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Abstract 39 

Flux balance analysis (FBA) is an increasingly useful approach for modeling the 40 

behavior of metabolic systems.  However, standard FBA modeling of genetic knockouts can 41 

not predict drug combination synergies observed between serial metabolic targets, even 42 

though such synergies give rise to some of the most widely used antibiotic treatments.  Here 43 

we extend FBA modeling to simulate responses to chemical inhibitors at varying 44 

concentrations, by diverting enzymatic flux to a waste reaction. This flux diversion yields 45 

very similar qualitative predictions to prior methods for single target activity.  However, we 46 

find very different predictions for combinations, where flux diversion, which mimics the 47 

kinetics of competitive metabolic inhibitors, can explain serial target synergies between 48 

metabolic enzyme inhibitors that we confirmed in Escherichia coli cultures.  FBA flux 49 

diversion opens the possibility for more accurate genome-scale predictions of drug 50 

synergies, which can be used to suggest treatments for infections and other diseases.     51 

 52 

Introduction 53 

Microbial infections are a major burden on societies, and the emergence of drug-54 

resistant bacteria poses an increasing threat to human welfare.  Drug combinations can 55 

overcome resistance by creating new therapeutic avenues inaccessible to single target 56 

drugs [1-3] or eliminating functional redundancies exhibited by robust biological networks [4]. 57 

However, although combinations are increasingly the standard of care for many bacterial 58 

infections [5,6] the complexity of microbial biology and the vast number of possible target 59 

combinations makes finding new effective drug combinations challenging.  60 

Systems biology may provide a solution to this challenge [7-9], by modeling microbial 61 

systems as complex networks of interacting components. Dynamic models of microbial 62 

function under drug treatment [10,11] can provide detailed and accurate representations of 63 

phenotypes, but the scale of such models is limited by the scarcity of kinetic molecular 64 

reaction rate measurements.  Graph-theoretic networks of metabolic interactions found in 65 

KEGG or Metacyc [4,12,13] can address the true scale of microbial biology, but are limited 66 

to static representations with only limited relevance to drug response phenotypes.   67 

A successful approach towards genome-scale modeling is Flux Balance Analysis 68 

(FBA) [14-16], which utilizes reaction stoichiometry to model metabolic capabilities at steady 69 

state (Fig 1A). By integrating the properties of metabolic networks into a single growth 70 

phenotype, FBA enables predictions of enzymatic gene essentiality and even genetic 71 

interactions. FBA approaches have been used to predict the nutrient dependent metabolic 72 

phenotype of gene knockouts (Fig 1B) [15,17], and have been successfully applied to model 73 
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the combined effects of double knockouts in microbial systems [18]. Recently, integration of 74 

proteome structure has allowed for the prediction of the temperature dependence of 75 

metabolic reactions on a genome wide scale [19]. Several methods have also been 76 

developed to incorporate gene expression and other high throughput data to constrain fluxes 77 

through particular reactions predicting metabolic states corresponding to specific gene 78 

expression states; E-flux in particular has been used to predict the impact of drugs given 79 

expression data [20-24]. Finally, incorporation of gene expression networks and protein 80 

translation processes has enabled a mechanistically detailed description of cellular trade-81 

offs occurring during various growth phases and nutrient limitations[25-29]. However, none 82 

of the above methodologies models the effects of drug dosing.  The continuous responses to 83 

varying inhibitor concentrations are especially critical for identifying and interpreting drug 84 

combination effects[10].     85 

Here we have extended FBA modeling to simulate drug effects over multiple doses.    86 

We explore new methods for simulating drug treatments with FBA, considering both direct 87 

target flux restriction[3] and a model that diverts flux to non-productive waste pathways (Fig 88 

1). In flux restriction “FBA-res”, the flux through the target reaction is restricted by a variable 89 

scalar factor (Fig 1C), while in flux-diversion “FBA-div”, we instead divert flux to a waste 90 

reservoir (Fig 1D). The two methods yield similar results to knockout simulations for single 91 

agent effects, but have very different predictions for combinations. Only FBA-div predicts 92 

potent antibiotic synergies targeting metabolism. 93 

 94 

 95 

 96 

 97 

Materials and methods 98 

Simulations 99 

The Escherichia Coli iAF1260 model created by Bernhard Palsson’s group at UCSD 100 

serves as our bacterial model in this work[30], which contains species-specific metabolic 101 

reactions, linked together in a network by substrates and products. For our simulations, we 102 

will assume bacterial growth on rich media with ample supplies of oxygen, glucose, 103 

ammonia, potassium, sulphur, and all amino acids.  104 

All drug effect simulations were performed with an R-script using the R package Sybil 105 

