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Abstract 

Numerous studies have identified prognostic genes in individual cancers, but a thorough pan-
cancer analysis has not been performed.  In addition, previous studies have mostly used 
microarray data instead of RNA-SEQ, and have not published comprehensive lists of 
associations with survival.  Using recently available RNA-SEQ and clinical data from the The 
Cancer Genome Atlas for 6,495 patients, I have investigated every annotated and expressed 
gene's association with survival across 16 cancer types.  The most statistically significant 
harmful and protective genes were not shared across cancers, but were enriched in distinct gene 
sets which were shared across certain groups of cancers.  These groups of cancers were 
independently recapitulated by both unsupervised clustering of Cox coefficients (a measure of 
association with survival) for individual genes, and for gene programs.  This analysis has 
revealed unappreciated commonalities among cancers which may provide insights into cancer 
pathogenesis and rationales for co-opting treatments between cancers. 

Main article text 

Introduction 

Led by The Cancer Genome Atlas, unprecedented efforts have been made to understand the 
molecular basis of cancer (http://cancergenome.nih.gov).  Using standardized procedures, the 
TCGA Research Network has used whole genome sequencing, exome sequencing, RNA-SEQ, 
small RNA-SEQ, bisulfite-SEQ, and reverse phase arrays to identify the pathways commonly 
altered in different cancers 1-12.  As a result, we now know the most commonly mutated genes in 
dozens of cancers and can use this information to give patients targeted therapeutics. 

Whereas well established statistical techniques exist for identifying mutations which are drivers 
instead of simply passengers (mut-drivers), identifying copy number aberrations, methylation 
changes, or non-coding mutations that alter expression of a gene and result in a growth 
advantage (epi-drivers) are more difficult to identify and represent a "dark matter" of cancer 13.  
Although it currently is challenging to identify epi-drivers which lead to development of a cancer 
(tumorigenesis), by correlating these changes to survival it is possible to detect their role in 
disease progression (pathogenesis), which is one of main goals of cancer research. 

Of the possible genomic measures that can be correlated with survival, gene expression has been 
shown to be the strongest predictor of survival 14, which is intuitive given that gene levels 
together with protein levels and posttranslational modifications are the final readout of the 
different possible alterations in a cell and are the final effectors of phenotype.  To date many 
attempts have been made to identify genes whose expression is associated with survival to either 
identify markers that can predict patient survival or to identify mechanisms of pathogenesis 15-17.  
One of the success stories of this approach is the identification of HER2 in breast cancer patients 
and the development of herceptin 18.  This story also highlights the complications treatment 
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regimens can have on interpreting survival data.  Whereas HER2 overexpression used to predict 
poor survival for breast cancer patients, because of the progress of personalized medicine these 
patients now do well and HER2 would not show up as a prognostic marker in a data set with 
HER2 positive patients on herceptin.  While treatments may introduce a confounding variable in 
understanding a disease, the ultimate goal of cancer studies is to improve patient outcome, and 
adding treatment to the equation adds more information and provides an opportunity to study 
genes in the context of the current standard of care. 

The vast majority of studies to identify prognostic genes have focused on a single disease and 
have utilized microarrays instead of RNA-SEQ.  In addition, these studies often only publish a 
small set of genes that together most significantly stratify patients.  Even the TCGA Research 
Network publications do not provide lists of genes associated with survival.  cBioPortal does 
allow users to make Kaplan Meier plots for most of the cancers which contain survival 
information, but users still have to input one gene at a time, leaving one to wonder where 
researchers should go to find the genes which are most highly correlated with survival for their 
disease of interest. 

