

Validation of Illumina's Isaac variant calling workflow

Liudmila S. Mainzer*,1, Brad A. Chapman2, Oliver Hofmann3, Gloria Rendon1, Zachary D. Stephens4, C.
Victor Jongeneel1,5

1. High-Performance Biological Computing, Institute for Genomic Biology and National Center for
Supercomputing Applications, University of Illinois at Urbana-Champaign

2. Department of Biostatistics, Harvard School of Public Health
3. Wolfson Wohl Center for Cancer Research, University of Glasgow
4. Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign
5. Department of Bioengineering, University of Illinois at Urbana-Champaign

*: corresponding author

Abstract

As the pace of implementing personalized medicine concepts increases, high-throughput variant
calling on hundreds of individual genomes per day is a reality that will likely be faced by
sequencing facilities across the country in the near future. While the scientific best practices for
human variant calling workflows have been well defined, they also pose serious computational
challenges at this high scale. Therefore, efforts in both academia and the private sector have
focused on developing alternative workflows that may substantially reduce the computational
cost per individual genome. Isaac is an “ultra-fast” variant calling workflow, designed by
Illumina, Inc, and is claimed to be six times faster than BWA-GATK, with comparable
sensitivity and specificity. This report is an independent review of Isaac, mainly focused on the
accuracy of variant calls. We note that Isaac is indeed quite fast, and provide some benchmarks
on a few hardware architectures. The overall conclusion from our analysis is that the Isaac
workflow has undergone substantial improvement from version 01.14.11.27 to Isaac_2.0. The
call accuracy is especially high on NA12878, however exomes tend to have a high fraction of
false positive calls. We did not manage to reproduce the 99% sensitivity and specificity reported
in the Illumina whitepaper, however that might be improved with further tweaking of the
options. This report includes the information about some of the command-line parameters and
documentation.

Introduction

Genomic variant calling from raw high-throughput sequence data is a widely used procedure in
both research and clinical settings. The current community standard (“BWA-GATK”) is a
complex workflow that involves multiple steps, each requiring its own software tools and

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 26, 2015. ; https://doi.org/10.1101/031021doi: bioRxiv preprint

https://doi.org/10.1101/031021
http://creativecommons.org/licenses/by-nc-nd/4.0/

Mainzer et al. review of Isaac Page 2

specific parameters. It can use a large amount of disk space for temporary files, and take a long
time to compute. Therefore, there have been several efforts to develop better-performing sets of
tools for variant calling, in terms of speed, accuracy, and ease of use. Isaac is an “ultra-fast”
variant calling workflow, designed by Illumina, Inc. It is claimed to be six times faster than
BWA-GATK, with comparable sensitivity and specificity (Isaac whitepaper, 2015). This report
is an independent review of Isaac. Our main focus in this review is the accuracy of variant calls,
which is the most important feature of any variant calling workflow. We note that Isaac is indeed
quite fast, and provide some benchmarks on a few hardware architectures. However, measuring
wall-time performance was not our priority, and we do not report any rigorous comparative
analysis here.

Several groups have attempted to measure the discordance in variant calls among the many
variant calling tools available to-date (Yi et al. 2014, Pabinger et al. 2014, Yu and Sun 2013,
O’Rawe et al. 2013, Cornish and Guda 2014). Our focus here is not to provide a comparison
between Isaac and other software packages. Instead, we focused on testing the accuracy of Isaac
with datasets for which the “ground truth” for variant call is known, or at least agreed upon.
These include synthetic data, data from the Genome in a Bottle (GIAB) consortium, and Illumina
Platinum Genomes.

Illumina released several versions of Isaac in quick succession through 2015. Here we report our
results, using the same data to test several different versions of the workflow.

The overall conclusion from our analysis is that the Isaac workflow has undergone substantial
improvement from version 01.14.11.27 to Isaac_2.0. The call accuracy is especially high on
NA12878, however exomes tend to have a high fraction of false positive calls. We did not
manage to reproduce the 99% sensitivity and specificity reported in the Illumina whitepaper.
That might be improved with further tweaking of the options. This report includes the
information about some of the command-line parameters, and links to documentation.

Caveats in the software design that affected our assessment

Isaac has several design caveats that impact the ability to evaluate and use it. We describe them
briefly in the paragraphs below.

Versions we evaluated

Isaac comes in two forms: (1) as commercially supported software that works directly off the
output from an Illumina machine, and (2) a “developer” version. The former requires, apart from
the usual FASTQ, the various Illumina files produced by the machine, and cannot be evaluated
without them. Since our group does not have access to those, we focused on evaluating the
“developer” version of Isaac. The latter is a two-step workflow that first performs alignment

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 26, 2015. ; https://doi.org/10.1101/031021doi: bioRxiv preprint

https://doi.org/10.1101/031021
http://creativecommons.org/licenses/by-nc-nd/4.0/

Mainzer et al. review of Isaac Page 3

(versions 01.14.11.27, 01.15.04.01, Isaac_v2), followed by the variant calling step (version
1.0.7). Table 1 summarizes all experiments we have run. The software can be found in the
following locations, as of November 25, 2015:

• Isaac aligner 01.14.11.27
https://github.com/sequencing/isaac_aligner/tree/6b41f6d4985d069566a5c38d3d80c0d6ebb5841c

• Isaac aligner 01.15.04.01
https://github.com/sequencing/isaac_aligner/commit/fd092ec20d82548a90c53eafdaed7d617328a6a4

• Isaac_v2
https://github.com/Illumina/isaac2/

• Isaac v2 workflow in Basespace:
we used the app called "Isaac Whole Genome Sequencing v2 v2.0.0"

• Variant caller
https://github.com/sequencing/isaac_variant_caller

 01.14.11.27 01.15.04.01 v2 local or basespace

Synthetic

NEAT WGS 50X V V

Wessim WES 50X V V

VarSim WGS 50X V V

Real

1000 genomes WES V V V

NA12878 GATK V

NA12878 GIAB V

NA12878 Platinum v7 (ENA) V

NA12878 Platinum_rep4 V V in Basespace

Table 1. Summary of all experiments discussed in this report

Input FASTQ names

Isaac expects the input FASTQ names to be in a certain format: lane?_read?.fastq. This
probably allows it to grab the lane and read information directly from the name, for whatever
purpose during the analysis. This could be accomplished by providing some user-set options on
command line, but instead this requirement is hard-coded, and the tool simply will not run on
FASTQ with any different kind of name. As a result, it cannot be used to perform high-
throughput analysis on legacy data directly. An investigator must rename all files and perform
his own book-keeping to keep track of which file was where.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 26, 2015. ; https://doi.org/10.1101/031021doi: bioRxiv preprint

https://doi.org/10.1101/031021
http://creativecommons.org/licenses/by-nc-nd/4.0/

Mainzer et al. review of Isaac Page 4

Input dbSNP

Isaac does not make use of a dbSNP, and there is no user option to specify one on command line.

