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ABSTRACT11

Data analysis tools have become essential to the study of biology. Here, we applied language workbench
technology (LWT) to create data analysis languages tailored for biologists with a diverse range of
experience: from beginners with no programming experience to expert bioinformaticians and statisticians.
A key novelty of our approach is its ability to blend user interface with scripting in a single platform.
This feature helps beginners and experts alike analyze data more productively. This new approach has
several advantages over state of the art approaches currently popular for data analysis: experts can
design simplified data analysis languages that require no programming experience, and behave like
graphical user interfaces, yet have the advantages of scripting. We report on such a simple language,
called MetaR, which we have used to teach complete beginners how to call differentially expressed
genes and build heatmaps. We found that beginners can complete this task in less than 2 hours with
MetaR, when more traditional teaching with R and its packages would require several training sessions
(6-24hrs). Furthermore, MetaR seamlessly integrates with docker to enable reproducibility of analyses
and simplified R package installations during training sessions. We used the same approach to develop
the first composable R language. A composable language is a language that can be extended with
micro-languages. We illustrate this capability with a Biomart micro-language designed to compose with
R and help R programmers query Biomart interactively to assemble specific queries to retrieve data,
(The same micro-language also composes with MetaR to help beginners query Biomart.) Our teaching
experience suggests that language design with LWT can be a compelling approach for developing
intelligent data analysis tools and can accelerate training for common data analysis task. LWT offers
an interactive environment with the potential to promote exchanges between beginner and expert data
analysts.
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INTRODUCTION14

Present day biology often requires that biologists rely on software tools for data analysis. For instance,15

software tools are required for analysis of high-throughput data, for the study of genome-wide gene16

expression, genetic or epigenetic. Similarly, most fields of biology require specialized software tools17

for analysis of microscopy, crystallography or other data. Most analysis software is constructed in a18

very similar manner: writing a program as a collection of text source code compiled into one or more19

executable analysis tools. Despite the evolution of programming languages, encoding programs as text20

has been a constant since the invention of the first high-level programming language (FORTRAN Backus21

[1958, 1978]).22

In this manuscript, we discuss several drawbacks of encoding programs as text that we believe23

make teaching of data analysis more difficult than necessary and contribute to some frequent challenges24

encountered by data analysts. Language Workbenches (LWs) with projectional editors offer an alternative25

platform to develop data analysis tools. LWs were conceived in the 90s Simonyi [1995] and have since led26
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to the development of robust software development environments Dmitriev [2004], Erdweg et al. [2013]. In27

this study, we discuss an application of a LW platform to facilitate the teaching of data analysis to biologists.28

To this end, we used the Meta-Programming System (MPS, http://jetbrains.com/mps), a robust29

and open-source LW.30

One question we were particularly interested in answering was whether we could create an analysis31

tool that blends the boundary between programming/scripting languages and graphical user interfaces, and32

therefore facilitate teaching complete beginners. Programming languages such as the R language Ihaka33

and Gentleman [1996] are frequently preferred for data analysis by experts. They have so far been34

the most flexible and powerful tools for data analysis, but require a steep learning curve. In contrast,35

beginners tend to prefer data analysis software with a graphical user interface, which are easier to learn,36

but eventually are found to lack flexibility and extensibility. We reasoned that blending these two types of37

interfaces into one tool could provide a simpler way for beginners to learn elements of scripting, improve38

repeatability and reproducibility of their analyses, and increase their productivity.39

We found that LWT made it possible to quickly develop such a tool. We called this tool MetaR40

because it leverages the R ecosystem, but supports meta-programming. We designed this novel analysis41

tool using an iterative process that benefited from frequent feedback from users of the tool. In this42

manuscript, we describe the goals of the MetaR languages, explain how the tool can be used, and highlight43

the most innovative aspects of the languages compared to other tools used for data analysis, such as the R44

language Ihaka and Gentleman [1996] or electronic notebooks.45

The initial focus of MetaR was on analysis of RNA-Seq data and the creation of heatmaps, but the46

tool is general and can be readily extended to support a broad range of data analyses. For instance, we47

have used MetaR to analyze data in a study of association between the allogenomics score and kidney48

graft function Mesnard et al. [2015]. We chose to focus on the construction of heatmaps as a use case and49

illustration for this study because this activity is of interest to many biologists who obtain high-throughput50

data.51

We report on our experience teaching MetaR to complete beginners and compare the duration of such52

training sessions to that of similar training conducted with traditional approaches and tools. Importantly,53

we found that both beginners and experts can benefit from blending user interfaces and scripting. Beginners54

benefit because the MetaR user interface is much simpler to learn than the full R programming language.55

Expert users benefit because they can quickly prototype and develop high-level language elements to56

simplify repetitive aspects of data analysis.57

RESULTS58

Design of a High-level Data Analysis Language59

Several decisions must be made when designing a new computational language. Most decisions are driven60

by design goals. We have designed the MetaR language to address the following goals:61

1. The language should help users who have no knowledge of programming. The goal is to offer a62

smooth learning curve for beginners used to GUIs. We favor declarative language constructs over63

flexibility in parts of the language aimed at beginners.64

2. Since a table of data is a frequent input when working with high-throughput data, make Table a first65

class element of the design. Leverage this element to simplify the annotation of the columns of a66

table. We rely on the idea that a little formalism (e.g., annotation of table columns) goes a long way67

to simplify analysis scripts.68

3. Eliminate the need to know the language syntax to help beginners get started quickly. We leverage69

the MPS LW and its projectional editor to this end (Voelter and Solomatov [2010]). The MPS70

projectional editor provides interactive features, such as auto-completion, that provide guidance to71

beginners and experts alike when using the language to develop analyses.72

4. Provide the ability to blend a scripting language with a graphical user interface. We use language73

composition and the ability of the MPS LW to render nodes with a mix of text and graphical user74

interface components.75

5. Offer essential data transformations (e.g., joining two tables, taking subsets of rows of a table) via76

simple, yet composable language elements.77
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6. Provide means for experts to use their knowledge of the R language to work-around cases when78

the MetaR language is not sufficiently expressive to perform a specific analysis. We offer the79

ability to embed R code inside a MetaR analysis, as well as the ability to write scripts in the R80

language. In both instances, this variant of the R language supports language composition and81

enables embedding graphical user interfaces inside script fragments.82

Overview of MetaR and Composable R83

Figure 1 presents an overview of the features offered by MetaR and Composable R, for the full range of84

users that the platform supports, from beginner to expert.