(Systems Biology Library for R)[31] and the genome-scale reconstruction of Escherichia 106 

Coli. The “Ec_iAF1260_flux2” model was downloaded in xml format and added to the R 107 

workspace.  After downloading, the growth flux is calculated using the built in optimization 108 

module “optimizeProb” with the algorithm set to “fba”.  The theoretical framework for FBA-109 
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res models drug perturbations as a scalar restriction of flux through a targeted reaction.  We 110 

implement FBA-res by reducing the flux bounds by a scalar alpha for each dose of every 111 

target.  This creates a new drug perturbed model.  The drug perturbed model is sent to 112 

optimizeProb with the algorithm set to “fba”.  Growth inhibition is calculated with the 113 

unperturbed and perturbed growth fluxes.  After each dose for combinations or single 114 

agents, we reset to the original model to implement the next perturbation. The theoretical 115 

framework for FBA-div models drug perturbations as a scalar diversion of flux, which 116 

depends on the magnitude of the perturbation (dose).  We implement FBA-div by first adding 117 

waste reactions and waste metabolites to the model.  Initially the waste metabolites do not 118 

belong to any reaction, and the waste reactions consume waste metabolites irreversibly.  To 119 

simulate drug effects, the amount of metabolites produced by a targeted reaction are 120 

reduced by alpha and the remainder of mass is converted into a waste metabolite, which is 121 

now connected to the targeted reaction.  Waste reactions consume any diverted waste 122 

metabolites.  In the case of reversible reactions, two irreversible reactions are created with 123 

different waste metabolites, and alpha is applied to both reactions.  This is the drug 124 

perturbed model.  The drug perturbed model is sent to the optimization module 125 

“optimizeProb” with the algorithm set to “fba”.  Growth inhibition is calculated with the 126 

unperturbed and perturbed growth fluxes.  After each dose for combinations or single 127 

agents, we reset to the original model to implement the next perturbation.   128 

Drug effects on a targeted metabolic reaction were implemented in the genome-scale 129 

model either by limiting the target flux (FBA-res) or limiting the amount of mass converted 130 

from substrate to product by diverting metabolic mass to a waste reaction (FBA-div).  131 

Inhibition values Inhib = 1 - ftreat/fwt, where fwt and ftreat are the simulated biomass flux rates for 132 

untreated and drug treated bacteria.  In both cases the MOMA quadratic programming 133 

algorithm for simulating perturbed biological networks was implemented to find the change in 134 

biomass flux. The IC50 value for a reaction describes the amount by which reaction flux 135 

must be reduced to inhibit growth by 50%.  For FBA-res, flux is directly restricted by a scalar 136 

drug concentration, and so the IC50 is the scalar that achieves a 50% growth inhibiting flux 137 

restriction.  For FBA-div, flux is diverted to a waste reaction, and so the IC50 is the value 138 

that achieves 50% growth inhibiting flux diversion. First, a central perturbation of αcent (where 139 

αcent=1+[Inhibitor]/Ki and for simplicity Ki=1) was found for each target enzyme using a 140 

bisection search to yield half the inhibition level of a full FBA gene deletion (for enzymes 141 

showing no deletion phenotype, we used α=5,000,000 since this value reproduced synthetic 142 

lethal interactions in[12]. Simulated response curves were then generated for each enzyme, 143 

with five concentrations centered on this αcent using 3x dilution steps of inhibitor 144 

concentration (α-1), covering a ~100x dynamic range (Fig 2A).  For each pair of agents, we 145 
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then generated dose matrices by simulating combined inhibitors at all pairs of those 146 

concentrations (Fig 2B).        147 

Complete analysis methods are provided as an R-project package, which includes 148 

the metabolic network matrix, the analysis code, and all supporting data files. Complete 149 

simulation results are also provided in S1 Table.   150 

 151 

Single agent effect, combination synergy score, and epistasis 152 

We used simple metrics of single agent and combined inhibitor responses (Fig 2A), 153 

based on maximum inhibition levels max(I) or on 50% inhibitory concentrations IC50.  154 

Comparing max(I) values permits comparisons with standard FBA knockouts, while IC50s 155 

allow fuller use of the dose-responsiveness of inhibitors. The maximum inhibition max(I) and 156 

50% crossing concentration IC50 was measured for each target, and if max(I)<0.5, IC50 was 157 

set to the top concentration. 158 

Synergy was then determined for each dose matrix using either an effect difference 159 

max(ΔI) or “shift index” SI50, compared to the single agents (Fig 2B). The combination data 160 