Read names

Isaac renames input reads; this is described in a manual on Github:
https://github.com/sequencing/test/blob/master/markdown/manual.md. This means, a user cannot
verify the Isaac alignment against a different tool, such as Novoalign (www.novocraft.com) or
BWA (Li and Durbin 2009). Presumably, the reads are renamed with a sequential counter
appended at the end of the new name. Thus, if a user resorts the output BAM by name, the reads
should be in the same order as the original FASTQ, and correspondence can be established.
However, if some reads were filtered out or collapsed as duplicates during an alignment, then the
order is forever lost, and the original cannot be restored. One possible workaround could be to
use Isaac output BAM files as input to BWA, and compare alignments that way. We did not
perform that kind of analysis.

Output folders

Isaac uses hardcoded folder structure. It will always create Aligned/ and Temp/ in the local
folder wherefrom it was invoked, and will put all output into those two folders. In this situation,
the user must either rename those folders by hand after the run, or cd into a pre-created output
folder to invoke Isaac from there. Not a huge chore, but must be aware of it, as otherwise the
output from different sequential runs will overwrite each other.

The output contents will be quite large: up to ~1TB for WGS human data (depth of coverage
50X) in Temp/. Final output, such as the alignment BAM and the associated statistics, is placed
into Aligned/. Temporary run-time data are saved, obviously, into Temp/, which is not deleted
after the run, so the user has a chance to inspect it.

The folder structure inside Aligned/ seems to derive from some sequencing information
(described in the GitHub manual): in our case the path to final BAMs was always
Projects/default/default. Perhaps one can specify this information somehow as an input to
Isaac, but that is not transparent.

Documentation

There is no single comprehensive documentation for Isaac. Here are the sources we used.

1) For explanation for output VCF format and the variant filters, see the Isaac Whole
Genome Sequencing v2 User Guide:

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 26, 2015. ; https://doi.org/10.1101/031021doi: bioRxiv preprint

https://doi.org/10.1101/031021
http://creativecommons.org/licenses/by-nc-nd/4.0/

Mainzer et al. review of Isaac Page 5

http://support.illumina.com/content/dam/illumina-
support/documents/documentation/software_documentation/basespace/Isaac-wgs-user-guide-
15050954b.pdf

2) For example commands, output folder structure, aligner command line parameters see the
GitHub manual:

https://github.com/sequencing/test/blob/master/markdown/manual.md
Please note that some of the options are not accurately described. For example, the –-variable-
read-length parameter takes values on|off, not =1|0, as is implied in the manual.
Experimenting with parameters is required.

3) For command line parameters in the variant caller, use the starling manual: invoke as
/Path/To/IsaacVariantCaller/libexec/starling2 –h on command line. Please note
that some options, such as bsnp-ssd-no-mismatch, bsnp-ssd-one-mismatch and min-vexp
appear to be absent from starling command line documentation, as distributed by the
Isaac variant caller package.

4) Many option settings are not known until the software is run, but can be gleaned from the
vcf header.

5) Some options can be set in run.config.ini, but their names do not correspond exactly to
those listed on GitHub manual or starling manual. Experimentation is required.

6) Some information in the HiSeq software Manual and user Guide could be helpful when
trying to understand the parameter settings:

https://support.illumina.com/content/dam/illumina-
support/documents/documentation/software_documentation/has/has_userguide_15041353b.pdf

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 26, 2015. ; https://doi.org/10.1101/031021doi: bioRxiv preprint

https://doi.org/10.1101/031021
http://creativecommons.org/licenses/by-nc-nd/4.0/

Mainzer et al. review of Isaac Page 6

Methods

The questions we asked

• Does Isaac find any variants?
• Does it find variants that should be there? If not, what is the rate of false negatives?
• If it does not find variants, can that be fixed with some parameter tuning?
• Does it find variants that should not be there? If so, what is the rate of false positives?

Testbeds

The bulk of the work presented in this report was performed on the high-memory node of the
Innovative Systems Lab (ISL2.0) at NCSA http://www.ncsa.illinois.edu/about/org/isl/ (Table 2).
We chose this highly advanced machine, because we were running into difficulties running Isaac
on any other, more conventional system (see the performance section).

Node High Memory iForge Biocluster

System Dell PowerEdge R920 Intel Xeon Phi Development
System in a cluster SGI UV1000 Nodes in a cluster

CPU 4 of Intel Xeon 2.6 GHz,
yielding 48 dual-threaded cores,
which allows for 96 threads

2 x 6-core Intel Xeon x5670
"Westmere" 3.06 GHz

384 of Intel Xeon 2.67 CPUs per
node

RAM 3 TB 96 GB per node 2 TB per node

Storage 2 of 300 GB HDD,
6 of 1 TB HDD,
4 of 800 GB SSD,

No internal node storage, files
saved over cluster’s GPFS

No internal node storage, files
saved over cluster’s GPFS

Inter
connect 1 Gbps and 10 Gbps Ethernet QDR Infiniband 10 Gbps ethernet

Table 2. Computer systems we used to test Isaac for this report. Our tests were successful on the high memory
machine administered by ISL2.0 at NCSA. However, tests resulted in errors and segmentation faults on two clusters:
iForge (NCSA), and Biocluster (Institute for Genomic Biology http://help.igb.illinois.edu/Biocluster).