Through the TCGA Network, RNA-SEQ has only very recently become available for thousands 
of human cancer samples.  RNA-SEQ has multiple advantages over microarray data, including 
having a higher dynamic range, no probe affinity effects, ability to identify novel transcripts, and 
lower and consistently falling cost.  I took advantage of the availability of this data to 1) 
investigate the ability of RNA-SEQ to associate expression with clinical outcome in a range of 
cancers, 2) perform the largest analysis of prognostic genes to date, and 3) provide every gene's 
correlation with survival for hypothesis testing and further investigations by the scientific 
community.  In addition, attempts are now being made to identify commonalities between 
cancers with the hope that this type of analysis may be able to identify treatments that can be co-
opted for a molecularly similar cancer.  Given that only survival correlations integrate treatment 
with the genomic data, prognostic genes represent an exclusive window for understanding how 
different cancers in the context of their individualized treatments relate to one another.  By 
performing the largest pan-cancer analysis of prognostic genes, I identified groupings of cancers 
which were robustly replicated through several methods.  This study serves as a starting point for 
better understanding how survival data can be used to understand the commonalities and 
differences of cancers. 

Materials and methods 

Code and files 

All of the Python and R code used to generate the figures and tables in this study, including 
intermediate and final files, tables, and figures, is available at 
https://github.com/OmnesRes/pan_cancer.  All scripts were run on a HP dv7t laptop with an i7-
3820QM processor and 16GB of RAM running Windows 7, Python 2.7.5, and R 3.0.1. 
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Construction of multivariate Cox models 

RNA-SEQ and clinical data were downloaded from the TCGA data portal, https://tcga-
data.nci.nih.gov/tcga/, in February 2015.  For each cancer, survival information was parsed from 
the "clinical_follow_up" files and "clinical_patient" file, and for each patient the most recent 
follow up information found in the multiple files was kept.  Sex, age, and histological grade data 
were extracted from the "clinical_patient" file.  For each cancer, only patients that had a follow 
up time greater than 0 days and had complete clinical information were included in the model.  
TCGA has used two different methods of reporting expression values, RSEM and RPKM.  
RPKM is simply the reads per kilobase per million mapped reads, while RSEM is a normalized 
value outputted by the RSEM software 19.  For each cancer, only genes which had a median 
RSEM value greater than 1 (for RNASeqV2), or median RPKM value greater than .1 (for 
RNASeq), and had 0 expression in less than one fourth of patients were included in the analysis.  
RNASeq uses a different gene annotation file from RNASeqV2, and because RNASeqV2 
represents the most recent analysis, for RNASeq analyses only those genes present in the 
RNASeqV2 gene annotation file were included.  Multivariate Cox models were run with the 
coxph function from the R survival library, and the equation for each model is shown in Table 
S1.  Grade information was included in the model by separate terms, which were either 1 or 0, 
and model input gene expression values were inverse normal transformed.  If a patient had 
replicates for their primary tumor, those expression values were averaged prior to inverse normal 
transformation.  The scripts for performing Cox regression for each cancer are named 
"cox_regression.py". 

Gene set analysis 

For each cancer, the 250 most significant protective genes and 250 harmful genes were inputted 
separately into MSigDB with the "positional genes sets", "chemical and genetic perturbations", 
"canonical pathways", "KEGG gene sets", "microRNA targets", "transcription factor targets", 
"cancer modules", "GO biological process", and  "oncogenic signatures" sets selected: 
http://www.broadinstitute.org/gsea/msigdb.  The FDR q-value threshold was set at .05 and the 
top 100 enriched gene sets were saved, except for the 250 protective genes in BLCA, which only 
contained 27 overlaps below .05. 

Normalization of Cox coefficients 

In order to compare the Cox coefficients between cancers I robustly scaled the negative and 
positive coefficients, x, to their 5th and 95th percentile values, respectively, using the following 
sigmoidal normalization function: 
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where �� and �� are the 5th and 95th percentile values of the negative and positive Cox 
coefficients, respectively.  The implementation of this code is present in the files named 
"normalizing_coeffs.py", and all the normalized coefficients are listed in Table S1. 

Construction of gene programs 

Gene programs from Table S4 of 20 were used.  In general a nonredundant set of genes from gene 
sets which had a Pearson correlation of at least .9 20 was generated for each program.  The exact 
gene sets used are listed in Table S3.  Lists of genes for the gene sets were obtained from 
http://www.broadinstitute.org/gsea/msigdb and 21. 

