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Abstract 

As the pace of implementing personalized medicine concepts increases, high-throughput variant 
calling on hundreds of individual genomes per day is a reality that will likely be faced by 
sequencing facilities across the country in the near future. While the scientific best practices for 
human variant calling workflows have been well defined, they also pose serious computational 
challenges at this high scale. Therefore, efforts in both academia and the private sector have 
focused on developing alternative workflows that may substantially reduce the computational 
cost per individual genome. Isaac is an “ultra-fast” variant calling workflow, designed by 
Illumina, Inc, and is claimed to be six times faster than BWA-GATK, with comparable 
sensitivity and specificity. This report is an independent review of Isaac, mainly focused on the 
accuracy of variant calls. We note that Isaac is indeed quite fast, and provide some benchmarks 
on a few hardware architectures. The overall conclusion from our analysis is that the Isaac 
workflow has undergone substantial improvement from version 01.14.11.27 to Isaac_2.0. The 
call accuracy is especially high on NA12878, however exomes tend to have a high fraction of 
false positive calls. We did not manage to reproduce the 99% sensitivity and specificity reported 
in the Illumina whitepaper, however that might be improved with further tweaking of the 
options. This report includes the information about some of the command-line parameters and 
documentation. 

Introduction 

Genomic variant calling from raw high-throughput sequence data is a widely used procedure in 
both research and clinical settings. The current community standard (“BWA-GATK”) is a 
complex workflow that involves multiple steps, each requiring its own software tools and 
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specific parameters. It can use a large amount of disk space for temporary files, and take a long 
time to compute. Therefore, there have been several efforts to develop better-performing sets of 
tools for variant calling, in terms of speed, accuracy, and ease of use. Isaac is an “ultra-fast” 
variant calling workflow, designed by Illumina, Inc. It is claimed to be six times faster than 
BWA-GATK, with comparable sensitivity and specificity (Isaac whitepaper, 2015). This report 
is an independent review of Isaac. Our main focus in this review is the accuracy of variant calls, 
which is the most important feature of any variant calling workflow. We note that Isaac is indeed 
quite fast, and provide some benchmarks on a few hardware architectures. However, measuring 
wall-time performance was not our priority, and we do not report any rigorous comparative 
analysis here. 

Several groups have attempted to measure the discordance in variant calls among the many 
variant calling tools available to-date (Yi et al. 2014, Pabinger et al. 2014, Yu and Sun 2013, 
O’Rawe et al. 2013, Cornish and Guda 2014). Our focus here is not to provide a comparison 
between Isaac and other software packages. Instead, we focused on testing the accuracy of Isaac 
with datasets for which the “ground truth” for variant call is known, or at least agreed upon. 
These include synthetic data, data from the Genome in a Bottle (GIAB) consortium, and Illumina 
Platinum Genomes.  

Illumina released several versions of Isaac in quick succession through 2015. Here we report our 
results, using the same data to test several different versions of the workflow.  

The overall conclusion from our analysis is that the Isaac workflow has undergone substantial 
improvement from version 01.14.11.27 to Isaac_2.0. The call accuracy is especially high on 
NA12878, however exomes tend to have a high fraction of false positive calls. We did not 
manage to reproduce the 99% sensitivity and specificity reported in the Illumina whitepaper. 
That might be improved with further tweaking of the options. This report includes the 
information about some of the command-line parameters, and links to documentation. 

Caveats in the software design that affected our assessment 

Isaac has several design caveats that impact the ability to evaluate and use it. We describe them 
briefly in the paragraphs below. 

Versions we evaluated 

Isaac comes in two forms: (1) as commercially supported software that works directly off the 
output from an Illumina machine, and (2) a “developer” version. The former requires, apart from 
the usual FASTQ, the various Illumina files produced by the machine, and cannot be evaluated 
without them. Since our group does not have access to those, we focused on evaluating the 
“developer” version of Isaac. The latter is a two-step workflow that first performs alignment 
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(versions 01.14.11.27, 01.15.04.01, Isaac_v2), followed by the variant calling step (version 
1.0.7). Table 1 summarizes all experiments we have run. The software can be found in the 
following locations, as of November 25, 2015: 

• Isaac aligner 01.14.11.27 
https://github.com/sequencing/isaac_aligner/tree/6b41f6d4985d069566a5c38d3d80c0d6ebb5841c 

• Isaac aligner 01.15.04.01 
https://github.com/sequencing/isaac_aligner/commit/fd092ec20d82548a90c53eafdaed7d617328a6a4  