We also made a run on one node in BaseSpace (https://basespace.illumina.com/dashboard), but
the hardware specifications are unknown. The BWA-GATK workflows were run on Blue Waters
supercomputer (bluewaters.ncsa.illinois.edu). We also used AWS (https://bcbio-
nextgen.readthedocs.org/en/latest/contents/cloud.html) to run BWA-GATK and Isaac: a single
Amazon EC2 r3.8xlarge instance with 32 cores and 244Gb of memory, using an EBS
provisioned SSD volume with 3000 IOPS.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 26, 2015. ; https://doi.org/10.1101/031021doi: bioRxiv preprint

https://doi.org/10.1101/031021
http://creativecommons.org/licenses/by-nc-nd/4.0/

Mainzer et al. review of Isaac Page 7

Runtime parameters and commands

All alignments were done against hg19, which was indexed by Isaac with seed length 32. All
parameters for the alignment were default except specifying seed depth of the reference index,
and the maximum RAM to use, which was specified as 2.999 out of the available 3 TB. All
parameters for variant calling were default unless specified otherwise. All the 96 threads
available on the machine were used. The box below lists the commands used during a typical test
run.

Alignment
/PathTo_Isaac_install/bin/isaac-align
-r /Full/Path/sorted-reference.xml
-b /full/Path/FolderWithFASTQFiles
--base-calls-format fastq (or fastq-gz) -m 2999 --seed-length 32
–j 96

It was sometimes necessary to use:
–variable-read-length on

Variant Calling
mkdir VarCallFolder
cd VarCallFolder

cp /PathTo_Isaac_VariantCallerFolder/etc/ivc_config_default.ini ./config.ini

/PathTo_Isaac_VariantCallerFolder/bin/configureWorkflow.pl
--BAM=/PathToAlignedBAM/input.BAM --ref=/PathToReferenceFile/hg19.fa
--config=./config.ini
--output-dir=./myAnalysis

cd ./myAnalysis
make -j 96

When needed, we ran the GATK best-practices workflow using the following commands and
parameters:

Alignment:
bwa mem -k 32 -t 30 -I 300,30 -R 'read-group-string' /Path/To/Reference/Index
/Path/To/leftreads /Path/rightreads | samblaster -o /Path/To/Output/SAM

or

Novoalign -g 40 –x 5 –I PE 175,50 –r Random –hdrhd off –v 120

Convert to BAM:
samBAMba view -t 32 -f BAM -S /Path/To/Output/SAM -o /Path/To/Output/BAM

Sort BAM:
novosort --threads 32 --index /Path/To/Output/BAM -o /Path/To/Output/BAM.sorted

Gatk Create realignment targets
-T RealignerTargetCreator
-R genome.fa -known dbsnp_135.hg19.vcf.gz
-I BAM.sorted -o BAM.sorted.realign-list

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 26, 2015. ; https://doi.org/10.1101/031021doi: bioRxiv preprint

https://doi.org/10.1101/031021
http://creativecommons.org/licenses/by-nc-nd/4.0/

Mainzer et al. review of Isaac Page 8

Realignment:
-T IndelRealigner
-R genome.fa -known dbsnp_135.hg19.vcf.gz
-targetIntervals BAM.sorted.realign-list
-I BAM.sorted -o BAM.sorted.realigned

Base score recalibration:
-T BaseRecalibrator
-R genome.fa --knownSites dbsnp_135.hg19.vcf.gz
-I BAM.sorted.realigned.BAM --out BAM.sorted.realigned.recal-report.grp
-nct 32

Print reads:
-T PrintReads
-R genome.fa
-BQSR BAM.sorted.realigned.recal-report.grp
-I BAM.sorted.realigned.BAM --out BAM.sorted.realigned.recalibrated
-nct 32

Variant calling:
-T UnifiedGenotyper
-R genome.fa
-I BAM.sorted.realigned.recalibrated -o raw.vcf
-glm BOTH
--output_mode EMIT_VARIANTS_ONLY
-A Coverage
-A AlleleBalance
-dcov 250
-rf BadCigar
-nt 8 -nct 4

Concordance measurement

To measure the concordance of variant calls, we would have liked to perform comparisons of vcf
files as well as the alignment BAMs, as the latter can sometimes help explain discordance. Since
Isaac changes the read names, the BAM comparison is therefore impossible. Instead, we spot-
checked the Isaac aligned BAMs in a genome browser.

Additionally, Isaac outputs variants in a GVCF, which conforms to the VCF4.1 specifications
but also includes non-variant sites. This can cause conventional VCF comparison tools to report
incorrect results. Thus, we extracted the variants from the Isaac's output gvcf. The Isaac
documentation recommends using extract_variants from gvcf-tools. After using it, we
found that it performs the same function as a linux awk command, but slower. Indeed, one has to
use awk afterwards anyway to inspect the variants that did not pass the various filters. Thus, we
used the following commands to go from Isaac's GVCF to a VCF that can be used in comparison
exercises:

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 26, 2015. ; https://doi.org/10.1101/031021doi: bioRxiv preprint

https://doi.org/10.1101/031021
http://creativecommons.org/licenses/by-nc-nd/4.0/

Mainzer et al. review of Isaac Page 9

awk ‘$1!~/^#/ && $5!~/\./ {print $0}’ sorted.genome.vcf > sorted.genome.vcf.ALT

awk ‘$7~/PASS/ {print $0}’ sorted.genome.vcf.ALT > sorted.genome.vcf.ALT.PASS

The first command produces the list of all variants, whether or not they passed the filters
(discussed in the Results section). The second command produces the list of only those variants
that have passed the filters. Afterwards, we manually inspected the vcfs and used existing tools,
such as vcf-compare, as well as our own perl and python scripts. The “confident regions”
from the Illumina Platinum Genomes v8 were also used in the analysis. The minimum length of
a targeted region (in WES) or a confident region (from the Platinum set) that was considered in
the concordance analysis was 20 nt.

