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Abstract

Spatial aggregation or clustering of membrane proteins could be important for their functionality,
e.g., in signaling, and nanoscale imaging can be used to study its origins, structure and function.
Such studies require accurate characterization of clusters, both for absolute quantification and
hypothesis testing. A set of model-free quantification approaches — free of specific cluster models—
have been proposed for this purpose. They include the radius of maximal aggregation ra obtained
from the maxima of the empirical Besag L(r) − r function as an estimator of cluster size, and
the estimation of various cluster parameters based on an exponential approximation for the Pair
Correlation Function(PCF). However, the parameter identifiability and bias and scaling due to
their model-free nature are not clear. In practice, the clusters might exhibit specific patterns, and
the behavior of these estimators in such cases must be studied. Here, we theoretically analyze these
approaches for a set of cluster models, and obtain information about their identifiability and bias.
We find that the ratio between ra and true cluster size depends on both the true size as well as
the number of clusters per unit area, or other corresponding parameters, in a model-dependent
manner. In particular, ra scales with respect to the true size by a factor that can be arbitrarily
large, depending on models and parameter values. For the method based on PCF approximation,
for most models we analyzed, the ratios between approximate and true model parameters were
found to be constants that depend only on models and independent of other parameters. For the
models analyzed, this ratio was within ±100%. Our theoretical approach was validated by means of
simulations. We also discuss some general issues in inference using second-order spatial properties.
While precision could also be key, such information on identifiability and accuracy provides clarity
on estimation, can lead to better inference, and can also fuel more accurate method development.

Introduction

In cell biology and elsewhere, spatial aggregation or clustering is an interesting phenomenon,
possibly with a functional role — e.g., the behavior of membrane proteins to form sub-micrometer
clusters could be important for their functionality, such as in signaling (1–4). The origins, structure
and function of spatial heterogeneity in membrane proteins are only being studied. Spatial location
information, available from fluorescence and electron microscopic imaging, and recently from sub-
diffraction limited fluorescence imaging such as Single Molecule Localization Microscopy(SMLM)
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techniques (5–7), are key to such studies (8–11). Accurate characterization of clustering — the
strength, scale and density of clustering is an important part of these studies, whether for relative
comparison between different systems, perturbation conditions and to test hypothesis (such as the
relative importance of lipid rafts and actin cytoskeleton in membrane protein clustering (12), or
the possible mechanisms of early T-cell signaling (8)), or even for absolute quantification (such as
the size of clusters in a particular cell type in a particular condition, and the number of molecules
in them).

A number of methods have been used to characterize the clusters from imaging data (13–15).
While most of these were aimed at characterizing membrane protein clusters, many of them were
used to characterize other systems in the cell that exhibit clustering. The methods can be broadly
categorized into two: (1) clustering or segmentation to identify the clusters, followed by their char-
acterization; and (2) spatial statistics approaches based on a second-order spatial summary statistic
such as Besag L(r)− r function or the Pair Correlation Function g(r). These second-order functions
can be used for comparison of clustering at different scales and between different experimental
systems and perturbations, and estimators based on these functions can be used for ensemble
cluster parameter estimation. In general, they have a few advantages over many of the segmentation
approaches: they can detect interactions at multiple spatial scales, can work with both dense and
sparse point patterns, often have direct physical interpretations (16), and are amenable to rigorous
extensions incorporating error models, crucial in the case of nanoscale imaging (16–18). Also, in
the case of SMLM, the notion of spatial point patterns align well with the nature of its point
localization readout. In practice, a major convenience of using such methods have been that they
estimate ensemble functions at different scales and the various cluster parameters for a whole
dataset, making comparative studies easy in systems where variability within cluster sizes are not
important.

The simplicity in parameter estimation is in no small part aided by the model-free nature of
some of these approaches. Two spatial statistics based estimators of cluster parameters based on
these functions widely reported in the nanoimaging and protein cluster analysis literature, 1) the
radius of maximal aggregation ra (13, 15, 18–27), the radius value corresponding to the maxima of
the empirical L(r)− r function, as an estimator of cluster size(length scale); and 2) the model-free
functional approximation of g(r) as an exponential function (9, 16, 28–32), leading to estimators
of cluster size, amplitude or strength and number of molecules per cluster, are not concerned
with the underlying spatial distributions, such as the shapes of clusters and the distribution of
molecules in them. Effects due to differences in underlying spatial distribution are either ignored
or approximated, effectively making the estimation process free of underlying cluster processes,
or model-free. The model-free nature of these functions vary — ra does not contain any model of
clustering whereas the PCF approximation is a generic function independent of specific models.

However, clusters observed through bio-imaging could be of different shapes, depending on
the underlying physical mechanism. In the case of SMLM imaging, e.g., the clusters formed due
to photoblinking are reported to have a Gaussian (9) or Cauchy peak shape (32), depending
on the photon count distribution within the cluster. It is plausible to model internalization in
circular or spherical bodies with a hard-core process (a disk in 2D). Analysis methods often assume
Gaussian shapes for membrane clusters (14, 18). (33, 34) have suggested modeling membrane
protein distributions using 2D-Ising model, to account for phase transitions and criticality. It is not
clear how the parameter estimation approaches that are model-free are biased or scaled due to these
different underlying true cluster processes. Also, such model-free approximations also raise the
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question of identifiability: e.g., can the size (i.e. length scale) parameter of model-free approaches
be mapped exclusively to the size parameter of the true process, independent of other parameters,
such as number of clusters per unit area or cluster density or amplitude? If the estimated size
parameter is dependent on both the size and amplitude parameters of the underlying true process,
one must account for it during the comparative analysis of cluster sizes, as it may not accurately
reflect the true differences in size, being affected by amplitudes as well. Other point pattern based
parametric methods (24, 35) also have to deal with similar issues. The influence of shape and
geometry in estimation is observed in other fluorescence based technologies as well (36).

