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 60 

ABSTRACT: 61 

 Four gene expression subtypes of high-grade serous ovarian cancer (HGSC) have been 62 

previously described. In these studies, a fraction of samples that did not fit well into the four 63 

subtype classifications were excluded. Therefore, we sought to systematically determine the 64 

concordance of transcriptomic HGSC subtypes across populations without removing any 65 

samples. We created a bioinformatics pipeline to independently cluster the five largest mRNA 66 

expression datasets using k-means and non-negative matrix factorization (NMF). We 67 

summarized differential expression patterns to compare clusters across studies. While previous 68 

studies reported four subtypes, our cross-population comparison does not support four. Because 69 

these results contrast with previous reports, we attempted to reproduce analyses performed in 70 

those studies. Our results suggest that early results favoring four subtypes may have been driven 71 

by including serous borderline tumors. In summary, our analysis suggests that either two or 72 

three, but not four, gene expression subtypes are most consistent across datasets. 73 

 74 

 75 
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INTRODUCTION: 76 

Invasive ovarian cancer is a heterogeneous disease typically diagnosed at a late stage, 77 

with high mortality [1] . The most aggressive and common histologic type is high-grade serous 78 

(HGSC) [2], characterized by extensive copy number variation and TP53 mutation [3]. Given the 79 

genomic complexity of these tumors, mRNA expression can be thought of as a summary 80 

measurement of these genomic and epigenetic alterations, to the extent that the alterations 81 

influence gene expression in either the cancer or stroma.  82 

Four gene expression subtypes with varying components of mesenchymal, proliferative, 83 

immunoreactive, and differentiated gene expression signatures have been reported in all studies 84 

of HGSC to date [3–7]. Two of these also observed survival differences across subtypes [4,5]. 85 

Tothill et al. first identified four HGSC subtypes (as well as two other subtypes which largely 86 

included low grade serous and serous borderline tumors) in an Australian population using k-87 

means clustering. Later, The Cancer Genome Atlas (TCGA) used non-negative matrix 88 

factorization (NMF) and also reported four subtypes which were labeled as: ‘mesenchymal’, 89 

‘differentiated’, ‘proliferative’, and ‘immunoreactive’ [3]. The TCGA group also applied NMF 90 

clustering to the Tothill data, and observed concordance with four subtypes [3]. Konecny et al. 91 

applied NMF to cluster an independent set of HGSC samples and reported four subtypes, which 92 

they labeled as C1-C4 [5]. These subtypes were similar to those in the TCGA but a subtype 93 

classifier trained on these subtypes better differentiated survival in their own data, and in data 94 

from TCGA and Bonome et al. [6]. 95 

Despite this extensive research in the area, work to date has several limitations. In both 96 

TCGA and Tothill et al., ~8-15% of samples were excluded from analyses. A reanalysis of the 97 

TCGA data showed that over 80% of the samples could be assigned to more than one subtype 98 

[8]. In more recent TCGA analyses by the Broad Institute Genome Data Analysis Center 99 
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(GDAC) Firehose initiative with the largest number of HGSC cases evaluated to date (n = 569), 100 

three subtypes fit the data better than four [9,10]. This uncertainty in HGSC subtyping led us to 101 

determine if four homogeneous subtypes exist across study populations. 102 

To comprehensively characterize subtypes, we analyze data from the five largest 103 

independent studies to date, including our own collection of samples, using a standardized 104 

bioinformatics pipeline. We apply k-means clustering as well as NMF to each population without 105 

removing “hard-to-classify” samples. Our goal is to rigorously assess the number of subtypes. 106 

These independent and parallel within-dataset analyses followed by cross-dataset comparison 107 

sidestep gene expression platform or dataset biases that could affect clustering if under or 108 

overcorrected. This contrasts with earlier work that pooled datasets together to identify subtypes 109 

[7] and ensures that subtypes identified are not induced by dataset or batch effects. We 110 

summarize each subtype’s expression patterns and comprehensively characterize correlations 111 

between subtype-specific gene expression across populations. 112 

Our cross-population comparative analysis does not support that four HGSC subtypes 113 

exist; rather the data more strongly support an interpretation that there are either two or three 114 

subtypes. We show that the support for four subtypes observed in TCGA’s reanalysis of Tothill 115 

et al. [3] is lost when serous borderline tumors, which have very different genomic profiles and 116 

survival than HGSC [11,12], are excluded before clustering. Our work also highlights the impact 117 

that a single study can have on the trajectory of subtyping research and suggests the importance 118 

of periodic histopathologic review and rigorous reanalysis of existing data for cross-study 119 

commonalities. 120 

 121 

METHODS: 122 
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Data inclusion 123 