IXY (blue point) are compared to the corresponding single agent response values IX,IY (green 161 

points), and max(ΔI) = max{IXY - max(IX,IY) }, shows the Gaddum “best single agent” 162 

expectation[32].  All combination points were considered, with the largest difference across 163 

the matrix recorded as the score. Positive max(ΔI) values correspond to synergy (more 164 

effect than the better single agent at comparable doses).  For dose shifting, the matrix 165 

diagonal (blue area) is compared to the two single agent curves (green areas).  The 166 

combination’s 50% inhibitory crossing point along the diagonal has single agent component 167 

concentrations C50X and C50Y, which are compared to the single agent 50% inhibitory 168 

concentrations IC50X and IC50Y, to calculate SI50 = max(C50X/IC50X, C50Y/IC50Y). This 169 

SI50 indicates whether the combination shows synergistic (SI50<1) or antagonistic (SI50>1) 170 

dose shifting, relative to the Gaddum response surface. We also calculated a standard 171 

Loewe combination index CI50 = CX/IC50X + CY/IC50Y, which measures synergy relative to 172 

Loewe dose additivity[33], which is used to determine whether a combination outperforms a 173 

“drug-with-itself” sham combination (CI50=1 for dose-additive). All scores for simulated and 174 

experimental combinations are listed in S1 Table.   175 

Simulated epistasis was classified (Fig 2C and D) based on the max(I) values for a 176 

combination and its single agents.  If a combination’s max(I) < 0.05 or max(ΔI) < 0.05, we 177 

set epistasis to non-interaction “None”, corresponding to a Gaddum “best single agent” 178 

interaction model.  Epistasis was then set to potentiation “Pot” if single agent max(I) >= 0.5 179 

for both agents, synthetic lethal “SL” if max(I) < 0.5 for both agents, or partial synthetic lethal 180 

“PSL” otherwise.  To account for higher noise levels in experimental combinations, we used 181 
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the same classification scheme, except that epistasis=None was called when max(I) < 0.25 182 

or max(ΔI) < 0.25 for a combination.  Epistasis calls are recorded in S1 Table. 183 

 184 

Proliferation assay 185 

To experimentally validate the predicted drug interactions, 28 drug-pairs were tested against 186 

E. coli MG1655 (S3 Table). In order to explore the full interaction surface the drug pairs were 187 

tested in an 8x8 well 2d drug-gradient matrix in a 96 well plate, in addition to the drug matrix 188 

the plate also contained gradients for each of the sing drugs as well as negative and positive 189 

controls. For both the drug matrix and the single drug gradients the highest drug 190 

concentrations were 4 times above the minimal inhibitory concentration (MIC). The plates 191 

were inoculated with a 96 pin replicator and incubated 18-20 hours at 37º C.  After 192 

incubation, OD600 was read using a BioTek H1 plate reader. Each plate was produced in 193 

five replicates.  Raw data are presented in S4 Table, and response scores are in S1 Table. 194 

 195 
 196 
Results 197 

Flux balance analysis frameworks for modeling drug inhibition   198 

Extensive networks of microbial metabolism have been constructed that link together 199 

thousands of species-specific metabolic reactions mined from the literature and online 200 

databases [34]. Simulating the behavior of microbial metabolism requires not only the 201 

stoichiometry captured by such networks, but also detailed kinetic parameters which are 202 

unknown for most reactions – even for well-studied microbes like E. coli. FBA addresses this 203 

limitation by replacing those parameters with linear fluxes through all the metabolic 204 

reactions, and using linear programming to derive steady-state flux values optimized on an 205 

objective function constructed from experimental abundances of nucleotides, amino acids 206 

and of anabolic metabolites [15,16,35]. FBA models optimize steady-state production of 207 

these essential building blocks, enforcing consistency with limits imposed by the network’s 208 

connectivity, flux limits and the conservation of mass between reactions.  209 

FBA models have been used to successfully predict the effects of genetic knockouts 210 

[15,17].   In FBA, under steady state, a system of j=1…N reactions between i=1…M 211 

metabolites should satisfy ∑j sij vj = 0, where vj are the reaction velocities and sij are 212 

stoichiometric coefficients that account for reaction affinities and connectivity.  FBA models 213 

solve for the vj that maximize simulated flux through the objective function, constrained by 214 

this mass conservation requirement and any vj,min<vj<vj,max limits. To model gene essentiality 215 

using the standard knockout “FBA-ko” approach, the target enzyme’s reaction rate is set to 216 
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vj=0, after which the model is re-optimized with a linear programming algorithm to maximize 217 

the objective function (Fig 1B and S1 Fig).  Growth is represented by a biomass reaction 218 

which integrates the outputs from many metabolic pathways. A refinement to FBA applies 219 