Results 

Cancers vary in number of prognostic genes 

In order to perform the most comprehensive cancer analysis possible, I selected TCGA cancers 
that had sufficient numbers of patients with RNA-SEQ data and mature clinical follow up 
information, and did not contain any publication restrictions.  This resulted in me studying a total 
of 16 cancers, 10 of which were present in the original pan-cancer initiative 22: acute myeloid 
leukemia (LAML), bladder urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA), 
colon adenocarcinoma (COAD), glioblastoma multiforme (GBM), head and neck squamous cell 
carcinoma (HNSC), kidney renal clear cell carcinoma (KIRC), lung adenocarcinoma (LUAD), 
lung squamous cell carcinoma (LUSC), and ovarian serous cystadenocarcinoma (OV), and 6 
cancers which have been the focus of limited individual or pan-cancer studies: cervical 
squamous cell carcinoma and endocervical adenocarcinoma (CESC), brain lower grade glioma 
(LGG), kidney renal papillary cell carcinoma (KIRP), liver hepatocellular carcinoma (LIHC), 
skin cutaneous melanoma (SKCM), and stomach adenocarcinoma (STAD). 

I was interested in the effect a gene has on prognosis independent of factors such as tumor grade 
and age of a patient.  To achieve this I used a multivariate Cox proportions hazards model 23, 
which is a standard regression method for studying survival data 24-27.  For every cancer, a model 
was generated separately for each gene, with the number of covariates depending on the cancer.  
Unlike microarray data, RNA-SEQ data has extreme values which may affect regression.  To 
account for this I inverse normal transformed the expression values of each gene, which has been 
shown to increase the sensitivity and specificity for multivariate regression with RNA-SEQ data 
28.  Age and sex are also included in every model, and when a cancer contained strong 
histological grade information, grade was also included.  If a patient was missing any of this 
information they were excluded from the analysis, and only primary tumors were considered, 
with the exception of SKCM, where metastatic tumors make up a large proportion of the 
patients. 
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A Cox model provides a p-value for each term in the model, indicating the significance of its 
association with the clinical outcome, and I recorded the p-values for every gene analyzed for the 
16 different cancers.  As can be seen in Table 1, there is a wide distribution among cancers in the 
number of genes that reached a Benjamini-Hochberg False Discovery Rate (FDR) adjusted p-
value of less than or equal to .05.  This can also be seen by looking at a distribution of the raw p-
values for the different cancers (Fig. 1a and Fig. S1).  This has important implications for 
understanding the significance of a gene being associated with survival in a specific cancer.  For 
example, selecting a gene at random a researcher studying LGG has a 50% chance of being able 
to claim the gene is associated with survival, while a researcher studying STAD only has an 8% 
chance (using raw p-values).    

Two factors that are known to be associated with power of a Cox model are sample size and 
number of events (deaths); however looking through Table 1 it is difficult to find a pattern that 
can explain why certain cancers have more significant genes than other cancers.  For example, 
BRCA has around twice the number of patients of any other cancer, but only has 30 genes that 
meet a FDR cutoff, which can be considered expressionally prognostic genes (EPGs).  In 
contrast, KIRP has a fourth the number of patients of BRCA but has 2,415 EPGs.  In addition, 
LUAD and LUSC have similar numbers of patients, median survivals, and events, yet have a 
large difference in EPGs.  Interestingly, it has been shown that the number of prognostic genes 
for a cancer can be significantly different depending on whether microarray data or RNA-SEQ 
data is used 29.  It is possible that the different numbers of EPGs between cancers are due to 
intra-disease heterogeneity and/or treatment differences that are not accounted for in the Cox 
model and are acting as confounding variables, or differences in the amount of transcriptional 
dysregulation between cancers. 