We applied inclusion criteria as described in the supplementary materials using data from 124 

the R package, curatedOvarianData [13] and our own novel dataset (“Mayo”) [5]  125 

(Supplementary Table S1). These criteria selected HGCS samples that were not duplicates from 126 

studies including at least 130 HGSC cases assayed on standard microarrays. Data from the new 127 

Mayo HGSC samples as well as other samples with mixed histologies and grades, for a total of 128 

528 additional ovarian tumor samples, was deposited in NCBI’s Gene Expression Omnibus 129 

(GEO) [14]; these data can be accessed with the accession number GSE74357 130 

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE74357).  All study participants 131 

provided written informed consent, and this work was approved by the Mayo Clinic and 132 

Dartmouth College Institutional Review Boards. 133 

After applying the unified inclusion criteria, our final analytic datasets include: TCGA (n 134 

= 499) [3,9]; Mayo (n = 379; GSE74357) [5]; Yoshihara (n = 256; GSE32062.GPL6480) [15]; 135 

Tothill (n = 242; GSE9891) [4]; and Bonome (n = 185; GSE26712) [6] (Table 1). We restricted 136 

analyses to the 10,930 genes measured successfully in all five populations (Supplementary Fig. 137 

S1).  138 

 139 

Clustering 140 

We performed independent clustering within each dataset to avoid potential biases from 141 

different platforms or studies.  As detailed in the Supplementary Methods, we identified the 142 

1,500 genes with the highest variance from each dataset and used the union of these genes (n = 143 

3,698) for clustering. We performed clustering within each dataset using each potential k from 2-144 

8 clusters. We performed k-means clustering in each population using the R package “cluster” 145 
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(version 2.0.1) [16] with 20 initializations. We repeated these analyses using NMF in the R 146 

package “NMF” (version 0.20.5) [17] with 100 different random initializations for each k. As 147 

done in prior studies, we calculated cophenetic correlation coefficients to select appropriate k for 148 

each dataset after NMF clustering with 10 consensus runs for k = 2 through 8. 149 

 150 

Identification of analogous clusters within and across studies 151 

 We performed significance analysis of microarray (SAM) [18,19] analysis on all clusters 152 

from each study using all 10,930 genes. This resulted in a cluster-specific moderated t statistic 153 

for each of the input genes [20]. To summarize the expression patterns of all 10,930 genes for a 154 

specific cluster in a specific population, we combined gene-wise moderated t statistics into a 155 

vector of length 10,930. The TCGA subtype labels have become widely used in the field. To 156 

generate comparable labels across k and across studies, we mapped our TCGA subtype 157 

assignments back to the original TCGA labels to define reference clusters at k = 4 (that is, 158 

mesenchymal-like, proliferative-like, etc.). Clusters in other populations that were most strongly 159 

correlated with the TCGA clusters were assigned the same label.  160 

 161 

Clustering analysis of randomized data 162 

 Any clustering procedure is expected to induce strong correlational structure across 163 

clusters within a dataset even if there is no true underlying structure. However, if there is no true 164 

underlying structure, clusters across datasets are not expected to be correlated. To assess this, we 165 

used the same datasets but shuffled each gene’s expression vector to disrupt the correlative 166 

structure. We performed within and cross-study analyses of cluster identification using this set of 167 

data that were parallel to those performed using the non-randomized data. 168 
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 169 

Assessing the reproducibility of single-population studies 170 

 We compared our sample assignments at k = 2 – 4 to the four subtypes reported in the 171 

Tothill, TCGA, and Konecny publications [3–5]. Because the labels that were assigned in 172 

TCGA’s reanalysis of the Tothill data were not available, we performed NMF consensus 173 

clustering of Tothill’s data without removing LMP samples in order to generate labels for 174 

comparison.  175 

 176 

Reproducibility of our analyses 177 

We provide software to download the required data and reproduce our analyses. The 178 

software is provided under a permissive open source license [21]. Analyses were run in a Docker 179 

container, allowing the computing environment to be recreated [22]. Our Docker image can be 180 

pulled from here: https://hub.docker.com/r/gregway/hgsc_subtypes/. This allows interested users 181 

to freely download the software, reproduce the analyses, and then build on this work. 182 