“minimization of metabolic adjustment” (MOMA)[36], which requires the re-optimized 220 

reaction coefficients to minimize their distance from the unperturbed values, rather than 221 

seeking the maximum objective function flux consistent with the applied constraints. MOMA 222 

has been applied to E. coli and yeast metabolic networks and can successfully predict 223 

phenotypic responses to single[36] and double knockout experiments[18]. 224 

Extending FBA to drug perturbations, we consider two approaches: our previous 225 

“FBA-res” directly restricts the target flux while our new “FBA-div” diverts flux to non-226 

productive waste.  FBA-res reduces the velocity vj through a targeted reaction by a scalar 227 

factor α (Fig 1C and S1 Fig ). Thus, instead of FBA’s vj=0 constraint, we set vj!vj/α and re-228 

optimize the reaction fluxes. FBA-div modeling scales down the target’s stoichiometric 229 

affinity, rather than its maximum reaction rate (Figure1D and S1 Fig). Specifically, FBA-div 230 

inhibits an enzyme by setting sij!sij/α, for metabolites targeted by the inhibitor, before re-231 

optimizing to the objective function. To conserve mass, we introduce transport reaction, 232 

si(N+1), with compensating stoichiometric coefficients si(N+1)=1-∑j sij/α that divert excess 233 

substrate to an infinite waste sink.  We use standard FBA linear programming to solve the 234 

optimization problem in conjunction with our FBA-div methodology. In contrast to FBA-res, 235 

this waste diversion prevents other enzymes from increasing their reaction rates in response 236 

to target flux restriction. This usually predicts greater biomass reductions than FBA-res for 237 

the same level of target flux inhibition.  238 

 239 

 240 

Simulating drug epistatic interactions 241 

To evaluate these approaches, we simulated combination effects using standard 242 

FBA-ko, FBA-res and FBA-div, applied to the iAF1260 model of Escherichia coli metabolism 243 

[30]. To explore mechanistic patterns, we chose 50 enzymes to cover synthetic lethal 244 

synergies and antagonisms found using FBA-ko [12] and sample key pathways in bacterial 245 

metabolism (S2 Table).  Inhibition of each target was simulated at 5 “drug” concentrations 246 

using FBA-res and FBA-div, in each case estimating inhibition by the flux through the growth 247 

reaction in perturbed and unperturbed states (Methods and S1 Fig).  We used the same 248 

methodology to generate combination response matrices across all 25 pairings of single 249 

drug concentrations.  To score the simulation results, we used metrics of single agent and 250 

combined inhibitor responses, based on maximum inhibition levels or on 50% inhibitory 251 

concentrations IC50 (Fig 2A and B), and focused our analysis on the maximum effect max(I) 252 
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and synergy score max(ΔI).  We also classified simulated interactions into four epistasis 253 

types, based on the dose matrix response shapes (Fig 2C and D).  These analyses were 254 

performed for all 1225 possible pairwise combinations of our 50 targets (S1 Table).     255 

The single agent responses were very similar between methodologies, but 256 

combinations differed greatly (Fig 3 and S2-S4 Figs).  Both FBA-res and FBA-div single 257 

agent activities were consistent with FBA knockouts (R~1, Fig 4). Moreover, even the IC50 258 

concentrations showed a strong quantitative correlation (R=0.98, Fig 5).  For combinations 259 

(Fig 4B), all three approaches mostly generated non-interacting pairs, with max(I) reflecting 260 

the more effective single agent’s, and no epistasis.  However, there is a clear increase in the 261 

number and variety of interactions between FBA-ko, FBA-res, and FBA-div.  While FBA-ko 262 

synergies were restricted to synthetic lethal (SL) epistasis, some partial synthetic lethal 263 

(PSL) appeared in FBA-res, and a large number of potentiation (Pot) synergies were added 264 

with FBA-div.    265 

Arranging the results by target pathway reveals informative patterns (Fig 3 and S2-266 

S4 Figs).  First, we located our iAF1260 targets on the iJR904 [37] pathway maps, and then 267 

assigned gene identities with reference to KEGG [34].  Pathways were then represented 268 

using concise descriptors listed in S2 Table. All three simulation approaches show active 269 

single agents clustered in pathways essential for E. coli growth in rich media (glycolysis, 270 

citrate cycle, folate and murein biosynthesis, and certain amino acid pathways), and the 271 

responses for any particular enzyme are more or less uniform within each such pathway.  272 