Generating synthetic WGS with NEAT

To test Isaac on synthetic whole human genome with known variants (WGS), we produced one
synthetic dataset using NEAT (https://github.com/zstephens/genReads1) at 50X depth. The
variants were inserted at random, at the average rate of 0.00034. The simulated fragment length
was 300 nt, standard deviation of 30 nt, read length of 100 nt. The sequencing error rates were
modeled after the data generated at the local sequencing facility
(http://www.biotech.uiuc.edu/htdna), and were inserted at the rate of 0.1%. The software
produces the synthetic reads, a “golden” vcf containing the variants synthetically inserted into
the reference, and the “golden” sam containing the “true” read alignment based on the reference
loci where the reads were generated from.

Generating synthetic WES with Wessim

To test Isaac on synthetic whole human exome with known variants (WES), we produced one
synthetic dataset using Wessim (Kim et al. 2013):

1. We ran a standard GATK workflow on ERR250949 human exome from the 1000
genomes project, detected variants and segregated out those belonging to chromosome 1.

2. We generated some random variants as well, using Genome Smasher (10% insertions,
5% deletions and the rest are SNPs; regions with repetitive Ns were avoided).

3. Then we combined those two sets of variants together and inserted them into hg19
reference using GATK FastaAlternateReferenceMaker. Only variants located within
exonic regions identified according to hg19 annotation, were considered in concordance
measurement.

4. Finally, we used that mutated reference to simulate whole exome sequencing on
chromosome 1 using Wessim, generating 100-nucleotide paired-ended reads at 50X
depth.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 26, 2015. ; https://doi.org/10.1101/031021doi: bioRxiv preprint

https://doi.org/10.1101/031021
http://creativecommons.org/licenses/by-nc-nd/4.0/

Mainzer et al. review of Isaac Page 10

Results

Synthetic WGS 50X, generated with NEAT

Isaac 01.14.11.27 detects no variants

It was desirable to test Isaac’s variant detection against a known “ground truth”, in order to
evaluate its accuracy unequivocally, and independently of the properties of other variant callers.
Thus, we generated a synthetic WGS dataset based on hg19 at 50X using NEAT, and compared
Isaac’s results to the list of variants that were inserted by the read simulator. Unfortunately, Isaac
01.14.11.27 did not detect any variants at all. The final GVCF contained no entries in the ALT
column, only dots.

We hypothesized that perhaps our variants were filtered out by the variant caller, so we relaxed
the following filters that have to do with local read depth and read mapping quality (by the way,
these parameters have different names in the starling manual and Isaac variant caller
configuration file):

isSkipDepthFilters=1
maxInputDepth=-1
depthFilterMultiple=1000
minMapq=0
minGQX=0

This had no effect. Inspecting the BAM in genome browser indicates that some expected variants
do in fact get detected in alignment – but are not reported by the variant caller. For example, this
variant was inserted into the dataset when simulated reads were created, and is present in the
“golden” vcf (line abbreviated):

chr1 240578 . G A .

However, Isaac variant caller reports nothing for the respective region (lines abbreviated):

#CHROM POS ID REF ALT QUAL FILTER

chr1 240547 . T . . HighDPFRatio
chr1 240549 . A . . HighDPFRatio
chr1 240553 . G . . HighDPFRatio
chr1 240583 . A . . HighDPFRatio
chr1 240596 . C . . HighDPFRatio

Meanwhile, the same variant is clearly visible in Isaac’s alignment (Figure 1).

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 26, 2015. ; https://doi.org/10.1101/031021doi: bioRxiv preprint

https://doi.org/10.1101/031021
http://creativecommons.org/licenses/by-nc-nd/4.0/

Mainzer et al. review of Isaac Page 11

Both Novoalign-GATK, and BWA-GATK work fine on this kind of data and report excellent
concordance of variants (Figure 2).

Figure 2. Results of running the standard GATK workflows on the NEAT synthetic WGS, 50X. Reads were
simulated with varying sequencing error rates (abscissa). Perfect matches denote the number of variants found by
the GATK workflow that corresponded to the “golden” vcf. False positives (FP) denote the number of variants
found by the GATK workflow, but which were not inserted into the data at the time of simulation.

Figure 1. Isaac’s alignment on NEAT synthetic data; snapshot from the genome browser IGV. The variant at
position chr1:240578 is highlighted in green.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 26, 2015. ; https://doi.org/10.1101/031021doi: bioRxiv preprint

https://doi.org/10.1101/031021
http://creativecommons.org/licenses/by-nc-nd/4.0/

Mainzer et al. review of Isaac Page 12

Isaac v2 provides concordance of up to 97% on NEAT data

Release of Isaac v2 aligner resulted in significant improvement. While the earlier version
detected no variants at all, v2 provides fairly high concordance (Table 3).

 +homs, +failed +homs, +failed,
confident regions only

-homs, -fail -homs, -failed,
confident regions only

Perfect matches 923,881 (95.54%) 906,463 (97.73%) 906,334 (93.73%) 892,735 (96.25%)

False negatives 43,113 (4.46%) 21,086 (2.27%) 60,660 (6.27%) 34,814 (3.75%)

False positives 18,212 (1.93%) 14,157 (1.54%) 64 (0.01%) 71 (0.01%)

Table 3. Concordance between variants called using Isaac_v2 and the variants inserted into the synthetic
reads by NEAT. Measurements were done both ways: on all reported variants, including those that are homozygous
and failed filtration (+homs, +failed), and also on the subset excluding those two categories (-homs, -failed).