Some clues have been obtained from simulation studies. Kiskowski et al (19) studied the relation
between the true radius of disk clusters R and estimates of ra by means of simulations, and
derived important insights — such as R ≤ ra ≤ 2R, and a qualitative dependency of ra on
separation between clusters. However, since the study was based on simulations, with a limited set
of parameters and models (only disk clusters), the understanding is limited, and the possibilities
of generalization are not clear. Lagache et al (24) performed a theoretical analysis of a similar
estimator — maxima of the K-function normalized with its variance — for disk shaped clusters, and
reported a simpler, constant relation ra/R = 1.3. Such a relationship would have been convenient,
however its generality in terms of models and parameters is not clear. No studies of the bias
introduced by the approximate model of g(r) has yet been reported, to the best of our knowledge.

Note that the accuracy or bias of an estimator cannot be improved by repeated measurements,
unlike its precision. By definition, bias affects absolute quantification, e.g. an estimator of single
molecule counts that is biased by 50% lower than the true counts affects absolute quantification.
The same is the case regarding their use as relative comparisons: the need to account for biases
might become important if (1) the parameters are not separately identifiable or (2) involves scaling
that are model dependent and the comparisons involve different models.

In this work, we explore, with theoretical rigor, the bias in parameter estimation and the
questions of identifiability introduced by these model-free approaches. We consider a number of
spatial cluster processes whose theoretical g(r) and L(r)−r are known, and then derive the relation
between the parameters of the model-free approaches (such as ra) and the true process parameters
(e.g., the cluster size parameter rt). We find that, in general, for a large class of clustered point
patterns, the ratio p of the radius of maximal aggregation ra and the size parameter of the true
process rt(p = ra/rt) can be derived as an implicit function of two cluster parameters: rt and the
number of clusters per unit area (κ). We also find that it possible to derive a theoretical lower
bound for p, given a cluster model following some basic assumptions. We validate the theoretical
results with simulations. We also perform similar analysis for the statistic presented in (24), to
report a more complex relationship between the true cluster size and the estimator. Then, we
investigate the bias due to the exponential approximation model of g(r), for all the models listed.
By minimizing the Least Square Distance between the true and approximate PCFs, we obtain
scaling laws between the approximate model and the true model parameters, and validate the
approach by simulations. The extension for other cluster models are straightforward.
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Materials and Methods

Background definitions

For a spatial point pattern in 2D-space, Ripley’s K-function is defined (37–39) as

K(r) =
1

ρ
E[M(r)] (1)

where ρ is the spatial density (average number of points per unit area), and M(r) is the number
of other events within distance r of a randomly chosen event. The Besag L(r)− r, a measure of
cluster strength at r, is then given by

L(r)− r =

√
K(r)

π
− r, (2)

and the Pair Correlation Function by

g(r) =
K ′(r)

2πr
. (3)

Alternative but equivalent definitions of PCF starting with the notion of spatial autocorrelation
are also possible (9).

The radius of maximal aggregation, ra = arg max
r

L(r)− r.

The function ga(r) = 1 + a exp(−r/d) has been proposed as a functional approximation for the
Pair Correlation Function (PCF) of “2D-system of clusters with no predefined shape” (9, 28). The
parameter a is the amplitude, a measure of point density in the clusters, and d, the correlation
length, gives the radius of the cluster (9). For the PCF g(r), the average number of points per
cluster can then be obtained as

N cluster = 1 + ρ

∫ ∞
0

(g(r)− 1)2πrdr, (4)

which is equal to Na = 2πad2ρ in the case of ga(r), where ρ is the average density of points in the
area of analysis(9).

Theoretical expressions for g(r) and L(r)− r

In order to derive the theoretical expressions for L(r)− r and g(r) for different cluster models, it
is useful to focus on a class of spatial cluster processes, known as Poisson cluster processes, or
Neyman-Scott processes(details in (38, 39)), which are generated in the following way. First, a
set of parent points are created, following a spatial Poisson process (complete spatial randomness)
with density (intensity) κ. Then, S number of points are distributed around each parent point
according to the i.i.d bivariate PDF fpdf (.), S following some i.i.d distribution with mean µ. These
offspring points form the clustered point pattern. Such simple spatial cluster models that consider
different shapes of clusters provide a starting point for the theoretical analysis of estimators. The
analysis of Ising model in the later sections provide a more physical example.

Assuming fpdf (.) to be radially symmetric, let the PDF of the distance r between two offspring
points within a cluster is given by hd(r) and its Cumulative Distribution Function (CDF) by Hd(r).
Then(38):
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Kclust(r) = πr2 +
E[S(S − 1)]

κµ2
Hd(r). (5)

The density of the point pattern will be µκ. When S ∼ Poiss(µ), since E[S(S − 1)] = µ2 for
Poisson distribution, (5) reduces to

Kclust,Poisson(r) = πr2 +
1

κ
Hd(r). (6)

The derivation in case of other distributions for points per cluster is straightforward. In the case
of geometric or exponential distribution of S, behavior often observed in nanoimaging (40–42),
E[S(S−1)]

µ2
→ 2 for µ� 1.