Beginner Intermediate Expert

Level of computational and programming experience of a user

Training is recommended to 
facilitate first contact with 
the platform

Can use graphical user 
interfaces for data analysis 

Can use simple languages 
contributed by experts 

Can use the R ecosystem, extended 
with language composition

Can design high-level languages for 
intermediate users and beginners

All users benefit from a unified platform: graphical notations, integrated version control management, plugin system.

As a user learns elements of 
programming, she can extend 
the languages with intentions 
to help with repetitive tasks

Learning is facilitated 
by the consistency 
and homogeneity of 
the platform

Can design micro-languages to 
provide high-level abstractions well 
suited to specific families of 
problems

Advantages of MetaR & Composable R

Figure 1. Overview of features provided by MetaR and Composable R in the LWT platform. We
present the capabilities of the MetaR platform organized by the level of experience of a user. Beginners
mostly benefit from the ability to blend graphical interfaces with scripting, and from high-level languages
developed by experts on the platform. Intermediate users, who have basic programming skills, are able to
customize the languages in simple ways, such as by creating intentions to help with repetitive steps of
analyses. Intentions are context-dependent actions that can be added to a language at runtime (see Simi
and Campagne [2014] for illustrations). Experts are users with strong programming skills who have
become familiar with LWT. They can create micro-languages to extend Composable R, or design entirely
new data analysis languages to help beginners with analysis for new domains. Users at all levels benefit
from LWT platform features, including seamless integration of the languages with version control (see
Benson and Campagne [2015] for a discussion of the integration with version control).

85

Teaching the MetaR data analysis language86

Teaching a data analysis tool can smooth the learning curve and prevent un-necessary frustration that87

students could experience if they tried working with the tool on their own. Since MetaR is a new platform88

for data analysis, training is also important to help users get started with the software.89

For this reason, we developed detailed training material for the MetaR language and have offered90

training sessions at the Weill Cornell Medical College since January 2015. These monthly training91

sessions were offered to technicians, students, post-doctoral fellows and faculty across the institutions of92

our Clinical Translational Science Center (including three research institutions and one undergraduate93

city college), but included participants from other institutions in NYC.94

When advertising the training sessions, we explicitly indicated that participants required minimal95

prior computer experience (“Analyses are executed in the R language, but no knowledge of R is needed96

to use MetaR”, “No programming or UNIX skills are required.”). This drew a large participation from97

attendants who had never used the R language or the command line.98
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Despite their limited computational experience, most participants were able to follow the 2h training99

session1 and construct a heatmap on their laptop by the end of the training. Participants who could not100

complete the assignment were either unable to install the software on an outdated laptop operating system101

(for instance, some problems included outdated security that prevented connection to the Wifi network102

at our institution), or encountered installation problems for R packages that would not install on their103

laptops on the day of training. As we recognized these problems, we developed simpler ways to install104

software dependencies on user laptops and encouraged users to download the required software before105

the session. We have so far trained approximately 150 participants in using MetaR to call RNA-Seq106

differential expression and create a heatmap.107

The duration of MetaR training (2h) compares favorably with training sessions offered with R and108

bioConductor packages. An R/bioConductor workshop offered at the Weill Cornell Medical College109

requires about 6 hours of training (three two hour sessions) in order to help beginners conduct similar110

analyses to those performed in the MetaR training session. We requested help from the community to111

try and to quantify the amount of time typical R/bioConductor training sessions require. We created112

an online survey that trainers and trainees could fill out anonymously (http://goo.gl/forms/113

3ZWESUgtmd). The response rate of this survey was low, but indicated that between 6 and 24 hours was114

considered by most teachers a typical amount of time needed to teach how to call differentially expressed115

genes and creating a heatmap with R/bioConductor (two answers listed 6 hours, one answer 8 hours, two116

listed 24 hours). Interestingly, one trainee who answered the survey noted that 40 hours were required117

to learn the same skills, suggesting that trainers may under-estimate the amount of time needed when118

complete beginners try to learn these skills with R/bioConductor. The responses to this community survey119

indicate that traditional approaches require several 2 hr training sessions for a total of 6-24 hr training.120

Assuming the responses to this survey are representative, MetaR training session are 3 to 6 times121

shorter than traditional training sessions. These data strongly support the notion that simple languages122

like MetaR can facilitate the teaching of data analysis for specialized analysis tasks. In the reminder of the123

Results Section, we explain the design of MetaR in more detail and present the features of the platform124

useful to experts.125

High-level Design Choices126

In addition to the design goals presented previously, the design of MetaR included several strategic127

choices. We now present these choices and their rationales:128

Choice of a Target Language and Runtime System A language needs a runtime system to execute the129

code of programs written in the language. A possible choice for a runtime is to target another high-level130

language (such as Java, or C) but this would require implementing all aspects of data manipulation in the131

target language. Since the R language (Ihaka and Gentleman [1996]) is widely used for data analysis in132

biology, we considered using it as a runtime system. Experts biostatisticians and bioinformaticians have133

developed many R packages that implement advanced analysis for biological high-throughput data. These134

packages can be used to simplify the implementation of a runtime system for a new data analysis language.135

We therefore decided that the MetaR language would generate R code in order to take advantage of the136

packages developed in this language. This decision greatly simplified the implementation of the MetaR137

language because it removed the need to develop a custom language runtime system.138

Data Object Surrogates MetaR makes extensive use of Data Object Surrogates (DOS, our terminology).139

A data object surrogate is an object that represents other data (the source data). The surrogate often140

contains only limited information from the original data source. The DOS contains just enough to facilitate141

referring to the source data in another context for the purpose of data analysis, but not as much as to142

represent the entire content of the data source in memory. A good example of DOS is the Table object,143

which stores information about the columns of a data file. The Table DOS describes the columns of the144

table, but does not store the data contained in the table. A DOS typically has a name which can be used145

to refer to the DOS and its source data inside a MetaR model. References to table DOS help users refer146

to the table as they develop an analysis. Our use of the MPS LW facilitates the creation of DOS. In the147

MPS LW, we model DOS as concepts of the language. For instance, the Table DOS is represented by a148