 183 

RESULTS: 184 

Clustering 185 

To visually inspect the consistency and distinctness of clusters, we compared sample-by-186 

sample correlation heatmaps. For k = 2 to 4 within each study, we observed high sample-by-187 

sample correlations within clusters and relatively low sample-by-sample correlations across 188 

clusters (Supplementary Fig. S2). Clustering results using NMF were similar to k means results 189 

(Supplementary Fig S3). 190 

 191 
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Correlation of cluster-specific expression patterns 192 

Across datasets, we observed strong positive correlations of moderated t score vectors 193 

between analogous clusters in TCGA, Tothill, Mayo, and Yoshihara (Fig. 1; Table 2). However, 194 

clustering of the Bonome data did not correlate strongly with clusters identified in the other 195 

datasets (Table 2). We believe that we were unable to assign parallel subtypes in Bonome 196 

because of either RNA contamination or inappropriate grading assignments. However, more 197 

work is required in order to identify exactly why we were unable to classify.  198 

To assess our analytical approach, we performed an analysis using randomized data. This 199 

showed that within-population correlation structure was induced by clustering, but structure 200 

between populations was not (Supplementary Fig. S4). Comparing Figure 1 with S4, we 201 

observed much higher correlation across datasets (Fig. 1), which was lost after randomization 202 

(Supplementary Fig. S4). For example, for k = 2, the TCGA and Mayo cluster correlations for 203 

analogous clusters was high (top left panel in Fig. 1). Conversely, the same relationship in 204 

randomized data (second row, first column panel in Supplementary Fig. S4) showed correlations 205 

near zero. This indicates that the high correlations observed across datasets in Figure 1 are 206 

induced by similar underlying structure in the data.  207 

Across studies, positive correlations between analogous clusters and negative correlations 208 

between non-analogous clusters were stronger for clusters identified when k = 2 and k = 3 than 209 

when k = 4 (Fig. 1), with comparable statistical precision (Supplementary Table S2). These 210 

cross-population comparisons suggested that two and three subtypes fit HGSC gene expression 211 

data more consistently than the four widely accepted subtypes. 212 

Within each population, clusters identified by NMF were similar to those identified using 213 

k-means clustering (Fig. 2) suggesting that these results were independent of clustering 214 
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algorithm. With NMF, both positive and negative correlations were stronger for k = 2 and k = 3 215 

than for k = 4. Across k = 3 and k = 4, correlations were strongest for clusters 1 and 2. Sample 216 

cluster assignments for both k-means and NMF clusters are provided in Supplementary Table S3. 217 

 218 

Comparison with previously-identified HGSC clusters 219 

Our clustering results for the Tothill, TCGA, and Mayo datasets were highly concordant 220 

with the clustering described in the original publications [3–5], as evidenced by the high degree 221 

of consistent overlap in sample assignments to the previously-defined clusters (Table 3). Our 222 

cross-study cluster 1 was mostly mapped to the “Mesenchymal” label from TCGA, “C1” from 223 

Tothill, and “C4” from Mayo. This cluster was the most stable in our analysis within all datasets, 224 

across k = 2, 3 and 4, and across clustering algorithms. Cross-study cluster 2, which was also 225 

observed consistently, was most similar to the “Proliferative” label from TCGA, “C5” from 226 

Tothill, and “C3” from Mayo. Cross-study cluster 3 for k = 3 was associated with both the 227 

“Immunoreactive” and “Differentiated” TCGA labels, “C2” and “C4” in Tothill, and “C1” and 228 

“C2” in Mayo. For analyses where k = 4, the third cluster was associated with 229 

“Immunoreactive”, “C2”, and “C1” while the fourth cluster was associated with “Differentiated”, 230 

“C4”, and “C2” for TCGA, Tothill, and Mayo respectively. 231 

 232 

Meta-research into previous HGSC subtyping studies 233 

Each of the publications that only considered high-grade samples (TCGA and Konecny et 234 

al.) found clustering coefficients consistent with k = 2, k = 3, and k = 4. Nevertheless, each 235 

publication concludes the existence of four subtypes, while our cross-population analysis 236 

suggested that two or three clusters fit HGSC data better than four clusters. 237 
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To compare with previous results, we evaluated the number of subtypes that fit the data 238 

best within each study by calculating cophenetic correlation coefficients at k = 2 through k=8 239 

clusters inclusively. We observed a similar pattern in each population (Supplementary Fig S5 – 240 