Note that Hd, being the CDF, is monotonic and non-decreasing. The corresponding PCF
g(r) = K′(r)

2πr
becomes:

gclust,Poisson(r) = 1 +
1

2πκ

hd(r)

r
(7)

The PCF and K-function for different cluster shapes are given in Table 1, and the shapes of
their PDFs are given in Supporting Material. Note that disk clusters contain points distributed
uniformly at random within a circle (disk), a process known as Matérn cluster process in spatial
statistics (the case of Gaussian cluster shapes is known as Thomas process). Also note that rt is
defined differently for different cluster models: for a disk cluster, rt = R, the true cluster radius,
whereas for Gaussian clusters, we set rt = σ, the true standard deviation (the full list can be found
in Table 1). We also add the physical Ising model to the compilation, since it is one of the models
that has been proposed for membrane protein clustering (16), even though it is not a Neyman-Scott
process. Also, note that the exponential approximation ga(r) has the same shape as the variance
Gamma function model(varGamma) in Table 1, pointing at the non-uniqueness of g(r) shapes and
the difficulty of identifying cluster models from data based on their PCF shapes.

Effect of background To model a monomer fraction or background, a spatial Poisson distributed
monomer point pattern can be superimposed to a purely clustered process, such that the purely
clustered fraction of points is β. The resulting K-function and PCF can be obtained using the
expression for superposition of two independent point processes (38). In the case of a clustered
process with g(r) = 1 +Bv(r), superposition with such a background process results in the PCF:

g(r) = 1 +Bev(r), (8)

where Be = Bβ2, β being the purely clustered fraction (38). Expressions for K(r) and L(r)− r
undergo similar scaling in parameter. It can be noted that the shape of the function remains the
same as the purely clustered process, the change in parameter B being the only change, again
pointing at the non-uniqueness of PCF shapes, and the quadratic effect of background on the
function(note the effect on (4)).

Simulation and analysis details

All simulations were done in R, using the spatstat library (43). Simulations of cluster processes
were done with standard library functions, such as rThomas and rMatClust. Parameter estimation

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 5, 2015. ; https://doi.org/10.1101/030718doi: bioRxiv preprint 

https://doi.org/10.1101/030718


by minimum contrast method was done using kppm function, and using parameters “Thomas” and
“VarGamma”. Analytical derivations were performed with the help of symbolic algebra software
[Mathematica(Wolfram Research, USA)].

Results

Estimation based on radius of maximal aggregation

Theoretical expressions for radius of maximal aggregation Here we analyze the relation-
ship between the radius of maximal aggregation, defined as ra = arg max

r
L(r)− r, as a function of

true cluster parameters, for the class of clustered point patterns with K-functions of the form

K(r) = πr2 +
1

A
H(r) (9)

where h(r) = H ′(r) and A > 0, such as the ones introduced in the Methods section and Table
1. Then, L′(ra) − 1 = 0, L′(ra) = 1 =⇒ K ′(ra)

2 = 4πK(ra), using (2). Substituting in (9), we
obtain

A =
h(ra)

2

4π(H(ra)− rah(ra))
. (10)

That is, ra depends on A in general, as A is not a parameter of H and h. (10) can be used to
obtain a relation between p = ra

rt
for all the models listed in Table 1, where rt is the cluster size

parameter of the true process. The results are given in Table 2(more details in Supporting Material).
It is possible to write the relationship f(p) = r2

tκ for all the Poisson cluster processes discussed. In
the case of the Ising process, the corresponding relationship is of the form f(p) = 1

2π
a−1
I ξ1/4. The

derivation of p in the case of a power-law PCF is given in Supporting Material.
Note that the expression for p (and hence ra) is independent of the number of points per cluster

(µ) if the expressions for K-functions are independent of it. Figure 1 shows the contour plot of p vs
κrt. Thus, we can establish that theoretically, the ratio between the radius of maximal aggregation
and the true size parameter is dependent on both the true size parameter as well as the number of
clusters per unit area. In fact, the singularity at H(ra)− rah(ra) = 0 provides a minimum bound
for p for all the models analyzed, and is also shown in Table 2(see Appendix for a proof). The
lower bound so obtained is a fundamental characteristic of the cluster model’s theoretical L(r)− r
functions. The existence of a lower bound for ra for any cluster model with K-function of the form
in (9) can be proved theoretically given some basic assumptions on h(r)(see Appendix).

The p = ra/rt for different processes cannot be directly compared, as the size parameter of
the true process rt is defined differently for them. Now, it can be seen that the lower bound for
p is model dependent. For the disk model, e.g., 1.29564 < p < 2, whereas, for Gaussian model,
2.24181 < p <∞. A more comparable measure would be rq, the (true) scale at which q fraction of
the points are expected to lie for a particular distribution, typically obtainable in the form rq = uqrt,
such as the case of r.95 = 2σ in the case of 1D Gaussian distribution. This would correspond to the
ratio pq = ra/rq = p/uq, and f(pquq)u

2
q = κr2

q . Considering the case q = 95%, the values for u.95

and the lower bounds for p.95 for different distributions is given in Supporting Material, and the
plot p.95 vs κr2

.95 is shown in Figure 1c. It can be seen that p.95 is dependent on both the model as
well as both the number of clusters per unit area and the true cluster size.

The systematic relationship established between p (or p.95),A and rt, clarifies the bias and
identifiability issues in estimation. The results agree with (19), and provides a tighter (theoretical)
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lower bound for disk clusters. The approach can also explain the qualitative influence of inter-cluster
distance on ra, observed by (19), through the dependency of p on κ, along with the relative influence
of κ and rt. The dependency of p on other cluster parameters and the cluster model means that
the estimator could be a poor choice as a comparison tool between different experiments, if there is
a possibility that the cluster model, κ or rt are different — unless there is a large enough difference
in estimated ra for different experiments.