1Sessions are scheduled for 2hrs, but often complete half an hour early when participants do not require software installation
troubleshooting at the start of the session.
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Table concept, whose instances can be created in a model as root nodes. DOS are also used in MetaR to149

represent plots.150

Immutable Data Objects Many programming languages (of which C, C++, Java, Perl, Python and R151

are members) make it possible to define variables or objects whose values can be changed (so called152

mutable variables). While this provides flexibility, it is a frequent source of confusion for beginners until153

they have developed their own mental model of how program steps modify variable values. During the154

design of MetaR, we chose to offer immutable objects rather than mutable variables when possible. This155

makes MetaR analyses easier to reason about because the value of objects cannot be changed after the156

object is created. This design decision does not prevent adding mutable variables to the MetaR language,157

but simplifies initial learning of the language by complete beginners.158

Organization into Languages159

We designed MetaR as a collection of MPS languages. The main language, org.campagnelab.metar is160

aimed at beginners with limited computational experience.161

In the next section, we explain how the MetaR language can be used from the point of view of an162

end-user. This section also includes highlights of features that differ from the state of the art in data163

analysis. Please note that exhaustive reference documentation is available elsewhere (see Campagne164

and Simi [2015]) and the goal of the following paragraphs is to provide a sufficient introduction to data165

analysis with MetaR that readers can understand the impact of the innovations we tested in developing166

this tool.167

The MetaR Language168

Tables169

An example of an immutable DOS is the MetaR Table object. In MetaR, objects of type Table represent170

tabular data with columns and rows of data. An example of a MetaR Table is shown in Figure 2. A171

MetaR Table is associated to a data file that contains the actual data of the table in a Tab-Separated Value172

(TSV). The location of the data file can be specified using Variables (i.e., ${project}), which offer173

independence from the local file system structure, and are particularly useful when keeping analyses174

under source control). A table has columns. Columns have names and types, which determine how data175

in each column is used. Types of data include string, numeric, boolean and enumeration (a small number176

of pre-defined categories, such as Male and Female). Figure 2 presents a table of RNA-Seq read counts177

which was obtained from the Gene Expression Omnibus Seguin-Estevez et al. [2014] and annotated to178

enable analysis with MetaR.179

Annotating a Table consists of two steps: (1) browsing to the file that contains the data. This can be180

accomplished by clicking on the file dialog button (the little square with ...) to locate the file. Upon181

selection of a valid file, the MetaR table node inspects the file and determines column names and types.182

Names and types are then shown in the Table node (under the Columns heading). (2) Specific columns183

can be annotated with one or more Column Groups.184

Users can define arbitrary Column Groups in a different node called “Column Groups and Usages”185

(shown on the right of Figure 2). If two columns are related, user can define a Group Usage to explicitly186

document the relation. For instance, in Figure 2, the usage LPS Treatment is defined to indicate that187

the Column Groups LPS=no and LPS=yes are two kinds of LPS treatments.188

Tables and their annotations help users formalize information about data in a table. We find that189

asking the user to provide such information early on is beneficial because the structure of annotations can190

be leveraged in other parts of the language to provide intelligent auto-completion, customized for each191

table of data (for instance, to provide auto-completion for column names when writing expressions, or to192

select columns to use when joining two tables, examples of intelligent auto-completion is provided in the193

following sections, see Figure 3).194

For instance, in the dataset of Seguin-Estevez et al. [2014], users can indicate which columns contain195

data for samples that were treated (LPS=yes) with lipopolysaccharide (LPS) or not (LPS=no). MetaR196

facilitates the data curation steps of a data analysis project by offering an interactive user interface to197

help users keep track of annotations. The interface is interactive in several ways: group names can be198

auto-completed to the groups defined in the “Column Group and Usage” object. Menus are available to199

add column group annotations to a set of columns that the user has selected. In addition to LPS treatment,200

Figure 2 shows the count annotation, used in an RNA-Seq differential expression analysis to identify201
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Table GSE59364_DC_all.csv ...
File Path

${project}/data/GSE59364_DC_all.csv
Columns

gene: string [ ID ]
mRNA len: numeric
genomic span: numeric
DC_normal: numeric
DC_treated: numeric
DC0904: numeric [ counts, LPS=no ]
DC0907: numeric [ counts, LPS=no ]
DCLPS0910: numeric [ counts, LPS=yes ]
DCLPS0913: numeric [ counts, LPS=yes ]
A_DC: numeric [ counts, LPS=no ]
A_DC_LPS: numeric [ counts, LPS=yes ]
B_DC: numeric [ counts, LPS=no ]
B_DC_LPS: numeric [ counts, LPS=yes ]
C_DC: numeric [ counts, LPS=no ]
C_DC_LPS: numeric [ counts, LPS=yes ]
C2DC: numeric [ counts, LPS=no ]
C2DCLPS: numeric [ counts, LPS=yes ]
C3DC: numeric [ counts, LPS=no ]
C3DCLPS: numeric [ counts, LPS=yes ]

Column Groups and Usages

Define Usages:
LPS_Treatment
heatmap

Define Groups:
ID used for << ... >>
LPS=yes used for LPS_Treatment heatmap
LPS=no used for LPS_Treatment heatmap
counts used for << ... >>

Figure 2. Table and Column Group objects. This figure presents the Table and Column Group
objects. Green arrows show some cross-references among nodes of Tables and Column Groups. For
instance, the ID group used to annotate the gene column is a reference to the ID group defined under the
Column Group and Usage Container.

which columns contain read counts, the ID column group, which uniquely identifies specific rows of the202

data table and the heatmap column group, used to choose which columns groups should be heatmap.203

This illustrates that the table annotation mechanism is flexible and can be leveraged by specific statements204

of the language, in order to indicate that the statement needs data annotated in a certain way.205

Analyses206

Analyses make it possible for users to express how data is to be analyzed. Figure 3 presents a MetaR207