Combination effects within pathways and interactions across pathways were mostly 273 

consistent across targets in each pathway even though they vary substantially between the 274 

different simulation methodologies.  Specifically, FBA-ko (Fig 3 and S2 Fig) generated a 275 

small number of SL interactions, all of which are between individually inactive alternative 276 

reactions that are connected by a shared downstream output.  Examples include TKT2 with 277 

other Energy/pentose enzymes, PPS with other Energy/glycolysis enzymes, and multiple 278 

isozyme pairs (GLUDy+GLUSy, TRPS1+TRPS3, GARFT+GART, DHORD2+DHORD5).  279 

There are also weaker interactions between PGL in Energy/pentose and the 280 

Energy/glycolysis enzymes, as well as between the glycolysis and Amino/SerGly pathways.  281 

Inhibiting with FBA-res (S3 Fig) reproduced all of these effects, but also added some PSL 282 

synergies involving one responsive target, either between closely connected enzyme pairs 283 

(eg, GLUDy+GLNS or between the Energy/pentose and Energy/citrate pathways).   Finally, 284 

FBA-div simulations (Fig 3 and S4 Fig) recapitulated all of the FBA-ko and FBA-res effects, 285 

with a large number of additional Pot synergies.  Generally, Pot occurred between pathways 286 

with active targets, especially between serial targets in the same pathway.  Interestingly, the 287 

level of Pot synergy varied, with the strongest between serial targets in the same pathway 288 

(eg, in folate, murein, and amino-Lys).  Cases where specific enzymes in a pathway stand 289 
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out can be explained.  For example in murein biosynthesis, there is strong FBA-res synergy 290 

between ALAR in amino-Ala with MCT1App and MPTG but the synergy is much weaker with 291 

UAGCVT (Fig 3 and S4 Fig).  This can be understood as an extension of serial target 292 

synergy, because multiple alanine moieties dependent upon ALAR are added by MCT1App 293 

to its substrate, but below UAGCVT in the pathway.  Another example is the especially 294 

strong interaction of SDPTA in amino/Lys with targets in Energy/citrate.  A by-product of 295 

SDPTA is alpha-ketoglutarate (akg), a key metabolite in the citrate cycle.  296 

 297 

Diverted flux FBA predicts clinical drug synergies 298 

To test how well each of the simulation methodologies models inhibited bacterial 299 

metabolism, we selected 28 combinations for experimental testing.  Combinations were 300 

chosen to represent known synergistic and non-synergistic combinations, using compounds 301 

that sample different mechanisms of action across the metabolic network.  The set includes 302 

cell wall metabolism inhibitors ampicillin, aztreonam and fosfomycin, folate synthesis 303 

inhibitors sulfamethoxazole and trimethoprim and metabolic inhibitors of central metabolic 304 

enzymes. The effect of each combination was tested in E. coli cultures using an 8x8 drug 305 

concentration-gradient matrix, with twofold dilutions between each step. Each top 306 

concentration was selected to capture published in-vitro E. coli responses, and combinations 307 

were tested at all possible pairs of each drug’s concentration series (S3 Table).  Results are 308 

reported in S4 Table, with combination response matrices displayed in S5 Fig.  Calculated 309 

response and synergy scores are integrated with the model scores (S1 Table).    310 

Given the variety of pharmacodynamic effects that influence single agent potencies, 311 

we did not expect and also did not find strong agreement between the simulated and 312 

experimentally observed single agent max(I) or IC50 values (S1 Table). Aside from the 313 

clinical antibiotics, there are very few well characterized probes with selective activity on 314 

single metabolic targets, so it is not surprising that half of the compounds showed no activity 315 

against E. coli proliferation (S1 Table). The antibiotics showed some agreement with the 316 

FBA simulations in terms of Max(I) and IC50, but only in a qualitative sense.   317 

For combinations, however, flux-diverted FBA was able to model the strong antibiotic 318 

synergies that target serial enzymes within a pathway (Fig 6A).  FBA-div predicts the large 319 

potency shifts seen for both Sulfx+Trimp and Ampcl+Aztrm, while FBA-res and FBA-ko do 320 

not (Fig 6B and S1 Table). The experiments also found a number of moderate synergies 321 

(Fig 7), most of which involve inhibitors of targets just upstream of the same two pathways 322 