Validation with simulations To establish the validity of the theoretical derivation obtained
in previous section (shown in Table 2) we performed a Monte Carlo simulation study. In addition
to information about the accuracy of radius of maximal aggregation(the subject of the theoretical
study), it also provides information about its precision as an estimator.

Clustered point patterns, belonging to either Gaussian or disk clusters, were simulated in a
unit square, for varying κ and rt. The theoretical value of p for a given κ and rt were obtained
by solving the analytical expressions in Table 2, and was compared to p̂ = r̂a/rt. r̂a was obtained
from the empirical maximum of the L(r)− r curves. The results are shown in Figure 2(also see
Supporting Material Figure 1). The mean value of p̂ from simulations broadly agree with the
theoretical results, though the deviation increases with increasing κr2

t (see also the Mean Squared
Error in Figure 2c,d). This is probably the result of increasing number of clusters per unit area
(increasing κ) or having larger clusters within the unit square used in the simulations (increasing
rt), both resulting in overlapping clusters, resulting in deviations from theoretical framework based
on a particular cluster model. In fact, it can be seen that the deviation is most influenced by
increasing radius(Figure 2c,d).

Case of normalized K-function In (24), the normalized statistic K̃(r, n) was proposed, given

by K̃(r, n) = K(r,n)−πr2√
Var(K(r,n))

, where

Var(K(r, n)) =
2πAr2

n2

(
πr2

(
0.0132nPr

A
− 1
)

A
+

0.305Pr

A
+ 1

)
, (11)

where A is the area and P the perimeter of the observation window, and n the number of points.
For disk process, they use, similar to the expression in Table 1:

K(r, n) =

2β2

(
r2 cos−1( r

2R)
R2 − r(r2+2R2)

√
1− r2

4R2

4R3 + sin−1
(
r

2R

))
πκ

+ πr2, (12)

where κ is the number of clusters per unit area, and β the clustered fraction.

The radius of maximal aggregation r̃a for K̃(r, n) is then obtained by setting ∂K̃(r,n)
∂r

= 0. Using
numerical approaches, they obtained the constant relation r̃a = 1.3R.

In our hands, ∂K̃(r,n)
∂r

= 0 for a square observation window(for simplicity) resulted in a more
nuanced situation, as shown in Figure 3(details in Supporting Material). We found that p̃ = r̃a/rt
depends on the number of points n and the ratio m between the side length of the square observation
window and the true size parameter rt, and converges to a maximum value at large m, which is
approximately equal to the minimum values obtained in the case of ra based on L(r) − r. For
example, in the case of clusters with R = 20nm with an area of analysis of size 10µm, then m = 500,
and p̃ is close to the maximum value (Figure 3), and hence a constant(1.296 in the case of disk
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clusters, approximately equal to the factor of 1.3 obtained in (24)). On the other hand, if the
area of analysis was smaller, say 1µm, then m = 50, and p̃ depends critically on n(Figure 3). The
dependency of p̃ on n, in contrast with p in the case of L(r) − r, is because

√
Var(K(r, n)) is

non-linearly dependent on n, whereas the expression for K(r, n) (and L(r)− r) is independent of n.
Note that p̃ is independent of κ and β, unlike the case of ra and L(r)− r presented in the previous
section.

Estimation based on Pair Correlation Function

We now consider another estimator that has been suggested for estimating cluster parameters, the
approach based on fitting Pair Correlation Functions. As discussed in the section Methods, the
theoretical PCF is not unique for a cluster model, and its signature shape and sensitivity are often
not sufficient to identify the models(Figure 4), not the least because each experiment provides
a realization of a stochastic process, with the observed statistic approaching the theoretical one
only as n→∞. Model selection based on Monte Carlo (MC) rank tests (38, 39) — ranking the
empirical statistic value among the values of the statistic from MC simulations based on estimated
parameters — based on PCF or the related K or L(r) − r functions is not sound, if the same
function was used for parameter estimation(38). The standard method in this case is to perform
MC rank tests with a statistic that is different from the one that was used for parameter estimation,
e.g., the nearest neighbor distribution function if the PCF was used for estimation. However, the
approach is known to have low statistical power (39), and we too had similar experience during
preliminary attempts to identify the cluster models from simulations and SMLM data (results
not shown). Therefore, the model-free functional approximations such as ga(r) = 1 + a exp(−r/d),
proposed as part as the PC-PALM method, have much appeal.

Here, we derive a measure of bias in parameters introduced by this approximation, given a
true model. We aim to find the relations m = d/rt, n = a/at and l = Na/Nt, given a true model
for the PCF in the form f(r) = 1 + atv(r, rt). Here, Na and Nt are the average number of points
per cluster corresponding to the approximate model and the true model respectively, as per (4).
Given a specific model for f(r), we find the relation between parameters in the case of the fit that
provides the minimum (Least) Squared Error E, i.e.,

(â, d̂) = arg min
a,d

E = arg min
a,d

∫ rm

0

(f(r)− ga(r))2dr. (13)

Note that the Least Squares criteria was used in original PC-PALM papers for parameter
estimation (9, 44). If E has a minima at (â, d̂), then ∂E

∂a
= 0 and ∂E

∂d
= 0 at (â, d̂), which can be

solved to obtain expressions for (â, d̂). Measures of m,n and l can then be found using these.
We were able to obtain measures of m,n and l for all the cluster models described in Table 1,

and the results are shown in Table 3 and the best fit PCFs can be seen in Figure 5a(details in
Supporting Material). The m.95 values: m.95 = d/r.95 = m/u.95, r.95 being the scale at which 95%
of points are expected to lie, can also be obtained as constant scalar values, given by .63,.82,.38
and .28, for Gaussian, disk, Cauchy and varGamma models respectively.