S7; Fig. 3A) in which the highest cophenetic correlation was reached for two clusters and, based 241 

on the heatmaps, appeared to have the highest consensus. In every dataset, four clusters were not 242 

observed to represent the data better than two or three. The only results in previous studies that 243 

contradicted this work were from TCGA’s reanalysis of the Tothill data. According to 244 

supplemental figure S6.2 in the TCGA paper, the reanalysis included serous borderline tumors 245 

(i.e., tumors with low malignant potential) (n = 18). The inclusion of these tumors in the TCGA 246 

HGSC analyses was done even though, in the original Tothill paper, the serous borderline tumors 247 

had a unique gene expression patterns and clustered entirely in a group labeled “C3”. 248 

To assess the extent to which serous borderline tumors inclusion drove the TCGA results, 249 

we reproduced TCGA’s reanalysis of Tothill et al., including the serous borderline tumors (n = 250 

18); we indeed observed that the cophenetic correlation is higher for k = 4 than k = 3 (Fig. 3A). 251 

However, when we appropriately removed these serous borderline tumors we observed an 252 

increase in the k = 3 cophenetic correlation (Fig. 3B). The results that support four subtypes were 253 

generated during clustering of HGSC and serous borderline tumors combined. Subtyping 254 

analyses of HGSC alone reveal less than four subtypes. Even after subtyping there remains a 255 

complex and nuanced portrait of the disease. 256 

 257 

DISCUSSION: 258 

Although prior studies have reported the existence of four molecular subtypes of HGSC 259 

ovarian cancer [3–5,9], our analysis suggests the existence of only two or three subtypes. This 260 
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conclusion is based on our observation that concordance of analogous subtypes across study 261 

populations was stronger for two or three clusters as opposed to four. Previous studies used 262 

either k-means or NMF clustering, and because our results contradicted prior work, we 263 

performed analyses using both of these methods. Results for each population were similar for the 264 

k means and NMF clustering algorithms suggesting that the clustering algorithm did not drive the 265 

observed differences. 266 

Because cross-population comparisons suggest that two and three clusters show more 267 

consistency than four, we explored within-study heuristics (cophenetic correlation coefficients) 268 

that suggested four subtypes in previous research. The cophenetic coefficient measures how 269 

precisely a dendrogram retains sample by sample pairwise distances and can be used to compare 270 

clustering accuracy [23]. While both Konecny and TCGA reported four subtypes, in both 271 

analyses k = 2 and k = 3 resulted in  higher cophenetic coefficients than k = 4 (Konecny Figure 272 

2A and TCGA Figure S6.1) [3, 5]. We observed the same patterns in our own reanalysis of 273 

TCGA and analysis of the expanded Mayo cohort (Supplementary Figs. S5 and S6). Yoshihara 274 

and Tothill did not report cophenetic coefficients, but our analysis of each (Supplementary Fig 275 

S7 and Fig 3A) revealed similar patterns to TCGA and Konecny. 276 

In the previous literature, the only report to suggest that three subtypes were 277 

inappropriate was TCGA’s reanalysis of the Tothill et al. data (supplemental Figure S6.2 in their 278 

publication); the cophenetic coefficient dropped dramatically at k = 3 before recovering at k = 4 279 

[3]. Notably, TCGA’s figure legend for this supplemental result indicates that they did not 280 

remove serous borderline tumors from the Tothill data. Our analysis of Tothill et al. differed 281 

from TCGA’s in that we excluded serous borderline tumors and instead supports the existence of 282 

two or three subtypes. To evaluate the influence of these serous borderline tumors in the Tothill 283 
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data, we repeated our analyses including serous borderline tumors, and observed a drop in the 284 

cophenetic coefficient for k = 3 relative to k = 4 (Fig. 3). This suggests that the four subtypes 285 

observed in TCGA’s analysis of the Tothill data may be due, in part, to the inclusion of serous 286 

borderline tumors.  287 

There are several limitations to note in the HGSC data we analyzed. Given the intra-288 

tumor heterogeneity that is likely to exist [24], our approach would be strengthened by having 289 

data on multiple areas of the tumors. Additionally, since histology and grade classification have 290 

changed over time [25,26], it is unclear whether the populations we studied used comparable 291 

guidelines to determine histology and grade. We attempted to exclude all low grade serous and 292 

low grade endometrioid samples because they often have very different gene expression patterns 293 

and more favorable survival compared to their higher grade counterparts [2]. While the Bonome 294 

publication specified that they included only high-grade tumors, grade is not included in the 295 