Protective and harmful genes display opposite expression patterns 

The Cox model also provides a coefficient for each term, which is related to its contribution to 
the hazard ratio.  A positive coefficient indicates that the gene increases the hazard ratio, i.e. high 
expression of the gene correlates with earlier patient death, while a negative coefficient indicates 
that expression of the gene is protective.  Using the cancer with the highest number of EPGs 
(LGG), I clustered patients with the 100 most significant genes which were harmful and the 100 
most significant genes which were protective, and this revealed two broad clusters of patients: 
(1) those with high expression of harmful genes and low expression of protective genes, and (2) 
those with high expression of protective genes and low expression of harmful genes (Fig. 1b).  
Not surprisingly, performing a Kaplan Meier analysis with these two groups revealed that cluster 
2 has a much higher survival than cluster 1 (Fig. 1c).  This result has important implications for 
trying to find gene sets which can most accurately predict patient survival.  The similar 
expression patterns indicate that there are numerous combinations of genes that would only 
differ slightly in their ability to predict survival, making the identification of a ‘best’ set of genes 
somewhat meaningless.  In addition, given that each gene individually had a p-value less than or 
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equal to 1.4E-8, it is unlikely these patterns are due to chance but rather are the result of some 
underlying gene regulation and these genes may be members of known pathways. 

Unlike LGG, some of the other cancers in my analysis yielded a much lower number of EPGs.  
While it might be tempting to disregard the results in these cancers, I decided to check if I could 
observe patterns of expression in the most significant good and bad genes like I had observed for 
cancers with a high number of EPGs.  Clustering of the patients of STAD, which has one of the 
lowest numbers of EPGs, with the 100 most significant harmful genes, and the 100 most 
significant protective genes, again divided patients into two broad clusters.  Surprisingly, a 
Kaplan Meier analysis on these two groups showed a very significant difference with a p-value 
of 2.73E-6 (Fig. 1c).  This indicates that despite the fact that none of the genes in STAD meet a 
5% FDR cutoff, they still contain important biological information.   As a result, I decided to 
include all cancers in further analyses regardless of their numbers of EPGs. 

Cancers do not share prognostic genes, but do share gene sets 

I was interested to see if the most significantly prognostic genes were shared across cancers.  
However, looking at the overlap of the 100 most significant genes across the 16 cancers revealed 
that there is very little overlap among the 16 cancers, consistent with previous results obtained 
from an analysis of four cancers 29 (Fig. 2a).  Given the apparent co-regulation of the most 
significant genes in each cancer, I reasoned that although individual genes were not shared, 
maybe the genes were a part of gene sets which were shared between cancers.  In addition, given 
that the harmful genes had an opposite pattern of expression from the protective genes, I 
hypothesized that they are regulated differently and would be enriched in different gene sets.  To 
investigate this I took the 250 most significant harmful genes and 250 most significant protective 
genes in each cancer, and separately found the 100 most enriched gene sets through MSigDB 30.  
Consistent with my idea that harmful and protective genes are regulated differently, there was 
very little overlap within a cancer between the 100 gene sets found with 250 harmful genes and 
the 100 gene sets found with 250 protective genes (Fig. 2b).  In addition, the fact that even the 
protective and harmful gene sets from cancers with a low number of EPGs show almost no 
overlap reinforces the idea that prognostic genes in these cancers still contain biologically 
significant information. 

Next I assessed the extent to which these protective and harmful gene sets overlapped between 
the different cancers.  I investigated the overlaps separately for the 100 harmful gene sets and 
100 protective gene sets (Fig. 2c, 2d).  Overall there was more overlap between the harmful gene 
sets, and there were three cancers which clearly shared a high number of harmful gene sets, 
LUAD, LIHC, and KIRP.  Investigating these overlaps further showed that the three cancers 
shared 58 gene sets, and LUAD and KIRP shared 85 gene sets (Fig. 2e).  Looking at the overlaps 
of the protective gene sets, the largest overlap was between COAD and LUSC, and these cancers 
also shared gene sets with GBM (Fig. 2f). 
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I next asked what are the most common harmful and protective gene sets across cancers.  Table 
S2 shows frequency of every gene set, with gene sets that were shared between harmful and 
protective sets within a single cancer marked in bold as they may be nonspecific.  As might be 
expected, the most common gene sets observed for harmful genes were associated with poor 
differentiation and metastasis.  In contrast, the protective gene sets were enriched for apoptosis 
and good differentiation.  Although when possible the grade of the tumor was included in the 
Cox model, and therefore should not be a confounding variable, it is possible that histological 
grade does not completely account for the differentiation of a tumor, indicating the importance of 
genomics for accurate profiling. 