For example, in the case of Gaussian shaped clusters, with the PCF given in Table 1, we obtain,
for rm > 6σ, m = d/σ ≈ 1.54, n ≈ 1.26, l ≈ 1.48, with m.95 = .63. The parameters can be either
upscaled or downscaled — e.g., the number of molecules per cluster is overestimated by 50% by
using ga(r) for estimation, whereas in the case of Ising process, it is underestimated by 40%. The
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overestimation/underestimation for all parameters is no more than by 100%, in all the models the
approach was applied, except in the case of the amplitude parameter in the Ising model. In this
case too, while the a parameter is dependent on both the true amplitude aI as well as true size
parameter ξ, the effect is to the extend of n = .38− 1.44 for ξ =5–1000nm, the case relevant in the
case of membrane protein clusters.

For the models in Table 1, this means that (1) the scaling is either independent of other param-
eters or only mildly dependent (2) the theoretical scaling due to the exponential approximation
is within 100%, in contrast with the radius of maximal aggregation, which can be several times
higher (technically upto ∞) depending on models and parameter values.

We validated this theoretical approach by means of Monte Carlo simulations. We simulated
Gaussian cluster processes in a unit square for different conditions, such as varying the numbers of
points per cluster as well as cluster radius. The empirical PCF of these point patterns were fitted
to both the theoretical PCF for Gaussian point patterns, as well as the functional approximation
ga(r), and the various parameters estimated. The estimates for N , the number of points per cluster
is shown in Figure 5b. It can be seen that the simulations agree with the theoretical prediction, with
estimates using ga(r) being overestimated, whereas the fit to Gaussian PCF providing accurate
results.

Discussion

We have theoretically analyzed three spatial statistics based model-free methods for cluster param-
eters that have been proposed in the membrane protein imaging literature. They are: the radius of
maximal aggregation based on Besag L(r)−r function and the radius of maximal aggregation based
on normalized K-function, both primarily estimators for cluster size, and the estimation based
on the functional approximation with an exponential function for the Pair Correlation Function,
proposed in the PC-PALM method. We were able to derive the theoretical relation between the
radius of maximal aggregation and the true cluster parameters, for a diverse set of models, along
with a theoretical lower bound for it. Our results illustrate the fact that the ratio of the radius of
maximal aggregation (in the L(r)− r case) to the true cluster size depends on the true cluster size
as well as the number of clusters per unit area (or corresponding parameters, such as amplitude)
for all the models considered. This dependence points to the difficulties of parameter identifiability
using this technique, and also has implications in the interpretation of empirical L(r)− r curves.
In the case of the Pair Correlation approach, we were able to derive the scaling laws between the
parameters of the approximate model and the true model, based on the Least Square Error criteria.
From both the identifiability point of view as well as the scale of bias (between the true process
parameters and the estimators), it appears that the Pair Correlation approach performs better,
at least for the models our approach was applied on. While only a limited set of models were
analyzed here, they show the limits of the estimators, and extending the analysis to other models
is straightforward.

Also, the analysis shows that it might be possible to obtain theoretical bounds for parameters
given a set of candidate models, e.g. by taking the worst bounds among candidates, even though
the specific candidate model for a system is not known or is difficult to be inferred. It also points
to a possible approach to reducing the bias: by using non-parameteric models for the model-free
PCF, although care must be taken against overfitting and also in interpreting the results. This
work only deals with the accuracy limits of the estimators, their precision could also be important
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in practical applications, which must be analyzed separately. The results presented in this work are
not limited to membrane protein clusters, and are applicable to any system with spatial clustering.

Appendix

Lemma 0.1. Let h : <+ 7→ <+ be a unimodal differentiable function with a unique maximum at
rm > 0 and a derivative satisfying h′(r) > 0 for 0 ≤ r < rm, and h

′(r) < 0 for r > rm. Note: this
is satisfied by all the models in Table 1.

Further assume that there exists r∗ > 0 that satisfies

H(r∗)− r∗h(r∗) = 0.

Then the radius of maximal aggregation ra ≥ r∗ where ra is obtained as a solution to (10) for some
A > 0.

Furthermore as A→∞, we have ra → r∗.

Proof. Define
w(r) = H(r)− rh(r).

Clearly w(0) = 0 and the derivative satisfies w′(r) = −rh′(r).
From the properties of h′ we have w′(r) ≤ 0 for 0 ≤ r < rm, with strict inequality for 0 < r < rm,

and w′(r) > 0 for r > rm. Hence

w(r) < 0 for 0 < r ≤ rm. (14)

Since w(r∗) = 0 it follows that r∗ > rm. Moreover since w′(r) is strictly positive for r ∈ (rm, r
∗], it

follows that w(r) < 0 for r ∈ (rm, r
∗). Combining with (14) it follows that w(r) < 0 for r ∈ (0, r∗).

Now, we know that ra satisfies (10) for some A > 0. Thus we must have w(ra) > 0 and hence
it follows that ra ≥ r∗.

Now consider the situation in which A→∞. Define

z(r) =
h(r)2

H(r)− rh(r)

to denote the expression on the right hand side of (10) without the factor of 4π included. Since

z(r) = h(r)2

w(r)
we know from the earlier analysis of w that z(r) ≤ 0 for r < r∗ and z(r) ≥ 0 for r < r∗.