Analysis node. This analysis is the one we use as a worked example during training sessions we offer at208

our institution. The editor of an analysis node offers an interface similar to that of a script in a traditional209

editor, but provides a more interactive and intelligent user interface. For instance, auto-completion210

is available at every point inside an analysis and suggests possible elements of the language that are211

compatible with the context at the cursor position.212

The user may accept a suggestion and this results in the insertion of the language element at the213

position of the cursor. When the context calls for referencing a column of a table, for instance, only214

columns of Tables available at this point of the analysis are shown. While it is still possible to make215

mistakes when using this interface, mistakes created as a result of typos are less common than in programs216

encoded as text, for two reasons:217

• Auto-completion offers a convenient way to set references between objects. Accepting an auto-218

completion suggestion helps users avoid typos.219

• Some users choose not to use auto-completion to set references and instead type a referenced node220

name. In this case, mis-typed names that cannot be resolved to a valid node are highlighted in red221

and in the right margin of the editor (this feature of the MPS LW is available for all languages222

developed with the MPS platform). This highlighting draws the attention of the user to the error or223

typo. This feature is also important when merging different versions of an analysis placed under224

source control or when combining analyses from parts of other analyses (e.g., errors will be clearly225

marked after a code fragment is pasted into a new analysis).226
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Analysis Limma analysis
{

import table GSE59364_DC_all.csv

subset rows GSE59364_DC_all.csv when true: $(gene) != "Total" -> filtered
limma voom counts= filtered model: ~ 0 + LPS

comparing LPS=YES - LPS=NO -> Results

join ( filtered, Results ) by group ID -> MergedResults
subset rows MergedResults when true: ($(adj.P.Val) < 0.0001) & ($(logFC) > 2 | $(logFC) < -2) -> 1% FDR
heatmap with 1% FDR select data by one or more group LPS=YES, group LPS=NO -> plot HeatmapStyle [

annotate with these groups: LPS
scale values: scale by row
cluster columns: false cluster rows: true

]

multiplot -> PreviewHeatmap [ 1 cols x 1 rows ] Hide preview

[ plot ]

render plot as PDF named "heatmap.pdf" ... 72dpi
write Results to "results.tsv" ...

}

A_D
C

B_D
C

C
_D

C
C

3D
C

C
2D

C
D

C
0904

D
C

0907
C

3D
C
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A_D

C
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B_D
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D
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NFKB2
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TNFSF9
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ZC3H12A
DUSP1
TNFAIP3
CDKN2B
ABIN−3
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DUSP5
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LPS LPS
LPS_NO
LPS_YES

−2

−1

0

1

2

Figure 3. MetaR Analysis. The Analysis node is composed of a list of statements. This analysis works
with the table of data presented in Figure 2, removes the row of data where the value Total appears in
the gene column, performs statistical modeling with Limma Voom to identify genes differentially
expressed between LPS treated and control samples, constructs a heatmap and displays the plot as a
preview. Finally, the analysis converts the plot to PDF format and writes the joined table (statistics and
counts) in the results.tsv file.

Auto-completion help is available for the various types of references supported by the MetaR language.227

Examples of these can be seen on Figure 3 for tables (whose names are in green), plots (whose names are228

in blue), styles (names shown with a green background and white foreground, such as HeatmapStyle), or229

Column Group names (shown with a blue grey background and black foreground). Pressing control-B230

(or command-B on Mac) with the cursor on these nodes navigates to the destination of the reference (a231

menu is also available to help novice users discover this navigation mechanism). References may point to232

children nodes defined inside an analysis (e.g., plots), or nodes defined outside the analysis (e.g., tables233

and column groups).234

Importantly, the MetaR user interface can also display buttons and images directly as part of the235

language. This feature takes advantage of the ability of the MPS LW to embed arbitrary graphical elements236

in the projectional editor. This capability is illustrated in Figure 3 by the “Hide Preview” button and by237

the heatmap image shown immediately below the multiplot keyword (pressing this button hides the238

plot preview).239

The level of interactivity provided by the MetaR user interface is best conveyed by watching video240

recordings of its use. We provide training videos at http://metaR.campagnelab.org to illustrate241

how much more interactive the MetaR language is compared to other languages commonly used for data242

analysis.243

Language Composition and Micro-Languages244

Since MetaR is implemented as a set of MPS languages, it fully supports language composition (Voelter245

and Solomatov [2010]). Language composition has no equivalent in text-based programming languages246
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and many readers may be therefore unfamiliar with this technique. We will use an example to explain the247

advantage of this technique for data analysis.248

Consider the table of results produced by the analysis shown in Figure 3. Users are likely to need249

to annotate the subset of genes found differentially expressed with gene names and gene descriptions.250

Information such as this is available in the Biomart system Haider et al. [2009].251

To illustrate language composition, we created a new kind of MetaR statement called query252

biomart, which we defined in a micro-language. A micro-language is a language which provides253

only a few concepts meant to extend a host language. In this case, the MetaR language is the host254

language and query biomart is a concept contributed by the the micro-language. The purpose of this255

concept is to connect to Biomart and retrieve data. In the R language, this functionality is provided as a256

BioConductor package (called “biomaRt”, Durinck et al. [2005])257

Analysis Micro Language Example
{

import table results.tsv
query biomart database ENSEMBL GENES 81 (SANGER UK) and dataset Homo sapiens genes (GRCh38.p3)

get attributes HGNC symbol from feature of types string with column group annotation select a group
Description from feature of types string with column group annotation select a group
Ensembl Gene ID from feature of types string with column group annotation ID

filters HGNC symbol(s) [e.g. NTN3] from results.tsv when true: $(adj.P.Val ) < 0.01
-> resultFromBioMart

join ( resultFromBioMart , results.tsv ) by group ID -> Annotated Results
}

Figure 4. Example of Micro-language Composition. The query biomart stament is defined in a
micro-language called org.campagnelab.metar.biomart, which extends the host language
org.campagnelab.metar.tables. The biomart language provides one statement that offers an interactive
user interface to help users retrieve data from biomart. This language reuses expressions and tables from
the host language. Micro-languages can be enabled or disabled dynamically by the end-user at the level
of a model. This example retrieves Human ENSEMBL identifiers and gene descriptions using the HGNC
gene symbols used as identifiers in the Results table (see Figure 3 for the analysis that produced Results).