(eg, Ampcl or Aztrm combined with Fosfm or Cyser). Only a hint of the antibiotic synergy is 323 

detected for those probes, however, most likely due to less-specific enzyme targeting.  324 

Combination effects were absent, as expected, for those probes showing no single agent 325 
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activity and thus not likely to have any relevant activity on the ascribed target. Finally, there 326 

was one experimental antagonism (Ampcl+Sulfx), that was not predicted by any of the FBA 327 

methods.  Overall, comparing synergy scores (Fig 7), FBA-res and FBA-ko synergy scores 328 

shows no consistency with the experimental results, while the FBA-div simulations yield 329 

significant positive correlations (R ~ 0.44, p < 0.01) for max(ΔI).  Accordingly, FBA-div 330 

represents the most accurate computational predictor of serial target anti-metabolic 331 

synergies.     332 

 333 

Discussion 334 

While FBA methodologies have shown great potential for rationalizing metabolic 335 

engineering efforts and identifying synthetic lethal genetic dependencies, traditional FBA 336 

knockout simulations fail to predict the most useful antibiotic synergies that target 337 

metabolism. As drug combination therapies gain importance for antibiotic treatment, more 338 

accurate large-scale prediction methods are sorely in demand.  Here we show that 339 

extending FBA simulation using flux diversion can accurately model the strong dose-340 

dependent synergies observed between inhibitors of bacterial metabolism. 341 

The FBA-div methodology outperforms both FBA-res and standard knockout FBA for 342 

predicting experimental combination effects, especially for one of the most important 343 

antibacterial combinations that target metabolism. Prior approaches for simulating drug 344 

epistasis completely missed synergies like sulfamethoxazole and trimethoprim, because 345 

knockout and restriction-based approaches find no interactions between serial targets in a 346 

pathway.  In contrast, FBA-div predicts strong synergies from targeting sequential targets in 347 

the same pathway, similar to what has been found for competitive inhibition of serial targets 348 

with negative feedback in kinetic simulations[10].  While this is not the usual expectation 349 

from paired knockout analyses[18] it is consistent with strong antibiotic synergies being used 350 

in the clinic. Among our 28 tested combinations, the correlation between FBA-div and 351 

experimental synergy scores is modest (R ~ 0.442), due to the scarcity of selective 352 

metabolic inhibitors.  However, with metabolism increasingly a focus of drug development, 353 

especially for combinations, FBA-div simulations could help discover and prioritize drug 354 

targets in multiple disease areas.   355 

Broader patterns of synergy across pathways (eg, Fig 3 and S4 Fig) can also provide 356 

key insights into the functional connections that are most relevant to the system under 357 

study[10,18]. It is notable that there are consistent patterns of single agent activity and 358 

combination epistasis within a pathway, and again consistent patterns between targets 359 

across pathways, confirming target connection topology as a major determinant of simulated 360 

combination effects[10,18].  All three methods discussed here find strong synthetic lethality 361 
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between isozymes of essential reactions, and weaker interactions between alternative 362 

essential pathways.  However, FBA-div provides by far the richest source of predicted 363 

synergies.  For example, the citrate cycle synergizes with Lysine metabolism, but 364 

exceptionally strongly with SDPTA, revealing a direct connection through that enzyme’s by-365 

product alpha-ketoglutarate. Similarly, other connections with amino acid metabolism are 366 

revealed for the murein and folate biosynthesis pathways.   367 

Differences between the FBA-res and FBA-div methodologies may be understood in 368 

terms of standard Michaelis-Menten (MM) modeling for drug-inhibited enzymes. In MM 369 

kinetics, the reaction velocity v = VMS/(S+KM), where S is the input substrate’s concentration, 370 

KM is the reaction affinity, and VM is the maximum reaction rate. In FBA-res, a scalar 371 

reduction in v by α corresponds to a perturbed VM* = VM/α, while KM* = KM, since the 372 

stoichiometric parameters sij that account for reaction affinities are unchanged. This is the 373 

behavior of non-competitive inhibitors in MM kinetics with α=(1+[drug]/KD).  By contrast, in 374 

FBA-div, scaling down the reaction affinity corresponds to KM* = KM/α, this time leaving 375 

VM* = VM constant, similar to competitive inhibitors.  These scaling behaviors are consistent 376 

with combination effects seen in kinetic pathway simulations[10], where competitive 377 

inhibition of serial targets with negative feedback yielded strong serial-target synergies that 378 

were absent in simulations of non-competitive or uncompetitive MM reactions. Thus, 379 