Bonome GSE26712 data set, so we were unable to determine whether the grade distribution 296 

differs from the other studies [6]. It is unclear why the Bonome clusters did not correspond to the 297 

clusters observed in other populations. Lack of consistency could result from a different 298 

distribution of grade or other unreported biological differences.  299 

In summary, our study demonstrates that two clusters of HGSC, “mesenchymal-like” and 300 

“proliferative-like”, are clearly and consistently identified within and between populations. This 301 

suggests that there are two reproducible HGSC subtypes that are either etiologically distinct, or 302 

acquire phenotypically determinant alterations through their development. Our study also 303 

suggests that the previously described “immunoreactive-like” and “differentiated-like” subtypes 304 

appear more variable across populations, and tend to be collapsed into a single category when 305 
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three subtypes are specified. These may represent, for example, steps along an immunoreactive 306 

continuum or could represent the basis of a third, but more variable subtype. 307 

Our analysis also reveals the importance of critically reassessing molecular subtypes 308 

across multiple large study populations using parallel analyses and consistent inclusion criteria. 309 

New systematic approaches hold promise for the implementation of such analyses [27]. Our 310 

results underscore the importance of ovarian cancer histopathology, contradict the four HGSC 311 

subtype hypothesis, and suggest that there may be fewer HGSC molecular subtypes with variable 312 

immunoreactivity and stromal infiltration. 313 
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 329 

Figure 1. Significance analysis of microarray (SAM) moderated t score Pearson correlation 330 

heatmaps reveal consistency across datasets. (A) Correlations across datasets for k means k = 2. 331 

(B) Correlations across datasets for k means k = 3. (C) Correlations across datasets for k means k 332 

= 4  333 

 334 

Figure 2. Significance analysis of microarray (SAM) moderated t score Pearson correlation 335 

heatmaps of clusters formed by k means clustering and NMF clustering reveals consistency 336 

across clustering methods. Within dataset results are shown for both methods when setting each 337 

algorithm to find 2, 3, and 4 clusters.  338 

 339 

Figure 3.  Comparing NMF consensus clustering in the Tothill dataset. Data displays consensus 340 

clustering for k = 2 to k = 6 for 10 NMF initializations alongside the cophenetic correlation 341 

results for k = 2 to k = 8. (A) Tothill dataset (n = 260) with low malignant potential (LMP) 342 

samples (n = 18) not removed prior to clustering. (B) Tothill dataset with LMP samples removed 343 

(n = 242).  344 

 345 

Supplementary Figure S1. Overlapping genes assayed using either the HG-U1133 Affymetrix 346 

platform (TCGA, Tothill, Bonome) or the Agilent 4x44K platform (Mayo, Yoshihara). 347 

Differences across datasets arise from inherent array differences and/or differences in quality 348 

control preprocessing. 349 

 350 
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Supplementary Figure S2. Sample by sample Pearson correlation matrices. Top panel: k = 2. 351 

Middle panel: k = 3. Bottom panel: k = 4. The color bars are coded as blue for cluster 1, red for 352 

cluster 2, green for cluster 3, and purple for cluster 4. In the matrices, red represents high 353 

correlation, blue low correlation, and white intermediate correlation. The scales are slightly 354 

different in each population because of different correlational structures. The clusters in the 355 

Bonome study are depicted in gray scale because in cross-population analyses to identify 356 

analogous clusters, those from Bonome did not correlate with those observed in the four other 357 

studies.  358 

 359 

Supplementary Figure S3. NMF consensus matrices for datasets when k = 2, k = 3, and k = 4. 360 

The first track represents cluster membership for k means clusters and the second track 361 

represents silhouette widths. Note that NMF clusters are not ordered in the same way as the k 362 

means clusters. 363 

 364 

Supplementary Figure S4. Significance analysis of microarray (SAM) moderated t score 365 

Pearson correlation heatmaps are not consistent across datasets for randomly shuffled gene 366 

expression values for k = 2, k = 3, or k = 4. The within dataset correlations are artificially 367 

induced because the clustering algorithm will find clusters even without true underlying 368 

structure. However, the across dataset clusters are not correlated in the randomized data 369 

indicating that the results we observe in Figure 1 are not artifacts of the clustering algorithm.  370 