Querying Biomart in R consists in calling one of the functions defined in the package with specific258

parameters. The statement is very specialized, and for this reason would not typically be part of the core259

statements of a text-based programming language. Leveraging language composition, we can offer a260

dedicated statement that supports auto-completion in a remote Biomart instance. The statement acts as a261

specialized user interface designed to help users retrieve data from Biomart (in very much the same way262

that the web-based interface to Biomart helps users query this resource, but here completely integrated263

with the MetaR host language).264

Figure 4 illustrates how the query biomart statement can be used to obtain gene annotations. In or-265

der to use these statements, end-users of MetaR would declare using both the org.campagnelab.metar.tables266

(the host language) and org.campagnelab.metar.biomart (the micro-language). In this specific case, the267

micro-language is provided with the MetaR distribution, but end-users can also implement other micro-268

languages to seamlessly combine them with the host language (the process for doing so is described in269

the MetaR documentation booklet Campagne and Simi [2015], Chapter 10). This capability makes it270

possible to customize the data analysis process for specific problems in much more flexible ways than271

would be possible with text-based programming languages: with the query biomart statement, we272

demonstrated that it is possible to remotely query databases to support auto-completion directly in the273

language. In contrast, text-based languages can only be extended in ways compatible with the syntax of274

the programming language, and are not able to support such levels of interactivity.275

Composable R language276

In addition to the MetaR language illustrated in Figure 2-4, we have developed a composable R language.277

This language models the traditional R language Ihaka and Gentleman [1996], but supports language278

composition. Composable R is implemented in the language org.campagnelab.metar.R distributed with279

MetaR. R programs can be pasted in text form into an RScript root node and the text is parsed and280

converted to nodes of the composable R language. In Figure 5, we show the R code equivalent to the281

analysis shown in Figure 4. This R script was pasted from the text generated automatically from the282

MetaR analysis shown in Figure 4. Executing this script is supported in the MPS LW and yields the same283

result that of the simpler MetaR script shown in Figure 4.284
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R Example.R
libDir <- "/Users/fac2003/.metaRlibs "
dir.create(file.path(libDir), showWarnings = FALSE, recursive = TRUE) .libPaths(c(libDir))

dir.create(file.path("/Users/fac2003/R_RESULTS/manuscript "), showWarnings = FALSE, recursive = TRUE)
if ( ! ( require("biomaRt") ) ) {

if ( ! require("BiocInstaller") ) {
source("http://bioconductor.org/biocLite.R ",

local = TRUE)
}

biocLite(ask = FALSE, c("biomaRt")) library("biomaRt")
}

if ( ! require("plyr") ) {...} if ( ! require("data.table") ) {...}
results.tsv <- fread("/Users/fac2003/MPSProjects/git/metar/data/manuscript/results.tsv ",

colClasses = c("character", "numeric", "numeric", "numeric", "numeric", "numeric", "numeric"))
cat("STATEMENT_EXECUTED/1382062817028347486/\n ")
queryBiomart_1382062817028347636 <- function ( <no parameters> ) {

output <- c()
thisDataset <- "hsapiens_gene_ensembl "
thisMart <- useMart("ensembl", dataset =
thisDataset) attributes <- c("hgnc_symbol", "
description", "ensembl_gene_id ")
filtersVector = c() valuesList = c()
filtersVector <- c(filtersVector, "
hgnc_symbol")
data <- results.tsv[

( results.tsv$ "adj.P.Val" < 0.01 )
]

valuesList <- c(valuesList, list(tableIds =
as.vector(data$ genes))) output <- getBM(
attributes = attributes, mart = thisMart,
filters = filtersVector, values = valuesList)
colnames(output) <- c("
HGNC_symbol_from_feature ", "
Description_from_feature ", "
Ensembl_Gene_ID_from_feature ") return(
data.table(output, key = colnames(output)))

}
queryBiomart_1382062817028347636 ( ) -> resultFromBioMart
write.table(resultFromBioMart , "/Users/fac2003/R_RESULTS/manuscript/table_resultFromBioMart_0.tsv ",
row.names = FALSE, sep = "\t")

cat("STATEMENT_EXECUTED/1382062817028347636/\n ")
setkey(resultFromBioMart , "Ensembl_Gene_ID_ from_feature") setkey(results.tsv, "genes")
results.tsv <- rename(results.tsv, c(genes = "Ensembl_Gene_ID_from_feature "))
tableSuffixes = c("", "")
joiningColumns = c("Ensembl_Gene_ID_from_feature ")
nextTableToMergeInto = resultFromBioMart nextTableToMergeFrom = results.tsv

mergedresults.tsv <- merge(nextTableToMergeInto , nextTableToMergeFrom , by = joiningColumns ,
suffixes = tableSuffixes) nextTableToMergeInto = mergedresults.tsv

Annotated_Results <- mergedresults.tsv rm(mergedresults.tsv )
Annotated_Results <- Annotated_Results [  , "genes" := Annotated_Results $ "Ensembl_Gene_ID_from_feature " ]

results.tsv <- rename(results.tsv, c(Ensembl_Gene_ID_from_feature = "genes"))
write.table(Annotated_Results , "/Users/fac2003/R_RESULTS/manuscript/table_Annotated_Results_0.tsv ",
row.names = FALSE, sep = "\t") cat("STATEMENT_EXECUTED/1382062817033011970/ ")

Figure 5. R language equivalent of the Analysis shown in Figure 4. To produce this figure, the
analysis shown in Figure 4 was generated to the R language and the text was pasted in a RScript node of
the composable R language. Automatic parsing of the R code into composable R objects yields a
composable R version of the biomart example. Notice that boiler plate code needed to import R packages
is shown only for the biomaRt package. Subsequent package import statements have been folded {...}
to save space in the Figure. Folding is directly supported by the MPS LW. Function calls are highlighted
in green and are linked to the function declaration in the package stub (end-user can navigate to each
function to review its list of arguments, for instance). While it is likely that expert R programmers could
produce somewhat more compact R code than this automatically generated code, comparison with
Figure 4 indicates that a micro-languages can offer a concise alternative to a series of function call. The
figure also illustrates the breadth of support for the language implemented in Composable R.
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Micro-Languages for the R Language285

A composable R language makes it possible to create micro-languages that compose directly with R as286

the host language. We demonstrate this capability by adapting the query biomart statement shown in287