Cancers can be clustered by gene and gene program Cox coefficients 

To date different cancers have been compared to each other through mRNA levels, miRNA 
levels, protein levels, networks, copy number alterations, DNA methylation, somatic mutations 
or some combination of these 20,31-35.  The Cox coefficients in my analysis contain a level of 
information not present in any of these data types, and consequently can potentially reveal 
similarities or differences between cancers that were not appreciated before.  Therefore I sought 
to attempt to cluster cancers using Cox coefficients of genes instead of expression levels.  
Because the Cox models for the different cancers contain different numbers of covariates, and 
different strengths of gene expression correlation to survival, the range of values of the Cox 
coefficients vary between cancers.  To correct for this, I normalized the coefficients for each 
cancer using a sigmoidal function which robustly scaled both negative and positive coefficients 
to their 95th percentile values (see methods).  In addition, whereas every gene has an expression 
value, only significant prognostic genes have Cox coefficients appreciably above or below 0.  
Performing clustering with large numbers of nonsignificant genes which all have very similar 
values for every cancer will only add noise to the clustering. As a result, I limited my clustering 
to genes which had a FDR less than or equal to .05 in at least four of the sixteen cancers. 

Hierarchical clustering of the 16 cancers was performed with the sigmoidal normalized Cox 
coefficients of this set of genes (Fig. 3).  The clustering grouped LIHC, LUAD, and KIRP 
together, which were the same cancers that shared the highest number of harmful gene sets.  In 
addition, GBM, COAD and LUSC clustered together, which were the cancers that had the 
highest number of protective gene sets overlap.  The fact that two separate methods, using 
different sets of genes, were able to find these groupings of cancers gives me confidence that this 
finding is robust and biologically significant. 

I next wanted to know if there were established pathways that distinguished my groupings of 
cancers from each other.  Using a list of nonredundant gene programs that have been shown to 
distinguish cancers from one another on the basis of expression levels 20, I sought to distinguish 
cancers using Cox coefficients of pathways.  For each pathway the average sigmoidal normalized 
Cox coefficient was calculated in each cancer.  Because a Cox coefficient can be positive or 
negative, if a pathway has some genes which are protective and some genes which are harmful, 
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the average Cox score will be near zero.  In addition, if a pathway only contains genes which are 
not prognostic, all of those Cox scores will be near zero and the pathway score will be near 0.  
The only way for a pathway to have a positive or negative score is for it to contain prognostic 
genes which are either consistently protective or consistently harmful. 

Using the Cox scores for these 22 gene programs, I again performed hierarchical clustering (Fig. 
4).  I column scaled the values to highlight which gene programs are most important for each 
cancer.  Overall the same groupings I had seen with gene sets and individual genes were 
recapitulated, with LUAD, KIRP, and LIHC again forming a cluster and COAD, LUSC, and 
GBM grouped together.  In the LUAD/KIRP/LIHC group poor prognosis is associated with high 
proliferation rates and glycolysis, while good prognosis is associated with apoptosis and a 
dependency on oxidative phosphorylation.  In contrast, for GBM/LUSC/COAD, proliferation is 
protective while EGF response predicts poor survival. 