Now consider the derivative of z. We have

z′(r) =
(H(r)− rh(r))2h(r)h′(r) + rh′(r)h(r)2

(H(r)− rh(r))2

=
2h(r)h′(r)H(r)− rh′(r)h(r)2

(H(r)− rh(r))2

=
h(r)h′(r)(2H(r)− rh(r))

(H(r)− rh(r))2
(15)

Now consider the function q(r) = 2H(r) − rh(r) for r ≥ r∗. At r = r∗ we have q(r∗) =
2H(r∗) − r∗h(r∗) = H(r∗) > 0. Moreover the derivative of this function is q′(r) = h(r) − rh′(r)
which is non-negative for r > r∗ because h′(r) < 0. Thus q(r) > 0 for r > r∗. This observation
combined with the fact that h′(r) < 0 for r > r∗ and (15) implies that z′(r) < 0 for r > r∗. Thus
we have that z is strictly decreasing in the interval (r∗,∞). Moreover z(r)→∞ as r approaches
r∗ from above. Hence as A→∞ the left hand side of (10) →∞ and thus by virtue of (10) we
must have ra → r∗.
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Model (rt) g(r)− 1 K(r)− πr2

Gaussian (σ) (39) 1
4πκσ2 exp(−r

2

4σ2 ) 1
κ
(1− exp(−r

2

4σ2 ))

disk (R) (39) 2
π2R2κ

(cos−1( r
2R

)− r
2R

√
1− r2

4R2 ) †
Cauchy (ω)(45) 1

8πω2κ
(1 + r2

4ω2 )−3/2 1
κ
(1− 1√

1+ r2

4ω2

)

variance Gamma
ν = 1/2 (η) (46) 1

2πη2κ
exp(−r/η) 1

κ

(
1− e−

r
η

(
1 + r

η

))
Ising (16) aIr

−1/4 exp(−r/ξ) 2πaIξ
7/4
(

Γ
(

7
4
− Γ

(
7
4
, r
ξ

)))
Table 1. Cluster models used for analysis.† 2

κπ
(
r2 cos−1( r

2R)
R2 − r

√
1− r2

4R2 (r2+2R2)
4R3 + sin−1

(
r

2R

)
).

Also, for disk model, the functions provided here are for r ≤ 2R, for r > 2R, it is 0. Note that for
disk, g(r) = 1 at r ≥ 2R, which provides a simple estimator for R.

Cluster model Expression for p = ra/rt
Theoretical lower bound
for p (to 5 digits)

Gaussian (p = ra/σ) κσ2 = e−
p2

4 p2

8π

(
−p2+2e

p2

4 −2

) 2.24181

Disk (p = ra/R) κR2 =
p2
(
p
√

4−p2−4 arccos( p2)
)2

π2
(√

4−p2(3p2−2)p−8p2 arccos( p2)+8 arcsin( p2)
) 1.29564

Cauchy(p = ra/ω) κω2 = p2

π(p2+4)3/2((p2+4)3/2−4p2−8)
2.54404

varGamma (p = ra/η) κη2 = p2

4π(exp(2p)−exp(p)(p2+p+1))
1.79328

Ising (p = ra/ξ)
1

2π
a−1
I ξ1/4 = exp(−2p)p3/2

4π(− exp(−p)p7/4−Γ( 7
4
,p)+Γ( 7

4))
1.37220

Table 2. Exact expressions for the radius of maximal aggregation ra for different
cluster models.

Cluster model m = d/rt n = a/at l = Na/Nt

Gaussian 1.54 1.26 1.48
disk .8 1.81 1.48
Cauchy 1.7 1.17 .85
varGamma 1 1 1

Ising .5 2.15r
−1/4
t (≈ .38− 1.44) .59

Table 3. Theoretical scaling for different cluster models, in using the exponential
approximation for PCF and using Least Square Error criteria. d, a,Na correspond to the
approximate PCF model ga(r) = 1 + a exp(−r/d). True parameters rt,at and Nt corresponding to
the model PCFs of the form f(r) = atv(r, rt) can be obtained from Table 1 and using 4. The
minimum rm value, used in the calculation of the Squared Error E (in 13), for each model is as
follows: Gaussian - 6σ, disk - 3R and Ising - 4ξ, and higher values for rm give the same results. In
the case of Cauchy model rm =∞ was used, and for varGamma any rm > 0 corresponds to the
results in the table. The m.95 values: m.95 = d/r.95, r.95 being the scale at which 95% of points are
expected to lie, are .63,.82,.38 and .28 respectively, for Gaussian, disk, Cauchy and varGamma
models.
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Figure 1. Relation between the radius of maximal aggregation and true cluster size.
a For different cluster models, the relation between the ratio of radius of maximal aggregation ra
and cluster size parameter of the true process rt, as a function of the number of clusters per unit
area κ and rt. The minimum p value is obtained by exploiting the singularity in (10), given in
Table 2 b Plots in a after translating by the minimum p and in log-log scale (inset). Note the partial
power law like shape. c p.95, the ratio between ra and r.95, the latter being the true scale within
which 95% of all clustered points lie, plotted against κr2

.95. It can be seen that the relationships are
model dependent. Note that for a sample with 10 clusters per µm2 and r.95 = 20nm, κr2