Figure 4 to the R language. Adaptation is simple because both MetaR and R generate to the same target288

language (R). In this case, we create a sub-concept of Expr (this type represents any R expression), and289

define a field of type Biomart (the concept that implements query biomart). This simple adapter is290

sufficient to make it possible to use the query biomart user interface inside an R script and is defined291

in the language org.campagnelab.metar.biomartToR. The result of composing the adapter language with292

composable R is shown in Figure 6. We also provide a short video to illustrate the interactive capabilities293

of a micro-language combined with composable R (see https://youtu.be/ZwGj1RPOODQ).294

This example illustrates that a composable R language makes it possible to mix regular R code with295

new types of language constructs that can include user interfaces elements. This opens up new possibilities296

to facilitate repetitive analyses in R, for instance for specific data science domains (e.g., the Biomart297

example is useful for bioinformatic data analyses), but also for more general activities where simpler ways298

to perform a task would be beneficial. An example of this would be a micro-language to facilitate the use299

of packages to replace the boiler-plate package import code found at the beginning of most R scripts.300

QueryBiomartInR.R
if ( ! require("data.table") ) {

install.packages ("data.table", repos = "http://cran.us.r-project.org ")
library("data.table")

}
if ( ! require("biomaRt") ) {...}
if ( ! require("graphics") ) {...}

query biomart database ENSEMBL FUNGI 29 (EBI UK) and dataset Aspergillus terreus genes (Broad (CADRE))
get attributes % identity from aflavus homologs of types string with column group annotation select a group
filters << ... >>
-> resultFromBioMart
[BioMart]

pdf("histogram.pdf")
hist(resultFromBioMart $percent_identity_from_aflavus_homologs )
dev.off()

Figure 6. Composing Query Biomart with the composable R language. We developed an adapter
that makes it possible to use the MetaR query biomart statement directly inside a composable R
Script. This figure shows how the query biomart Expression adapter appears when used inside an R
script. Notice how the table and column adapters are used inside a regular hist() function call
resultFromBioMart$percent identity from aflavus homologs. These adapters make
it possible to refer to the table produced by the statement as an R expression and provide auto-completion
for column names in the table (determined dynamically based on the query expressed in the query
biomart statement).

Using R Expressions in the MetaR Language301

Figure 7 illustrates that language composition can also be used to embed R expressions inside a MetaR302

analysis. This extension is possible because both analyses and R expressions generate code compatible303

with the syntax of the R programming language. Providing a way to embed the full language in a simpler304

analysis language offers a guarantee that the end-user will not be overly limited by restrictions of the305

simpler language.306

SOFTWARE307

MetaR is distributed as a plugin of the MPS LW. Instructions for installing the software are available308

online at http://metaR.campagnelab.org. Briefly, after installing MPS, users can download309

and activate plugins with the Preferences/Plugins (Mac) or Settings/Plugins (Windows/Linux) menu.310

Plugins are stored as Zip files on the Jetbrains Plugin repository https://plugins.jetbrains.311

com/category/index?pr=mps&category_id=92 and can also be downloaded and installed312

manually from the zip file. Source code (technically, MPS languages serialized to files) are distributed313

on GitHub at https://github.com/campagnelaboratory/MetaR Campagne et al. [2015].314

MetaR (and the MPS LW) are distributed under the open-source Apache 2.0 license.315

10/17

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 17, 2016. ; https://doi.org/10.1101/030254doi: bioRxiv preprint 

https://doi.org/10.1101/030254
http://creativecommons.org/licenses/by/4.0/


Figure 7. Composing R Expressions with the MetaR Language. Top panel: this example illustrates
that it is possible to use R code inside a MetaR analysis. In this snapshot, R code is delimited by the — R
and R — markers and shown with a blue background. Embedding R code in MetaR provides flexibility to
perform operations for which MetaR statements have not yet been developed. The analysis shown
simulates a dataset using simple parameters and tests the ability of Limma voom, as integrated with
MetaR, to call differentially expressed genes. Bottom panel: shows the result of executing the analysis
inside the MPS LW. As part of execution, the analysis is converted to R code, this code is run and
standard output displayed inside the LW. The STATEMENT EXECUTED// lines hyperlink the progress
of the execution with each specific analysis statement that has been executed.

DISCUSSION316

Data Object Surrogates and Relation to Meta Data317

DOS are related, but different from metadata. For instance, the Table DOS provides metadata about the318

file that contains the tabular data represented by Table nodes. It lists columns, associates columns to319

groups and defines group usages. This type of information can be thought of as metadata about the file320

that contains the tabular data. However, there is an important difference between DOS and metadata. For321

instance, a MetaR Table only provides metadata relevant to the analysis that the user needs to perform. It322

makes no effort to provide information that would have a meaning outside of the user’s analysis. This323

simplification maximizes the benefit of annotation while keeping the effort needed to produce it minimal324

and local to the user who actually needs the annotation.325

Graphical User Interfaces for Data Analysis326

Programs with graphical user interfaces (GUIs) (also called direct manipulation interfaces Galitz [2007])327

are often popular among beginners who are starting with data analysis and have no programming or328
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scripting experience. GUIs are popular in part because they facilitate discovery of software functionality329

directly when using the software. They do not require prior-knowledge of syntax.330

Data Analysis software with GUIs constrains how analysis is to be performed and provides clear331

menus and buttons that make it obvious what the program can do. A user can often discover new ways to332

perform analysis with these tools simply by browsing the user interface and looking at choices offered333

in menus and dialogs of the program. While such programs are favored by beginners (because they334

are relatively easy to learn), more advanced users who need to perform similar analyses across several335

datasets tend to strongly prefer analysis software that does not require repeating interactions with a GUI336

for every new dataset that must be studied. The novel approaches we have used to develop MetaR share337

these advantages with GUIs.338

A minority of analysis software with GUIs also supports writing and running scripts in their user339

interface. For instance, JMP from SAS Inc. is an example of a statistical analysis software with GUI that340

also offers a scripting language. However, when scripting is offered, it is often only loosely integrated341

with the rest of the interface. Furthermore, users who are familiar with the GUI often need to learn342

scripting from scratch and do not benefit much from their prior experience using the GUI.343

Scripting and Programming Languages for Data Analysis344

Scripting and programming languages are popular options for data analysis because analyses encoded345

in scripts or programs can be reused with different datasets. This makes these options popular among346

researchers who have programming skills and engage frequently in data analysis. The popularity and347

power of scripting for data analysis is epytomized by the development of the R language Ihaka and348