FBA-div more closely mimics the inhibitory kinetics of metabolic inhibitors used as antibiotic 380 

drugs.   381 

From a biology perspective, FBA-div can explain serial target synergies through the 382 

build-up of metabolite concentrations. The waste stream in FBA-div can be thought of as 383 

representing passive regulation that limits substrate concentrations by degradation or export 384 

from the system.  Simulating with FBA-res assumes that when a drug inhibits a reaction, 385 

accumulated mass will slow down the upstream reaction thermodynamically, or induce a 386 

gene expression cascade that causes upstream reactions to slow down to the inhibited level.  387 

By contrast, FBA-div assumes that upstream reactions cannot sense or adjust to an inhibited 388 

downstream reaction on the time scale of the drug inhibition, and substrate is wasted, 389 

creating less biomass over time. Also, diverting excess flux to waste mimics processes 390 

similar to the phenomenon of metabolic resistance[25,38] which has been experimentally 391 

shown to result from upstream substrate accumulation. Such mechanisms have been 392 

proposed to explain how microbes keep substrate concentrations within feasible ranges, and 393 

FBA models have indeed been augmented with explicit constraints on metabolite and Gibbs 394 

free energy levels to more accurately predict global flux distributions[39]. Put in simpler 395 

terms, FBA-res cannot predict serial target synergies because mass conservation during 396 

optimization requires any flux restriction to apply throughout a serial pathway, forcing the 397 
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combined effect to match that of the most effective inhibitor.  In FBA-div, however, inhibition 398 

diverts intermediate reaction flux to waste, yielding greater biomass reductions.  399 

The FBA-div approach can be extended to metabolic models of pathogens, such as 400 

tuberculosis[40], plasmodium[41], and the ESKAPE pathogens[42].  As more FBA models 401 

become available for pathogens, combination effects within the current space of drugs and 402 

drug-like small molecules could be simulated, and new therapies could be rapidly tested 403 

against drug-resistant strains. Indeed, FBA-div for human metabolism is increasingly 404 

conceivable as mammalian FBA models[43] become more established.  Our FBA-div 405 

perturbation approach could also be used with simulation methodologies that extend FBA to 406 

transcriptional regulation using ChIP-Seq and gene expression information[44], enabling yet 407 

more realistic simulations of drug effects in biological systems.  Finally, flux diversion may 408 

also more accurately predict synergies between 3 or more drugs[4,13,45].  These 409 

extensions would also enable useful synergy predictions for drug combinations targeting 410 

mammalian metabolism. 411 

Experimental work on drug combinations can be resource intensive, especially for 412 

pathogens which require a BSL 3 environment, or when large combinatorial spaces are 413 

comprehensively sampled. Thus, computational tools that can explore large-scale models to 414 

prioritize such resource-intensive work could significantly accelerate drug discovery 415 

research.  Because it can accurately predict a great variety of drug synergies, FBA-div has 416 

the potential to make a major impact on these therapeutic challenges.   417 

  418 

 419 

 420 
 421 

 422 
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Figures 423 

 
Fig 1. Simulations of inhibited FBA metabolism.  
(A) Cartoon of a target enzyme “j” which acts on substrate “i” at a steady-state velocity vj.   
Other enzymes may compete for the same substrate, and downstream reactions will convert 
all products to “biomass” flux or unproductive “waste” that is degraded or exported. 
(B) When the target is knocked out by setting vj=0, substrate backlog increases flow through 
other reactions, and increased waste rates reduce biomass. (C) FBA-res reduces the target 
velocity by a scalar factor α, causing a partial knockout effect. (D) For FBA-div, the reaction’s 
affinity is reduced by scaling its stoichiometric coefficient sij, diverting the backlog to waste.  
This yields stronger effects than FBA-res, reducing effects on the rest of the network.   
 424 
 425 
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Fig 2. Activity and synergy measures for each combination.  
(A) Inhibition of each enzyme was simulated at five α concentrations, using 3-fold dilution 
intervals centered on the concentration that yielded half of the maximum simulated effect. 
Note that the 3x dilution steps were constant in simulated concentration α-1, so they are not 
always equal on these curve plots based on α. The maximum inhibition max(I) and 50% 
crossing concentration IC50 was measured for each target (IC50 = top concentration if 
max(I)<0.5), and each combination was simulated at all 25 concentration pairs. (B) For 
combinations, we scored the maximum effect max(I) and synergy over Gaddum’s “best 
single agent” reference max(ΔI) = max{IXY - max(IX,IY)} across all inhibitions IXY.  We also 
calculated “potency shift index” from the 50% inhibition crossing concentrations (C50X,C50Y) 
along the matrix diagonal (blue), where SI50 = max(C50X/IC50X,C50Y/IC50Y). Epistasis types 
for (C) FBA-res and (D) FBA-div simulations on three example target pairs. Interactions were 
classified based on the single agent and combination effect and synergy, as either non-
interacting “None”, synthetic lethality “SL” between inactive inhibitors, partial SL “PSL” 
involving one active agent, or potentiation “Pot” between two active inhibitors.   
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 426 
 427 
 428 