Synthetic WGS 50X, generated with VarSim

We tested Isaac_v2 on synthetic data generated with VarSim, as an alternative to our NEAT
synthetic reads. The VarSim data were downloaded from the developer’s repository. The Isaac
alignment aborted with the message:

Opened gz fastq stream on lane1_read1.fastq.gz
Opened gz fastq stream on lane1_read2.fastq.gz
ERROR: Thread: 1 caught an exception first:Invalid
argument:Isaac_v2/isaac2/src/c++/include/io/fastqReader.hh(170): Throw in function
InsertIt isaac::io::fastqReader::extractBcl(const Isaac::flowcell::ReadMetadata&,
InsertIt) const [with InsertIt =__gnu_cxx::__normal_iterator<char*, std::vector<char>
>]
Dynamic exception type:
boost::exception_detail::clone_impl<isaac::io::FASTQFormatException>
std::exception::what: Invalid oligo M found in lane1_read2.fastq.gz at offset
5966430356
:Invalid oligo M found in lane1_read2.fastq.gz at offset 5966430356

Looking back at the synthetic sequences, they did indeed contain the “nucleotide” M:

grep -n M VarSim/lane1_read2.fastq
94111002:
CAGCTTGCTCTTCATTAGCGCTACATAGCTGMCTTATTATTCGTGGTCCCGTATGACCCCCTGATCATTTTCCCTGAGGGTGCATA
TTTATTCACTAACT
103350290:
TGTTTTTCATTTTCTTGATTTATTTCTGAATTCAGCTTGCTCTTCATTAGCCCTACATAGCTGMCTTATTATTCGTGGTCCCCTAT
GACCCCCTGGTCAT
116458522:
CATTAGCGCTACATAGCTGMCTTATTATTCGTGGTCCCCTATGACCCCCTGATCATTTTCCCTGAGGGTGCATATTTATTCACTAA
CTATGTTACAATCA
123122630:
AATTCAGCTTGCTCTTCATTAGCGCTACATAGCTGMCTTATTATTCGTGGTCCCCTATGACCCCCTGATCATTTTCCCTGAGGGTG
CATATTTATTCACT
128669782:
CTTGATTTATTTCTGAATTCAGCTTGCTCTTCATTAGCGCTACATAGCTGMCTTATTATTCGTGGTCCCCTATGACCCCCTGATCA
TTTTCCCTGAGGGT

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 26, 2015. ; https://doi.org/10.1101/031021doi: bioRxiv preprint

https://doi.org/10.1101/031021
http://creativecommons.org/licenses/by-nc-nd/4.0/

Mainzer et al. review of Isaac Page 13

Wessim synthetic WES, 50X

Isaac 01.14.11.27 generates a high number of false positives

We produced one synthetic dataset using Wessim (Kim et al. 2013), which is known to closely
simulate the properties of Illumina exome sequencing data. The Isaac version 01.14.11.27 did
report some variants on this dataset, but with a very high rate of false positives (at least 251%)
and false negatives (at least 28%). Out of 7,314 artificially inserted variants (all within exonic
regions, according to hg19 annotation; see salmon ellipse on Figure 3), 2,048 were undetected
(false negatives). Out of 23,638 variants that Isaac claimed to be present in this dataset (cyan
ellipse on Figure 3), 18,374 were not a part of the synthetic set (false positives).

Figure 3. Concordance statistics on the synthetic WES chr1
data generated by Wessim. Out of 7,314 simulated variants,
5,266 were detected by Isaac, but only 281 of those actually
passed the default filters. Salmon ellipse: synthetic variants.
Cyan ellipse: variants detected by Isaac. Purple ellipse:
variants that were detected by Isaac and passed the default
filters.

Looking at Isaac’s output vcf more closely, it appears that few of the claimed variants pass the
default filters (purple ellipse on Figure 3). Those filters are listed in Table 4, copy-pasted from
Isaac’s vcf header.

Filter Description
IndelConflict Locus is in region with conflicting indel calls.
SiteConflict Site genotype conflicts with proximal indel call. This is typically a heterozygous SNV call

made inside of a heterozygous deletion.
LowGQX Locus GQX is less than 30 or not present.
HighDPFRatio The fraction of basecalls filtered out at a site is greater than 0.3.
HighSNVSB SNV strand bias value (SNVSB) exceeds 10.
HighDepth Locus depth is greater than 3x the mean chromosome depth.

Table 4. Default filters used by Isaac, copy-pasted from an output vcf.

In the particular case of Wessim-generated reads, most of the inserted variants fail to pass the
LowGQX or HighDepth filters (Table 4). GQX has the meaning of genotype quality score,
generalized to both variant and non-variant loci. An example of such filtered variants is
displayed on Figure 4.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 26, 2015. ; https://doi.org/10.1101/031021doi: bioRxiv preprint

https://doi.org/10.1101/031021
http://creativecommons.org/licenses/by-nc-nd/4.0/

Mainzer et al. review of Isaac Page 14

Filter Number of
variants

HighDepth 4591
HighDepth, HighSNVSB 2
HighDPFRatio 12
HighDPFRatio, HighDepth 80
LowGQX 217
LowGQX, HighDepth 1
LowGQX, HighDPFRatio 21
LowGQX, HighDPFRatio, HighDepth 16

Table 5. Synthetic variants that were found by Isaac but did not pass the default filters, broken down by the
filter.

Filtering variants based on the sequencing depth and quality score is, of course, normal, and
expected. The problem lies not with the fact that variants get filtered out, but with the extremely
small number of passed variants that we know have actually been inserted into the data during
the process of read simulation.

The cause of this is the way Wessim simulates exome sequencing: reads are grabbed from the
reference, in and around target regions. There are usually reads present that do not strictly belong
to exons, and they will usually have coverage issues. Once we focus only on the 3,792 synthetic
variants that belong strictly to the targeted regions (defined by the Agilent SureSelect bed file,
and only considering regions with length > 100), actually Isaac detects 98.55% of them (3,737
variants), but only 15 of them pass the filters. Additionally, Isaac finds 2,781 extra variants that
should not be there (73.34%, only 36 passed filters; false positives) within the targeted regions
and does not find 55 (1.45%; false negatives) variants that should in fact be present within the
dataset. In other words, Isaac does find strictly exonic variants within the targeted regions, but its
filters are a bit stringent for this dataset, and need some tuning to work properly. This tuning is
difficult: when the filters are relaxed, the true variants will pass filtration, but the false positive
variants will pass it too.

Finally, Isaac assigned 993 variants to chromosomes other than chr1 (all regions), even though
the input reads were simulated for chr1 only. This is normal, due to some sequence similarities
between chromosomes. None of these variants passed the default filters.

