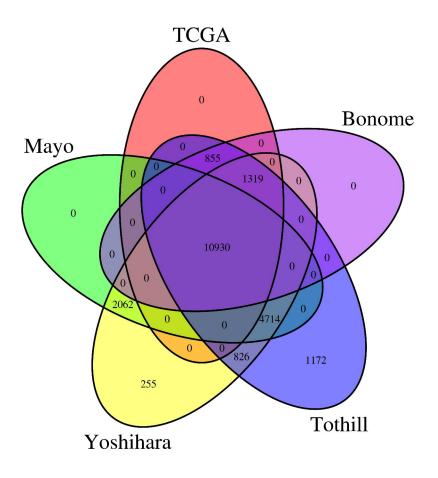
1 0.8

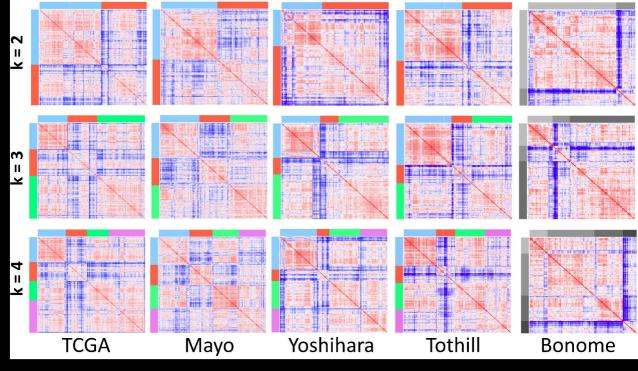
0.6

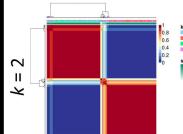
0.4

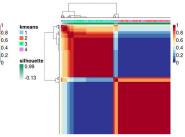
0.2

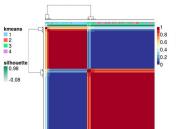


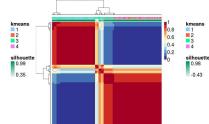


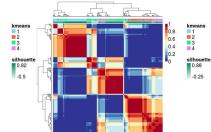


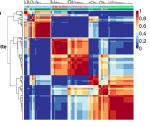




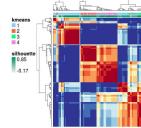


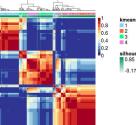


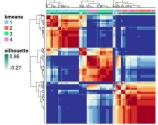


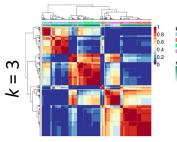


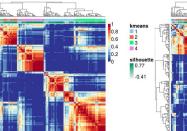
Yoshihara

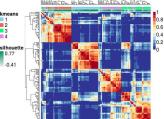




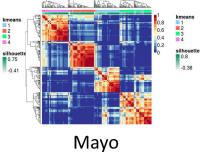


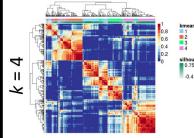




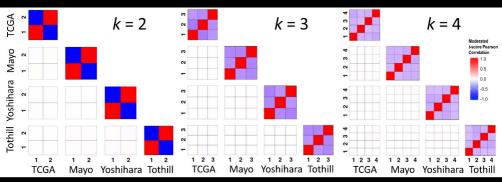


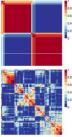
Tothill

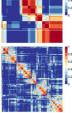




TCGA





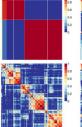


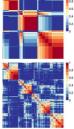
7 8 k

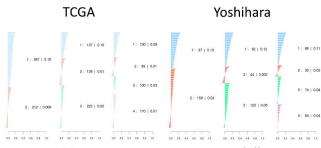
TCGA

Mayo

Yoshihara







Mayo

Tothill