 
Fig 3. Comparing FBA-ko and FBA-div interactions across metabolic pathways.  
Simulated interactions for (A) FBA-ko and (B) for FBA-div, in selected metabolic pathways.  
More complete simulation results are shown elsewhere (S2-S4 Figs).  Each symbol 
represents the simulated response to inhibiting a single or pair of targets (see Fig 2), with 
enzymes organized by pathway and metabolic reaction order in the iAF1260 model.  Symbol 
shape shows the type of epistasis (synthetic lethal “SL”, partial synthetic lethal “PSL”, 
potentiation “Pot”, or non-interaction “None”), size shows the effect max(I), and color shows 
the synergy max(ΔI) between two targets (same scale as Fig 2).  Single agents are shown 
along the bottom and right edges.  The triangles for PSL epistasis point toward the inactive 
agent in the pairing.  Single enzyme effects are very similar between FBA-ko and FBA-div, 
but interactions are very different. Most notably, strong Pot synergies are observed between 
serial targets in the same pathway under FBA-div (A), which are not predicted by FBA-ko (B) 
or FBA-res (S4 Fig). 
 429 
 430 
 431 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 6, 2015. ; https://doi.org/10.1101/030791doi: bioRxiv preprint 

https://doi.org/10.1101/030791
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 16 

 
Fig 4. Comparing single agent and combination effects between methods.  
(A) Simulated single agent inhibitions are very consistent between methodologies. Across 
the 50 simulated inhibitors, both FBA-res and FBA-div methodologies yielded very similar 
max(I) scores to those obtained from standard FBA-ko.  Data were randomly dithered by 
~0.03 in both directions to visually separate overlapping points. (B) Simulated combination 
effects, however, show many deviations in max(ΔI) from FBA-ko, and substantial differences 
in epistasis types.  Across all 1225 simulated pairs, FBA-ko yielded mostly None, with a few 
SL (2%).  Simulating with FBA-res converted a few of the None to PSL (5%), and FBA-div 
reproduced all the FBA-res synergies and converted another 16% from None to Pot.  Data 
were randomly dithered by ~0.03 to separate overlapping points. 
 432 
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 434 
 435 
 436 
 437 

 
Fig 5. Comparing IC50 potency and SI50 synergy scores between simulation methods.  
(A) Simulated single agent inhibition potencies (as –logCI50) are very consistent between 
methodologies, though FBA-div responses are consistently more potent. Data were 
randomly dithered by ~0.3 in both directions to visually separate overlapping points. 
(B) Combination synergy, as measured by –logSI50, also is very consistent for non-
interactions and synthetic lethalities, again with stronger synergies in FBA-div. Data were 
randomly dithered by ~0.03 in both directions to visually separate overlapping points.   

 438 
  439 
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 Fig 6. Experimental confirmation of simulated combination effects.  
(A) Known anti-metabolism drug synergies. Locating the iAF1260 model enzymes in the 
KEGG E. coli MG1655 pathway maps, sulfamethoxazole + trimethoprim inhibits folC+folA in 
folate biosynthesis, while aztreonam + ampicillin targets mrcB+pbpC in murein synthesis.  
We tested both combinations using an E. coli proliferation assay. (B) Response surfaces for 
the two known antibiotic combinations match the FBA-div simulations more closely than 
FBA-res. Although the models yield similar target inhibition levels (though requiring larger α 
for FBA-res), only FBA-div predicts the observed Pot synergy.  
 440 
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Fig 7. Experimental confirmation of simulated combination effects.  
We tested 28 combinations of metabolic inhibitors using an E. coli proliferation assay. 
Synergy score comparison for all combinations, where shape/color shows experimental 
interaction class, and open symbols indicate epistasis type.  We find no agreement (R~0) 
between the experimentally determined drug interactions and FBA-res. However, 
experimental and FBA-div synergy are correlated (R~0.44). In addition to the antibiotic 
combinations, weaker synergy is predicted and observed for other interactions between 
murein synthesis inhibitors and targets further upstream.   

 441 

 442 
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