Gentleman [1996], which has become a defacto workhorse of open data science in biology. The versatility349

of the R language is its strength, but mastering the language requires elements of programming. Learning350

the R programming language is not as simple as learning how to use a GUI analysis tool and many users351

who would benefit from data analysis experience difficulties with the steep learning curve involved in352

learning programming and the R language.353

In contrast to R, the MetaR language offers a much simpler alternative for users who have no prior354

programming background. At the same time, the Composable R language offers the means for expert R355

users to extend the R language with micro-languages in order to provide custom user interfaces. Such356

interfaces could be used to flatten the learning curve for novice data analysts or to empower expert data357

analysts with expressive means to encode solution to specific problems. Since both these options are358

available in the same platform (the MPS LW), users who become skilled with one language acquire359

transferable skills that help them learn other languages available on the platform.360

Impact on Development of User Proficiency361

The MetaR high-level language shown in Figures 2 to Figure4 is aimed at novice data analysts. An362

interesting question is whether such a language can help novice data analysts learn skills that are useful363

when working with a variety of data analysis tasks.364

If the language is sufficiently general, then novice users may learn skills that they can reuse when365

learning other general data analysis languages. If the language is too limited, then novice users would366

only learn a specialized analysis tool similar to existing GUI analysis tools. Rigorously determining to367

which category the MetaR language belongs would require following users for several months or years368

while they use the tool and we have not done such a study. However, we think that MetaR can help users369

transition to more general languages for the following reasons.370

First, users who learn the high-level MetaR language acquire basic skills that are similar to those371

needed when working with other languages, including composable R. For instance, users learn to formalize372

their analysis intent using the constructs offered by the language. This is a very important first step that373

users with a strong programming background may take for granted, but that is difficult for novice users to374

acquire when they are distracted with problems of syntax. MetaR avoids syntax distractions and helps375

novice users focus on the logic of an analysis (e.g., how to combine language elements to achieve the376

desired analysis).377

Second, the high-level MetaR language does not offer loops and conditionals. Since these language378

features are often needed for advanced analysis, many users who reach the point where they will need379

these language features will need to learn a language like R. MetaR offers composable R for this purpose.380

Novice users who have first learned the MetaR high-level language will be familiar with the MPS LW381

platform where composable R is also available. Some skills that users have acquired working with the382
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high-level language will be directly transferable, including: how to run a script, how to navigate references383

to look at definitions, how to use auto-completion or use intentions to transform the program automatically,384

how to use source control (seamlessly integrated with the MPS LW). Subsets of the R language will still385

need to be learned to perform more advanced analysis, but learning can occur in an environment where386

the user is already comfortable. We believe that such an integrated environment where both high-level and387

low-level languages of the R ecosystem are offered will facilitate teaching of the many skills needed for388

data analysis. Formally testing whether this intuition is correct will require comparing cohorts of subjects389

learning data analysis. Alternatively, the answer may become apparent if a large number of data analysts390

were to transition to using composable R after initially learning the MetaR high-level language.391

Relation to Electronic Notebooks392

MetaR shares some similarities to electronic notebooks such as IPython Pérez and Granger [2007], Jupyter393

(https://jupyter.org/) and Beaker (http://beakernotebook.com/) notebooks, but also394

has some important differences.395

Regarding analogies, both MetaR and notebooks can be used to present analysis results alongside the396

code necessary to reproduce the results. For instance, the MetaR multi-view plot can be used to show a397

plot at the location where the statement is introduced in an analysis.398

MetaR was developed approximately over the course of one year (2015). As such the software cannot399

be expected to be as feature-rich as software developed for many years. Beside this obvious difference,400

MetaR has the advantage to support language composition. In contrast, current data analysis notebooks401

support conventional programming languages constructed using text-based technology. Therefore, the402

closest that notebooks can approach language composition is to support multiple languages in one403

notebook, a so-called polyglot feature, available for instance in the Beaker notebook. Polyglot notebooks404

are useful, but cannot be extended by data analysts to customize languages for the requirements of a405

specific analysis project or domain. For instance, supporting a simple analysis language like MetaR would406

not be possible without developing a MetaR compiler and an associated execution kernel for the notebook.407

Developing and using micro-languages together with the traditional languages supported by the notebooks408

is also not possible.409

Hence, the approach taken with MetaR is different from notebooks in two major ways. First, MetaR410

provides flexibility in designing new languages or micro-languages. It is not constrained by the syntax411

of a full programming language. Extending MetaR often consists in adding just one statement to an412

existing language. This promotes collaborative language design and development since many users can413

acquire sufficient skills to create one or two statements, reusing the building blocks provided by the414

host language (the steps needed to extend MetaR with a new language statement are described in the415

user manual Campagne and Simi [2015]). As long as a new statement generates valid R code, a MetaR416

Analysis that contains this statement will be executable.417

Second, the syntax of the MetaR languages is not limited to text scripts or programs. Language418

Workbench technology used to implement MetaR supports graphical notations and diagrams as well419

as text. These differences combine to make it easier to design and implement custom data analysis420

abstractions with the LWT approach than it is possible with current electronic notebooks. Interestingly,421

the R IPython kernel could be used to execute scripts generated from MetaR analyses, which would422

provide an interactive console similar to that offered in the IPython notebook inside the MPS LW.423

Reproducible Research and Education424

MetaR analysis and Composable R scripts can be executed seamlessly with an R environment installed425

inside a docker image (see Methods). Users can enable this feature by providing a few details about the426

installation of docker on their computer and checking the “Run with Docker” option in the MPS LW. This427

feature is particularly useful to facilitate reproducible research because docker images can be tagged with428

version numbers and always result in the same execution environment at the start of an analysis. This429

makes it possible to pre-install specific versions of R, CRAN and Bioconductor packages in a container430

and distribute this image with the MetaR analyses or R scripts that implement the analysis inside the431

container. While this is possible also with R, using docker on the command line, the customization of432

the MPS LW makes it seamless to run analyses with docker. We are not aware of a similar feature being433

supported by current R IDEs.434

We found this feature also particularly useful for training sessions where installation of a working435

R environment can be challenging on trainees’ laptops. Using docker, we simply request that trainees436