 371 

Supplementary Figure S5. Consensus NMF clustering of the TCGA dataset (n = 499) for k = 2 372 

to k = 6 for 10 NMF runs alongside the cophenetic correlation results for k = 2 to k = 8. 373 
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 374 

Supplementary Figure S6. Consensus NMF clustering of the Mayo dataset (n = 379 for k = 2 to 375 

k = 6 for 10 NMF runs alongside the cophenetic correlation results for k = 2 to k = 8. 376 

 377 

Supplementary Figure S7. Consensus NMF clustering of the Yoshihara dataset (n = 256) for k 378 

= 2 to k = 6 for 10 NMF runs alongside the cophenetic correlation results for k = 2 to k = 8. 379 

 380 

Supplementary Figure S8. Silhouette width plots for k = 2, k = 3, and k = 4 for k means 381 

clustering results. Cluster 1 is shown in blue, cluster 2 in red, cluster 3 in green, and cluster 4 in 382 

purple. 383 

 384 

Supplementary Figure S9. Kaplan-Meier survival curves for k = 2, k = 3, and k = 4 shown for 385 

clustering solutions using k means and NMF. Cluster 1 is shown in blue, cluster 2 in red, cluster 386 

3 in green, and cluster 4 in purple. 387 

 388 
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Table 1: Characteristics of the populations included in the five analytic data sets 469 
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NA: Data not reported 471 

 aOne sample was labeled as 'Grade 4' in TCGA   472 

bsamples without survival data were excluded in survival analyses 473 
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Table 2: SAM moderated t score vector Pearson correlations between analogous clusters across 474 

populationsa 
475 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 

k = 2a 0.62 – 0.81 0.62 – 0.81 NA NA 

k = 3a 0.77 - 0.85  0.80 - 0.90 0.65 - 0.77 NA 

k = 4a 0.77 - 0.85  0.83 - 0.89 0.51 - 0.76  0.61 - 0.75 

Bonome k = 2b -0.08 – 0.24 -0.08 – 0.24 NA NA 

Bonome k = 3b 0.45 – 0.46 -0.02 - 0.12 0.22 - 0.42 NA 

Bonome k = 4b 0.50 - 0.57 -0.04 - 0.04 0.13 - 0.29 0.26 - 0.43 

aCorrelation ranges for TCGA, Mayo, Yoshihara, and Tothill. 476 

bBonome is removed from gene set analyses because of low correlating clusters 477 

 478 

 479 

 480 

 481 

 482 

 483 

 484 

 485 

 486 

 487 
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Table 3: Distributions of sample membership in the clusters identified in our study by the 488 

original cluster assignments in the TCGA, Tothill, and Konecny studies. Clusters identified in 489 

our study using k-means clustering with k = 2, k = 3, and k = 4 490 

 TCGA Tothill et al. Konecny et al. 
k = 2 Mes Pro Imm Dif NCa C1 C2 C3 C4 C5 C6 NCa C1 C2 C3 C4 NAb 
Cluster 1 98 7 93 68 21 78 39 1 0 0 0 11 36 21 2 26 114 
Cluster 2 1 127 2 60 22 0 5 5 44 35 2 22 6 39 41 0 94 
k = 3                  
Cluster 1 98 2 20 11 6 77 22 0 0 0 0 6 16 13 2 26 82 
Cluster 2 1 111 0 11 16 1 0 0 3 35 2 5 0 16 36 0 56 
Cluster 3 0 21 75 106 21 0 22 6 41 0 0 22 26 31 5 0 70 
k = 4                  
Cluster 1 97 4 12 12 5 74 0 0 0 0 0 0 7 12 3 25 62 
Cluster 2 1 85 0 0 13 1 0 0 1 34 2 5 0 9 31 0 41 
Cluster 3 0 5 80 3 12 3 42 0 1 1 0 14 29 6 0 1 57 
Cluster 4 1 40 3 113 13 0 2 6 42 0 0 14 6 33 9 0 48 

 
491 

aNC = Samples not clustered in original publication 492 

bNA = Samples not assessed at the time of the original publication 493 

NOTE: The corresponding labels for the generally similar HGSC gene expression subtypes 494 

observed in the TCGA, Tothill, and Konecny studies are, respectively: mesenchymal/C1/C4, 495 

proliferative/C5/C3, immunoreactive/C2/C1, and differentiated/C4/C2) 496 
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