I also found cancer specific protective/harmful pathway enrichments that are consistent with 
known cancer biology.  For example, in KIRC the highest intensity gene program is "fatty acid 
oxidation", and KIRC is a cancer that is known to depend on dysregulation of metabolism and is 
a classic example of the "Warburg effect" 36.  My results show that patients with high expression 
of genes utilizing oxygen survive longer, which underscores the importance of a metabolic shift 
in this cancer.  As another example, EGFR is the most commonly mutated gene in GBM 3, and I 
observed that increased EGFR activity is associated with poorer outcomes.  And BLCA and 
SKCM, which are known for being responsive to immunotherapy, both benefit from increased 
interferon response and an immune cell signature which is likely a proxy for immune cell 
infiltration. 

Discussion 

Cancer researchers are increasingly looking to focus on factors which have clinical significance, 
and many different resources now allow researchers to identify if a protein of interest has clinical 
implications, including OMIM, dbSNP, ClinVar, cBioPortal, FINDbase, and others 37-40.   
Despite this, it currently is not possible to find comprehensive lists of genes which are associated 
with survival in different cancers.  Using recently available RNA-SEQ and clinical data from the 
TCGA for 6,495 patients, I correlated every expressed annotated gene to survival in 16 different 
cancers, providing the scientific community with thousands of highly significant genes for 
further study.   

There is an unexpectedly large variation between cancers in the number of statistically 
significant prognostic genes, which should be used to inform our evaluation of prognostic genes 
from different cancers.  For example, a significant p-value for a gene from a cancer such as LGG 
or KIRC should not be surprising, given the thousands of genes that survive a stringent p-value 
cutoff in these tumors (Table 1, Fig. 1a, Fig. S1).  In contrast, weaker p-values for predicting 
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prognosis in cancers such as STAD or COAD are still biologically important although they have 
no genes that pass a stringent p-value threshold for biological significance (Table 1, Fig. 1a,c). 

RNA-SEQ is a relatively new technology, and its ability to identify prognostic genes in many 
cancers has not been explored.  Although the number of expressionally prognostic genes (EPGs) 
varied among cancers, regardless of the cancer I identified expression profiles which 
significantly separated patients into high risk and low risk groups.  One of the main advantages 
of RNA-SEQ over microarrays is the ability to identify unannotated transcripts.  In fact, recent 
studies have investigated the expressions of pseudogenes and long noncoding RNAs in large 
numbers of TCGA RNA-SEQ data sets 41,42.  It would be interesting to see if these transcripts 
show the same trends as protein coding genes across these cancers. 

This comprehensive analysis of prognostic genes allowed me to explore the ability of the 
prognostic genes themselves, enriched gene sets, and Cox coefficients (a measure of strength of 
correlation to better or worse survival) to identify similarities and differences among cancers.  I 
found that the most prognostically significant genes were not shared between cancers.  However, 
I found that protective genes and harmful genes are enriched in very different gene sets, and 
there were large overlaps of these gene sets for LUAD, LIHC, and KIRP, and for COAD, LUSC, 
and GBM.  I was able to recapitulate these findings by clustering with both Cox coefficients of 
individual genes, and average Cox coefficients of gene programs, suggesting that these findings 
are biologically significant and that I have identified a paradigm for incorporating genomic and 
clinical data to compare cancers. 

Although it is important not to mistake a correlation for causation, my analysis suggests 
intriguing insights into the pathogenesis of different cancers.  For example, currently EGFR 
inhibitors are recommended for LUAD patients with EGFR mutations, but EGFR mutations are 
rare in LUSC and patients with mutations do not respond well to tyrosine kinase inhibitors 43.  
Despite this, response rates to EGFR inhibitors for LUSC studies are threefold higher than 
expected 43, suggesting that although EGFR itself may not be mutated, responders may still have 
a cancer which is dependent on EGFR signaling.  This is consistent with my gene program 
analysis, where EGFR response was most strongly associated with poor survival in LUSC, and 
LUSC was consistently associated with GBM, which is a cancer known for EGFR dysreguation.  
This suggests that using a measure of EGFR activity other than mutational status could be used 
to find LUSC patients that would benefit from a tyrosine kinase inhibitor.  In addition, my 
analysis may be used to suggest treatments for cancers which are not well studied.  For example, 
KIRP does not have successful treatments and there is a current search for drugs which may be 
of benefit 44.  My analysis suggests that the pathogenesis of KIRP is very similar to LIHC and 
LUAD, indicating that treatments currently used for those cancers may be able to be co-opted for 
KIRP. 