13/17

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 17, 2016. ; https://doi.org/10.1101/030254doi: bioRxiv preprint 

https://doi.org/10.1101/030254
http://creativecommons.org/licenses/by/4.0/


pre-install Kitematic (available on Mac and Windows), or run docker natively on Linux and download437

the image we prepared with the packages used in the MetaR training sessions. The ability to run MetaR438

analysis in docker container results in a predictable installation of dependencies for training session and439

frees more of the instructor’s time to present data analysis techniques.440

METHODS441

Language Workbench Technology Primer442

Since many readers may not be familiar with LWT, this section briefly describes how this technology443

differs from traditional text-based technology.444

Text-based programming languages are implemented with compilers that internally convert the text445

representation of the source code into an abstract syntax tree (AST), a data structure used when analyzing446

and transforming programming languages into machine code.447

In the MPS LW, the AST is also a central data structure, but the parsing elements of the compilers are448

replaced with a graphical user interface (called a projectional editor) that enables users to directly edit the449

data structure. Where text-based languages are restricted to programs written as text, a projectional editor450

can support both textual and graphical user interfaces (such as images, buttons, tables or diagrams) Voelter451

and Solomatov [2010]. Projectional editors can also offer distinct views of the same AST, implemented as452

alternative editors. Projectional editors keep an AST in memory until the user saves the program. Saving453

an AST to disk is done using serialization (loading is conversely done via deserialization to memory AST454

data structures).455

The choice of serialization rather than encoding with text has a profound consequence. Serialization456

uniquely identifies the concept for each node in an AST. This method makes it possible to combine AST457

fragments expressed with different languages, when the concept hierarchy of the languages supports458

composition. We have presented examples of language composition in Simi and Campagne [2014],459

Benson and Campagne [2015]. In this manuscript, we extensively use language composition to extend the460

R language and provide the ability to embed user interfaces into R programs.461

Abstract Syntax Tree (AST)462

An AST is a data structure traditionally used by compilers as a step towards generating machine code.463

In the MPS Language Workbench, an AST is a tree data structure, where nodes of the tree are instances464

of concepts (in the object-oriented sense). Figure 8 illustrates the notion of AST nodes, concepts and465

projectional editor.466

AST concepts may have properties (values of primitive types), children (lists of other nodes they467

contain), references (links to other nodes defined elsewhere in the AST). An AST has always a root node,468

which is used to start traversing the tree. In the MPS LW, AST root nodes are stored in models.469

Languages470

In the MPS LW, languages are defined as collection of concepts, concept editors (which together implement471

the user interface for the language), and other language aspects Campagne [2014]. Each language has a472

name which is used to import, or activate, the language inside a model. After importing a language into a473

model, it becomes possible to create ASTs with this language in the model. Creating an AST starts with474

the creation of a root node. Children of the root node are added using the projectional editor. Children of475

root nodes, properties and references can be edited interactively in the editor.476

We have used the MPS Language Workbench (http://jetbrains.com/mps), as also described477

in Campagne [2014] and Campagne [2015]. For an introduction to Language Workbench Technology478

(LWT) in the context of bioinformatics see Simi and Campagne [2014] and Benson and Campagne [2015]479

in the context of predictive biomarker model development.480

Language Design481

We designed the MetaR MPS languages through an iterative process, releasing the languages at least482

weekly to end-users at the beginning of the project and adjusting designs and implementations according483

to user feedback. Full language developments logs are available on the GitHub code repository (https:484

//github.com/CampagneLaboratory/MetaR) Campagne et al. [2015]. Briefly, we designed485

abstractions to facilitate specific analyses and implemented these abstractions with the structure, editor,486

constraints and typesystem aspects of MPS languages. Generated R code is produced from nodes of the487

14/17

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 17, 2016. ; https://doi.org/10.1101/030254doi: bioRxiv preprint 

https://doi.org/10.1101/030254
http://creativecommons.org/licenses/by/4.0/


R SCRIPT

EXPRESSION

operator

IDENTIFIER

right

DemoScript.R

a

1 2

+

<-

B. Nodes: 
Program
represented 
as AST

A. Program AST projected in the editor C. Language
Concepts

left

BINARY
EXPRESSION

Figure 8. Concepts, Nodes and Projectional Editor. Panel A: Projectional editor showing a simple R
script with one assignment expression. Panel B: An abstract syntax tree is shown with nodes that
correspond to the program in panel A. Panel C: Language Concepts for the nodes in Panel (B) (shown as
blue boxes). Each concept is connected to other concepts with an open-ended arrow to indicate
inheritance (e.g., A <- B indicates that B is a sub-concept of A). Green boxes indicate fields of a
concept and are connected to the concept that has these fields by a line with a black diamond on the
concept that owns the field. This shows that BinaryExpression is a concept that is an
Expression and has three fields: left, operator and right. Dotted lines connect nodes to their
concept. For instance, the <- and + nodes are instances of BinaryExpression.
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languages using the org.campagnelab.TextOutput plugin. An illustration of the steps required to develop488

one language statement is available in Chapter 10 of the MetaR documentation booklet (see Campagne489

and Simi [2015]).490

Table Viewer491

We implemented a Table viewer as an MPS Tabbed Tool, using the MPS LW mechanisms for user492

interface extension (see Campagne [2015]). The table viewer provides the ability to inspect the data493

content of any table produced during an analysis, or any input table. When the cursor is positioned over a494

node that represent a FutureTable (created when running the R script generated from the MetaR Analysis),495

and the viewer is opened, it tries to load the data file that the analysis would create for this table. If the file496

is found, the content is displayed using a Java Swing Component in the MPS user interface of the Table497

Viewer tool.498

Language Execution499

MetaR analyses can be executed directly from within the MPS LW. This capability was implemented with500

Run Configurations (see Campagne [2015], Chapter 5).501

Execution in a Docker Container502

In order to facilitate reproducible execution, we implemented optional execution within a Docker container.503

A docker image was created to contain a Linux operating system and a recent distribution of the R language504

(provided in the rocker-base image), as well as several R packages needed when executing the MetaR505

statements. The Run Configuration was modified to enable execution inside a docker container when the506

user selects a checkbox ”execute inside docker container”. Information necessary to run with docker (i.e.,507

location of the docker executable, docker server connection settings and image name and tag) is collected508

under a tab in the MPS Preferences (Other Settings/Docker).509
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