Based on these data it appears that Isaac 01.14.11.27 can be quite sensitive to variants, but also
has an incredibly high rate of false positives, which is only somewhat compensated by stringent
variant filters.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 26, 2015. ; https://doi.org/10.1101/031021doi: bioRxiv preprint

https://doi.org/10.1101/031021
http://creativecommons.org/licenses/by-nc-nd/4.0/

Mainzer et al. review of Isaac Page 15

Figure 4. Example of two synthetic variants that were detected but did not pass the filters. This is a screenshot
of IGV genome browser zoomed in on loci chr1:809,792 and chr1:809,956 within an output BAM from
Isaac aligner. The first synthetic variant (G→C) is highlighted with blue in the figure, but is filtered out as
HighDepth. The second variant (T→A) is on the tail edge of the simulated exon and is only covered by two reads, so
it is barely visible, but is nonetheless present in Isaac vcf and marked as LowGQX.

Isaac v2 does not eliminate false positives on Wessim data

Since Isaac v2 aligner improved the results on synthetic NEAT data, we applied it to Wessim
data as well. Unfortunately, the number of false positives was still extremely high (Table 6).

 +homs, +failed +homs, +failed
targeted regions only

-homs, -fail -homs, -fail,
targeted regions only

Perfect matches 5,248 (71.76%) 3,826 (98.53%) 268 (3.66%) 26 (0.67%)

False negatives 2,065 (28.24%) 57 (1.47%) 7,045 (96.34%) 3,857 (99.33%)

False positives 18,058 (77.49%) 2,764 (41.96%) 3,585 (93.04%) 31 (54.39%)

Table 6. Concordance between variants called using Isaac_v2 and the variants inserted into the synthetic
reads by Wessim. Measurements were done both ways: on all reported variants, including those that are
homozygous and failed filtration (+homs, +failed), and also on the subset excluding those two categories (-homs, -
failed). Concordance within the Platinum Confidence regions of hg19 is even worse than within targeted regions
(73.85% perfect matches, 26.15% false negative, 77.66% false positives on +homs, +failed).

1000 human genomes, WES data

Isaac 01.14.11.27 generates high number of false positives

To eliminate any uncertainty in our evaluation that may have resulted from incorrect read
simulation by Wessim, we proceeded to test Isaac on real datasets. We used whole exome
sequencing dataset ERR250440 from the 1000 genomes project. The reads were aligned against
hg19 using Novoalign and then run through the best practices GATK workflow.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 26, 2015. ; https://doi.org/10.1101/031021doi: bioRxiv preprint

https://doi.org/10.1101/031021
http://creativecommons.org/licenses/by-nc-nd/4.0/

Mainzer et al. review of Isaac Page 16

The resultant vcf was used as a standard to compare Isaac’s vcf against. Once again, some of the
same variants were detected, but most were marked as not passing the filters, mainly due to high
coverage (Figure 5).

The number of false negative variants is still high (13.44%), and interestingly some of these are
clearly visible in alignment, but not reported by Isaac. For example, the box below lists
neighboring locations in Isaac’s and GATK’s vcfs, and matches the region displayed in the
genome browser screenshot on Figure 6. All six variants listed in the box appear present in the
alignment: their respective loci are highlighted in color within the box.

Isaac

chr1 1650807 . T C 222 HighDepth SNVSB=-22.1;SNVHPOL=4
GT:GQ:GQX:DP:DPF:AD 0/1:255:222:147:39:99,48 ! RIGHTMOST BLUE on top panel of
Figure 4

chr1 1650832 . A G 335 HighDepth SNVSB=-39.3;SNVHPOL=2
GT:GQ:GQX:DP:DPF:AD 0/1:368:335:187:4:117,70 ! RIGHTMOST BROWN on top panel of
Figure 4

chr1 1650845 . G A 59 HighDepth SNVSB=-7.9;SNVHPOL=3
GT:GQ:GQX:DP:DPF:AD 0/1:92:59:210:3:159,51 ! RIGHTMOST GREEN on top panel of
Figure 4

GATK

chr1 1650787 . T C 2851.22 .
ABHet=0.54;AC=1;AF=0.50;AN=2;BaseQRankSum=1.712;
DP=235;Dels=0.00;FS=1.680;HRun=0;HaplotypeScore=8.3 ! LEFTMOST BLUE

chr1 1650797 . A G 2575.48 .
ABHet=0.54;AC=1;AF=0.50;AN=2;BaseQRankSum=-4.643;
DP=234;DS;Dels=0.00;FS=0.000;HRun=0;HaplotypeScore=56.15 ! LEFTMOST BROWN

chr1 1650801 . T C 3132.88 .
ABHet=0.54;AC=1;AF=0.50;AN=2;BaseQRankSum=8.750;
DP=235;DS;Dels=0.00;FS=1.048;HRun=0;HaplotypeScore=60.07 ! MIDDLE BLUE

Figure 5. Concordance statistics on the variants
detected with novoalign-GATK and those detected by
Isaac. Out of 211,175 variants detected by GATK
(salmon circle), 182,793 (86.56%) were also found by
Isaac, but only 8,936 of those passed the filters. A large
number of false positives is observed again (300,376), but
only 798 of them pass the filters. Cyan circle: variants
found by Isaac. Purple circle: variants found by Isaac that
also passed filtration.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 26, 2015. ; https://doi.org/10.1101/031021doi: bioRxiv preprint

https://doi.org/10.1101/031021
http://creativecommons.org/licenses/by-nc-nd/4.0/

Mainzer et al. review of Isaac Page 17

Figure 6. Example of variant mismatch between GATK and Isaac. Top panel is a screenshot of IGV genome
browser zoomed in on the region chr1:1,650,701-1,650,901 within an output BAM from Isaac aligner.
Bottom panel is the same location within an output BAM from Novoalign. .

At first it might look like reads are misaligned, and single variants became split into two, and
only one half got called. For example, variant chr1:1650807 got called by Isaac, but
chr1:1650801 and chr1:1650787 did not, even though they seem to have similar characteristics.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 26, 2015. ; https://doi.org/10.1101/031021doi: bioRxiv preprint

https://doi.org/10.1101/031021
http://creativecommons.org/licenses/by-nc-nd/4.0/

Mainzer et al. review of Isaac Page 18

However, the alignment performed by Novoalign looks extremely similar in the same region
(Figure 6, bottom panel). Perhaps the variant caller is the culprit?