.95 = .004.
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Figure 2. Comparison of theoretical results on p = ra/rt with that from simulations
a,b Results from theory (solid curve) as well as simulations on unit square window(dots), for disk
and Gaussian clusters respectively. Only the mean value from 100 simulations are shown, for clarity,
and the plot with error bars can be seen in Supporting Material Figure 1. It can be seen that in
both disk and Gaussian cases, the mean values from simulations deviate from the theoretical values
with increasing κr2

t . c,d The Root Mean Squared error, normalized by the theoretical value, for
disk and Gaussian clusters respectively, plotted against rt. The colors denote different κ values. It
can be seen that the error values are highly influenced by rt.
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a b

window length window length

Figure 3. Results in the case of normalized K-function K̃(r, n)

a Gaussian clusters, b disk clusters. In the case of K̃, the p̃ = r̃a/rt depends on the number of
points n and the ratio m between the size of the observation window (side length of a square in
this case) and the true size parameter rt, and converges to a maximum value at large m, which is
approximately equal to the minimum values obtained in the case of ra based on L(r)− r. Note
that in the case of clusters with R = 20nm with an area of analysis of size 10µm, m = 500, and p̃
is close to the maximum value, and hence a constant. On the other hand, if the area of analysis
was smaller, say 1µm, m = 50, and p̃ depends on n.
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Figure 4. Demonstrative example of fitting model PCFs to the empirical PCF of a disk point
pattern
The empirical PCF of the point pattern in the left is calculated, and is fit to the theoretical PCFs
of various cluster processes. Fit results (κ̂, r̂t, ∆̂), ∆̂ being the value of the objective function for the
best fit parameters, called fit residual: Gaussian (38.11, .028, .418), disk (40.64, .052, .435), Cauchy
(21.55, .051, .284), varGamma (27.86, .040, .350)), whereas the true values of the disk point pattern
are (κ = 50, rt = R = .05). Note that r̂t is defined differently for different processes (Table 1). The
Cauchy distribution is found to have the best fitness, whereas the disk one — the true model —
has the worst. The p = ra/rt corresponding to disk distribution, with the estimated parameters
above is p̂ = 1.44. The maxima of L(r)− r is at r̂a = 0.072, providing a r̂t = r̂a/p = .05, equal to
the true R.
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a b

Figure 5. a Optimal Least Square Error fits for different models. For parameter values a = 1 and
d = 10, the PCFs corresponding to different models in Table 1 is plotted, with the parameters
scaled as per Table 3. For simplicity, only r ≥ 1 is shown. b Mean estimates of N (number of
points per cluster) from fitting the empirical PCF of Gaussian clustered point patterns with (1)
Gaussian PCF (2) the exponential approximation ga(r)(results from 20 simulations on a unit
square window). The results broadly agree with the theoretical prediction of l = 1.48, approaching
it with larger Ntrue. A plot with error bars can be seen in Supporting Material Figure 5.
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1 Derivation of f(p) = κr2
t and similar expressions for p

Here we derive the relation in the case of Neyman-Scott process with Gaussian shaped clusters. The
derivation in the case of other distributions are similar, starting from the expressions in Table 1, Main
Text.

We start from the K-function for Gaussian shaped clusters:

K(r) = πr2 +
1

κ
(1− exp(

−r2

4σ2
)). (1)

In the form K(r) = πr2 + 1
AH(r) as in Main Text, this corresponds to A = κ,H(r) = 1− exp(−r

2

4σ2 ) and

h(r) = r
2σ2 exp(−r

2

4σ2 ). Substituting in the equation

A =
h(ra)

2

4π(H(ra)− rah(ra))
(2)

from Main Text and rearrangement will give the relation as in Table 2, Main Text.

2 95% scale for various models

These were found by solving the CDF
∫ r

0 fpdf (r)dr = .95 for r, where fpdf (r) is the radial probability
density function for each model(1–3). In the case of Cauchy and varGamma models, marginal PDFs of r
in polar coordinates were obtained from the bivariate PDFs in cartesian coordinates by standard trans-
formation(multiplication by 2πr). The results are given in the following table, along with the 95% limits.
Kν(.) denotes the modified Bessel function of the second kind.

1
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Figure 1: Comparison of p = ra/rt from theory and simulations. Figure 1 in Main Text with error bars(σ).

Model fpdf (r) r.95 = u.95rt Lower bound for p.95

Gaussian r
σ2 exp

(
− r2

2σ2

)
2.448σ .914

disk 2r
R2 .975R 1.329

Cauchy r
ω2

(
1 + r2

ω2

)−3/2
4.469ω .568

VarGamma
4√2r3/4K− 1

4

(
r
η

)
η7/4Γ( 3

4)
3.547η .505

3 Radius of maximal aggregation in the case of K̃(r, n) of Lagache et al

Setting ∂K̃(r,n)
∂r = 0 for disk clusters as discussed in Main Text, followed by routine manipulations lead us

to the relation:

−
0.0210642p2

((
16 − 4p2

)
cos−1(0.5p) + p

√
4− p2

(
p2 − 4

)) (
6.0286m3 + 7.35489m2p− 18.9394mp2 + np3

)
p2 − 4

+ 0.00789906p
(
2.45163m2 − 12.6263mp+ np2

) (√
4− p2

(
p2 + 2

)
p− 8p2 cos−1

(p
2

)
− 8 sin−1

(p
2

))
+0.0317468

(
m3 + 1.22m2p− 3.14159mp2 + 0.165876np3

) (√
4− p2

(
p2 + 2

)
p− 8p2 cos−1

(p
2

)
− 8 sin−1

(p
2

))
= 0, (3)

where p = r̃a/R, m = side/R where A = side2, P = 4.side.
The contour plot of p vs m, based on this expression, is shown in the Main Text, for different values of

n.