This analysis is among the first attempts at using clinical correlations to compare cancers.  
Although I utilized the most up to date information possible, well established statistical 
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techniques, and obtained robust findings, there are many ways this type of analysis can be 
improved.  For example, it is now being recognized that cancer is not a single disease, but rather 
a group of molecularly and clinically distinct diseases which share a tissue of origin.  Through a 
combination of genomic measurements, the TCGA Research Network has divided individual 
cancers into four or five subtypes, for example GBM has been divided into proneural, neural, 
classical, and mesenchymal subtypes 3.  Currently, clear subtypes have not been found for all 16 
of the cancers in this study, and for many cancers dividing the cancers into the subtypes would 
result in a loss of power due to the limited number of patients.  However, as these classifications 
are refined and the number of patient samples continues to grow, a natural extension of this study 
would be to repeat it for individual subtypes, which would potentially decrease the heterogeneity 
of the data.  In addition, treatment is one the largest confounding variables in survival analyses, 
but the TCGA pharmacological data is currently incomplete making it impossible to incorporate 
this information into the model.  Despite these current limitations, this study has shown that 
incorporating clinical information into pan-cancer analyses is capable of yielding insights into 
cancer pathogenesis that have thus far been unappreciated by other methods.   
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Legends 

Figure 1 

Distinct expression patterns of protective and harmful prognostic genes 

(A) Raw gene p-value distributions from multivariate Cox models for a cancer with high number 
of expressionally prognostic genes (EPGs; LGG, left), and a cancer with low number of EPGs 
(STAD, right). Distributions for the other 14 cancers are displayed in Fig. S1. (B) Unsupervised 
hierarchical clustering (Pearson correlation distance metric) of patients using the inverse normal 
transformed expression values from the 100 most significant protective genes and 100 most 
significant harmful gene for LGG, left, and STAD, right. (C) Kaplan Meier plots comparing 
survival times for the two broad clusters of patients identified in B and logrank p-values for 
LGG, left, and STAD, right. 

 

Figure 2 

Overlaps of prognostic genes and gene sets 

(A) Heatmap displaying the overlaps between cancers of the 100 most significant genes of each 
cancer. (B) Overlaps within cancers of the 100 most significantly enriched gene sets for 
protective genes, and the 100 most significantly enriched gene sets for harmful genes. (C,D) 
Overlaps between cancers of the 100 most significantly enriched gene sets for harmful genes (C) 
and protective genes (D). (E) Venn diagram showing the overlaps of the 100 harmful gene sets 
for LIHC, LUAD, and KIRP. (F) Venn diagram showing the overlaps of the 100 protective gene 
sets for COAD, GBM, and LUSC. 

 

Figure 3 

Clustering of cancers using gene Cox coefficients 

Clustering of genes and cancers using the sigmoidal normalized Cox coefficients of a list of 
genes that had an FDR less than or equal to .05 for at least four cancers. Pearson correlation 
distance metric was used for both row and column clustering, and Cox coefficients were row 
scaled (z-score). 

 

Figure 4 
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Clustering of cancers using gene programs 

Using an established list of gene programs (see methods and Table S3), cancers and gene 
programs were clustered using the means of sigmoidal normalized Cox coefficients of the genes 
present in each program. Pearson correlation distance metric was used for both row and column 
clustering, and the average Cox coefficients were column scaled (z-score). 

Table 1 

Characteristics of datasets and patients included in this study 

Events are the number of deaths in the data set. Age is the average age and is in years. Median 
survival is in days. The median survival for KIRP could not be calculated. 
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