Isaac 01.15.04.01 and Isaac v2 both report high number of false positives on WES

Newer versions of Isaac do not eliminate the high false positives rate, although the number of
perfect matches within the Platinum v8 confident regions is quite high (Table 7).

 +homs, +failed +homs, +failed
Illumina targeted

regions only

+homs, +fail,
Platinum v8 confident

regions only

-homs, -fail

Perfect matches 184,511 (87.42%, 87.52%) 34,336 (90.56%) 172,467 (95.66%, 95.97%) 8,430 (3.99%)

False negatives 26,556 (12.58%, 12.48%) 3,579 (9.44%) 7,820 (4.34%, 4.03%) 202,637 (96.01%)

False positives 306,873 (62.45%, 66.37) 11,064 (24.37%) 290,573 (62.75%, 66.41%) 863 (9.29%)

Table 7. Concordance between variants called using Isaac 01.15.04.01 and Isaac_v2 (second % number,
where applicable), and the variants detected by Novoalign-GATK in the WES reads from the ERR250440
sample (1000 genomes project). Measurements were done both ways: on all reported variants, including those that
are homozygous and failed filtration (+homs, +failed), and also on the subset excluding those two categories (-homs,
-failed)

NA12878: paired-ended data from GATK and GIAB, and mate-pair data from ENA

Finally, to test variant detection for whole genome sequencing, we used three datasets derived
from the Illumina Platinum genome NA12878. One dataset was sequenced by the Broad Institute
http://gatkforums.broadinstitute.org/discussion/1292/which-datasets-should-i-use-for-reviewing-
or-benchmarking-purposes to produce high-coverage (>60X) paired ended reads hosted by the
NCBI ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/working/20101201_cg_NA12878/.
The second set was downloaded from Genome In A Bottle (GIAB) consortium. The third was
sequenced using long insert mate pair library (2000 nt fragment length) and hosted by the ENA
http://www.ebi.ac.uk/ena/data/view/ERP002490.

The results are definitely better than for any dataset above. Was Isaac tuned to performed
particularly well on NA12878? The number of false positives and false negatives is still
noticeable in some cases, especially the mate pair ENA dataset (Table 8). This might be
improved by setting the fragment length correctly, but it is not transparent from the
documentation how to do that.

For comparison, Table 8 also includes the concordance stats on the GIAB data analyzed using
BWA-GATK HaplotypeCaller.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 26, 2015. ; https://doi.org/10.1101/031021doi: bioRxiv preprint

https://doi.org/10.1101/031021
http://creativecommons.org/licenses/by-nc-nd/4.0/

Mainzer et al. review of Isaac Page 19

 GATK GIAB: Isaac GIAB: BWA-GATK ENA

Perfect
matches

96.81% 94.12% 98.85% 93.57%

False negatives 3.19% 5.9% 1.1% 6.43%

False positives 2.69% 0.3% 0.7% 2.81%

Table 8. Concordance for variants called using Isaac 01.14.11.27 and BWA-GATK HaplotypeCaller on
NA12878 datasets of various origins. Measurements were made on all reported variants, including those that are
homozygous and failed, but only inside the confident regions. Variants called on the datasets sourced from GATK
and ENA were compared against the Platinum set v7. The variants called on datasets sourced from GIAB were
compared to variants provided by GIAB.

NA12878_rep4 recommended by Illumina team

To test for the best concordance, the Illumina team shared with us in BaseSpace a dataset
comprised of NA12878 sequenced on two lanes, paired-ended reads 126 nt long, 40X WGS.
They called it NA12878_rep4 and recommended we compare the results against Illumina
Platinum VCFs version 8.

We downloaded these data to the high-memory machine and ran the analysis locally using Isaac
01.15.04.01, with results comparable to those reported by Isaac 01.14.11.27 on the high coverage
data from GATK. Isaac v2 was run on the NA12878_rep4 in BaseSpace, with very similar
results (Table 9).

 Isaac 01.15.04.01, local run Isaac v2, in BaseSpace

 +homs, +failed +homs, +failed
confident regions only

+homs, +fail +homs, +fail,
confident regions only

Perfect matches 4,088,290 (91.68%) 3,886,538 (96.15%) 4,099,301 (91.93%) 3,895,220 (96.36%)

False negatives 370,778 (8.32%) 155,675 (3.85%) 359,767 (8.07%) 146,993 (3.64%)

False positives 346,085 (7.80%) 91,669 (2.30%) 35,020 (7.95%) 94,363 (2.37%)

Table 9. Concordance between variants called on NA12878_rep4 using Isaac 01.15.04.01or Isaac v2, and the
Platinum v8. Measurements were made on all reported variants, including those that are homozygous and failed
filtration (+homs, +failed).

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 26, 2015. ; https://doi.org/10.1101/031021doi: bioRxiv preprint

https://doi.org/10.1101/031021
http://creativecommons.org/licenses/by-nc-nd/4.0/

Mainzer et al. review of Isaac Page 20

Performance

Installation

Isaac installs fairly easily on a linux box with standard, modern OS distribution and libraries. It
does require boost and gnuplot as prerequisites.

Performance benchmarks

It takes a long time to index the reference: 8-12 hours depending on the number of available
cores. This only needs to be done once.

On the Dell machine with 48 dual-threaded cores and 3 TB of RAM, the alignment takes ~80-
120 minutes (depending on the version and OS activity), and variant calling in ~30 minutes on
human WGS, 50X coverage. Performance definitely was degraded when sharing the machine
with other bioinformatics applications, and sometimes Isaac crashed in those cases. On less
powerful servers the alignment can take up to 4.5 hours and variant calling ~ 40 minutes. In
BaseSpace, the entire workflow took 13.5 hours on a single server. In AWS, Isaac alignment
took 4.5 hours, and variant calling took 45 minutes.