2
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In the case of Gaussian clusters, the relation is simpler:

m3

(
p2 − 2e

p2

4 + 2

)
+m2p

(
1.22p2 − 3.66e

p2

4 + 3.66

)
+mp2

(
−3.14159p2 + 12.5664e

p2

4 − 12.5664

)
+ np3

(
0.165876p2 − 0.82938e

p2

4 + 0.82938

)
= 0, (4)

and the corresponding contour plot is provided in Main Text.

4 Derivation for bias in PCF based on Least Squared Error

We simply show the case for Ising model. Derivation for other models follow the same procedure. For
ga(r) = 1 + a exp(−r/d) and f(r) = 1 +Ar−1/4 exp(−r/D), the Least Squared Error criteria gives:

(â, d̂) = arg min
a,d

E = arg min
a,d

∫ rm

0
(f(r)− ga(r))2dr. (5)

We obtain: E = −1
2a

2d
(
−1 + e−

2rm
d

)
+

A2
√

π
2

√
rmErf[

√
2
√

rm
D ]√

rm
D

−
2aAr

3/4
m

(
Γ[ 3

4 ]−Γ
[

3
4
,
(d+D)rm

dD

])
(

(d+D)rm
dD

)3/4

∂E
∂a = 0 =⇒ ∂E

∂a = −ad
(
−1 + e−

2rm
d

)
−

2Ar
3/4
m

(
Γ[ 3

4 ]−Γ
[

3
4
,
(d+D)rm

dD

])
(

(d+D)rm
dD

)3/4 =0

∂E
∂d = 0 =⇒ ∂E

∂d = −1
2a

2
(
−1 + e−

2rm
d

)
− a2e−

2rm
d rm
d −

2aAdDe−
(d+D)rm

dD

(
rm
dD
− (d+D)rm

d2D

)
(d+D)r

1/4
m

+
3aAr

3/4
m

(
rm
dD
− (d+D)rm

d2D

)(
Γ[ 3

4 ]−Γ
[

3
4
,
(d+D)rm

dD

])
2
(

(d+D)rm
dD

)7/4 =0

Solving both equations separately for a = â, we obtain:

â =
2Ae

2rm
d r

3/4
m

(
Γ[ 3

4 ]−Γ
[

3
4
,
(d+D)rm

dD

])
d

(
−1+e

2rm
d

)(
(d+D)rm

dD

)3/4

and,

â =

4ADe
− (d+D)rm

dD r
3/4
m

d(d+D)
−

3Ar
7/4
m Γ[ 3

4 ]

d2
(

(d+D)rm
dD

)7/4
+

3Ar
7/4
m Γ

[
3
4 ,

(d+D)rm
dD

]
d2

(
(d+D)rm

dD

)7/4

−1+e−
2rm
d + 2e

− 2rm
d rm
d

Equating both the above expressions of â, simplifying, and setting m = d/D and k = rm/D, we get:

2e
2k
m (Γ( 3

4)−Γ( 3
4
,k(1+ 1

m)))

e
2k
m −1

+
me

k( 1
m−1)(4( km+k)

3/4−3Γ( 3
4)e

k
m+k+3e

k
m+kΓ( 3

4
,k(1+ 1

m))
)

(m+1)
(
m
(
e

2k
m −1

)
−2k

) = 0

Note that this equation does not contain the amplitude parameters a and A. A contour plot of this
equation is shown in Figure 2. For reasonably large values of rm (i.e., rm > 2D), m = d̂/D = .5. That is,
the correlation length parameter estimated by the approximate model is half of the correlation length of
the true model.

From these results, the parameter values k = 4,m = .5 (or any k > 2) can be substituted in the
expression for â, to obtain:

n =
a

A
= 2.15031D−1/4

3
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That is, the amplitude parameter of the approximate model is dependent on both the true amplitude
parameter as well as the correlation length. The relationship is shown in Figure 3. This parameter could
be n = .38 − 1.44 scaled from the true amplitude parameter for D = 5 − 1000nm, relevant scales for
membrane protein clusters.

Now, the average number of points per cluster:

NI = 1 + ρ

∫ ∞
0

(f(r)− 1)2πrdr ≈ 2πAD1.75Γ

(
7

4

)

Na ≈ 2πad2ρ = 3.3777AD1.75 = 0.584919NI

That is, the approximate model underestimates the average number of points per cluster by over 40%.

k=rm/D

Figure 2: Contour plot of k = rm/D vs m = d/D for Ising model. rm is the distance value to which the
Least Squares sum is taken. After ≈ rm > 2D, the m value is fixed at .5.
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Figure 3: Plot of D vs n = a/A, at k = 4,m = .5.
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Figure 4: Comparison of fitting empirical PCF of Gaussian clusters to (1) exponential PCF ga and (2)
theoretical PCF of Gaussian clusters, for different true cluster σ. Figure 5b in Main Text shown with error
bars(σ).

5 Case of power law PCF

In the case of the PCF g(r) = 1 + c
(
r0
r

)s
, assuming s 6= 1,

K(r) = πr2 +
2πc

2− s

(r0

r

)s
r2 (6)

5
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for s < 2.
A in (10) of Main Text will be A = 2−s

2πc . Using (10), we get:

p =
ra
r0

=

(
c(2− s)
2(s− 1)

)1/s

. (7)

A plot of this equation for different s is shown in Figure 5. It can be seen that p varies across orders
of magnitude based on values of s and c.

Figure 5: Ratio of radius of maximal aggregation to true cluster size parameter p = ra
r0

for power law PCF.
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