Isaac aligner seems to use all available computational resources on the host machine during the
run (Figure 7). According to Isaac whitepaper, the alignment consists of three distinct phases,
which manifest in performance profiles as well. The first phase generates mapping position
candidates via seed-based search, and finds exact matches on a stream of input data, which seem
to be kept in memory. The second phase finds best mapping among all selected candidate
mappings and determines alignment scores. This phase is highly i/o intensive and CPU intensive.
Finally, duplicates are found and removed - a process that seems to happen in RAM as much as
possible. The aligner logs also mention realignment around gaps during this phase.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 26, 2015. ; https://doi.org/10.1101/031021doi: bioRxiv preprint

https://doi.org/10.1101/031021
http://creativecommons.org/licenses/by-nc-nd/4.0/

Mainzer et al. review of Isaac Page 21

Figure 7. Performance profile on Isaac aligner, made by parsing /proc/PID every second. Top panel: RAM
utilization measurements, specifically Vm size (red) and resident set size (green). The roman numerals mark the
three computational phases discussed in the text. Middle panel: the rate of data reads (red) and writes (green).
Bottom panel: number of utilized threads (red) and CPU load (green).

Issues

One issue prevented us to successfully test the version 01.14.11.27 (and earlier versions) in a
cluster environment: Isaac does not respect the boundaries placed on the usage of threads and
RAM.

For example, when specified to use 48 threads for reference indexing on the “high-memory”
machine, Isaac still uses all available 96 threads in certain phases of computation, according to
its ouput log. Similarly, Isaac aligner does not tend to respect the user-set number of threads
specified to it on the command line using option -j. For example, when we ran tests on the “high-
memory node”, which has 48 dual-threaded cores, with -j 48, the aligner logs still indicated that
in fact all 96 virtual threads were used.

For this reason, when running on a cluster node, especially in a shared mode with other users,
Isaac throws a “libgomp: Thread creation failed” error (found both on Biocluster and
iForge). For example the Biocluster nodes in question have 384 CPUs per node, and 2 TB of
RAM per node. Thus, we are not exceeding the number of cores on the node by asking Isaac
aligner to use 48 threads via the –j option, and also telling the PBS script to submit the Isaac job
with a limitation of 48 threads, so that other users could utilize the other threads. However, Isaac

I II III

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 26, 2015. ; https://doi.org/10.1101/031021doi: bioRxiv preprint

https://doi.org/10.1101/031021
http://creativecommons.org/licenses/by-nc-nd/4.0/

Mainzer et al. review of Isaac Page 22

appears to ignore these limitations: not only ignoring the -j option, but also not complying with
the scheduler's limits, and throwing the “libgomp: Thread creation failed” error.

Isaac was probably designed to run alone on a computer, and that may be why we are seeing this
error. It was reported to the developers, who did come up with a fix in January 2015. We did not
test it on a cluster again.

Summary and conclusions

In summary, the Isaac workflow appears to be optimized for whole genome sequencing on
NA12878. It reports high number of false positive variants on exome data, both synthetic and
real. However, its accuracy has improved steadily over several versions. On synthetic WGS, the
accuracy of Isaac v2 is comparable or slightly worse than BWA-GATK and Novoalign-GATK.
Special attention to variant filters is required when evaluating results.

In terms of performance, it is best to dedicate a single server to Isaac, where it will not compete
with other software for hardware resources, otherwise the user might notice unstable behavior.

Acknowledgements

We are grateful to Dr. Volodymyr Kindratenko (ISL2.0, NCSA) for allowing us to use his high
memory node for the testing of Isaac workflow. Many thanks also to the system administrators at
the Private Sector Program (NCSA) for their help in installing and determining reasons for
runtime failures on iForge. Finally, we would like to acknowledge the Computer Network
Resource Group at the Institute for Genomic Biology for similar efforts on Biocluster.

This research is part of the Blue Waters sustained-petascale computing project, which is
supported by the National Science Foundation (awards OCI-0725070 and ACI-1238993) and the
state of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign
and its National Center for Supercomputing Applications.

References

A Cornish, C Guda (2014) A Comparison of Variant Calling Pipelines Using Genome in a Bottle
as a Reference. BioMed Research International, Article ID 456479

GATK best practices https://www.broadinstitute.org/gatk/guide/best-practices

Genome Smasher: https://code.google.com/p/genome-smasher/wiki/SNP_mutator

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 26, 2015. ; https://doi.org/10.1101/031021doi: bioRxiv preprint

https://doi.org/10.1101/031021
http://creativecommons.org/licenses/by-nc-nd/4.0/

Mainzer et al. review of Isaac Page 23

Isaac whitepaper, accessed in March 2015:
http://res.illumina.com/documents/products/whitepapers/whitepaper_iassc_workflow.pdf

S Kim, K Jeong, V Bafna (2013) Wessim: a whole-exome sequencing simulator based on in
silico exome capture. Bioinformatics. 2013 Apr 15;29(8):1076-7.

H. Li, R Durbin (2009) Fast and accurate short read alignment with Burrows-Wheeler
Transform. Bioinformatics, 25:1754-60

NEAT Synthetic reads generator: https://github.com/zstephens/genReads1

Novoalign: www.novocraft.com

J O’Rawe, T Jiang, G Sun, Y Wu, W Wang, J Hu, P Bodily, L Tian, H Hakonarson, W E
Johnson, Z Wei, K Wang, G J Lyon (2013) Low concordance of multiple variant-calling
pipelines: practical implications for exome and genome sequencing. Genome Medicine 2013,
5:28

S Pabinger, A Dander, M Fischer, R Snajder, M Sperk, M Efremova, B Krabichler, M R.
Speicher, J Zschocke, Z (2014) A survey of tools for variant analysis of next-generation genome
sequencing data. Brief Bioinform 15 (2): 256-278. doi: 10.1093/bib/bbs086

M Yi, Y Zhao, L Jia, M He, E Kebebew, RM. Stephens (2014) Performance comparison of SNP
detection tools with illumina exome sequencing data—an assessment using both family pedigree
information and sample-matched SNP array data. Nucl. Acids Res. 42(12):e101. doi:
10.1093/nar/gku392

X. Yu, S. Sun (2013) Comparing a few SNP calling algorithms using low-coverage sequencing
data. BMC Bioinformatics 14:274

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 26, 2015. ; https://doi.org/10.1101/031021doi: bioRxiv preprint

https://doi.org/10.1101/031021
http://creativecommons.org/licenses/by-nc-nd/4.0/