• Isaac_v2  
https://github.com/Illumina/isaac2/  

• Isaac v2 workflow in Basespace:  
we used the app called  "Isaac Whole Genome Sequencing v2 v2.0.0" 

• Variant caller  
https://github.com/sequencing/isaac_variant_caller  

 

 01.14.11.27 01.15.04.01 v2 local or basespace 

Synthetic 

NEAT WGS 50X V  V 

Wessim WES 50X V  V 

VarSim WGS 50X  V V 

Real 

1000 genomes WES V V V 

NA12878 GATK V   

NA12878 GIAB V   

NA12878 Platinum v7 (ENA) V   

NA12878 Platinum_rep4  V V in Basespace 

Table 1. Summary of all experiments discussed in this report 

Input FASTQ names 

Isaac expects the input FASTQ names to be in a certain format: lane?_read?.fastq. This 
probably allows it to grab the lane and read information directly from the name, for whatever 
purpose during the analysis. This could be accomplished by providing some user-set options on 
command line, but instead this requirement is hard-coded, and the tool simply will not run on 
FASTQ with any different kind of name. As a result, it cannot be used to perform high-
throughput analysis on legacy data directly. An investigator must rename all files and perform 
his own book-keeping to keep track of which file was where. 
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Input dbSNP 

Isaac does not make use of a dbSNP, and there is no user option to specify one on command line.  

Read names 

Isaac renames input reads; this is described in a manual on Github: 
https://github.com/sequencing/test/blob/master/markdown/manual.md. This means, a user cannot 
verify the Isaac alignment against a different tool, such as Novoalign (www.novocraft.com) or 
BWA (Li and Durbin 2009). Presumably, the reads are renamed with a sequential counter 
appended at the end of the new name. Thus, if a user resorts the output BAM by name, the reads 
should be in the same order as the original FASTQ, and correspondence can be established. 
However, if some reads were filtered out or collapsed as duplicates during an alignment, then the 
order is forever lost, and the original cannot be restored. One possible workaround could be to 
use Isaac output BAM files as input to BWA, and compare alignments that way. We did not 
perform that kind of analysis. 

Output folders 

Isaac uses hardcoded folder structure. It will always create Aligned/ and Temp/ in the local 
folder wherefrom it was invoked, and will put all output into those two folders. In this situation, 
the user must either rename those folders by hand after the run, or cd into a pre-created output 
folder to invoke Isaac from there. Not a huge chore, but must be aware of it, as otherwise the 
output from different sequential runs will overwrite each other. 

The output contents will be quite large: up to ~1TB for WGS human data (depth of coverage 
50X) in Temp/. Final output, such as the alignment BAM and the associated statistics, is placed 
into Aligned/. Temporary run-time data are saved, obviously, into Temp/, which is not deleted 
after the run, so the user has a chance to inspect it. 

The folder structure inside Aligned/ seems to derive from some sequencing information 
(described in the GitHub manual): in our case the path to final BAMs was always 
Projects/default/default. Perhaps one can specify this information somehow as an input to 
Isaac, but that is not transparent.  

Documentation 

There is no single comprehensive documentation for Isaac. Here are the sources we used. 

1) For explanation for output VCF format and the variant filters, see the Isaac Whole 
Genome Sequencing v2 User Guide:  
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http://support.illumina.com/content/dam/illumina-
support/documents/documentation/software_documentation/basespace/Isaac-wgs-user-guide-
15050954b.pdf 
 

2) For example commands, output folder structure, aligner command line parameters see the 
GitHub manual: 

https://github.com/sequencing/test/blob/master/markdown/manual.md 
Please note that some of the options are not accurately described. For example, the –-variable-
read-length parameter takes values on|off, not =1|0, as is implied in the manual. 
Experimenting with parameters is required. 

3) For command line parameters in the variant caller, use the starling manual: invoke as 
/Path/To/IsaacVariantCaller/libexec/starling2  –h  on command line. Please note 
that some options, such as bsnp-ssd-no-mismatch, bsnp-ssd-one-mismatch and min-vexp 
appear to be absent from starling command line documentation, as distributed by the 
Isaac variant caller package. 

4) Many option settings are not known until the software is run, but can be gleaned from the 
vcf header. 

5) Some options can be set in run.config.ini, but their names do not correspond exactly to 
those listed on GitHub manual or starling manual. Experimentation is required. 
 

6) Some information in the HiSeq software Manual and user Guide could be helpful when 
trying to understand the parameter settings: 

https://support.illumina.com/content/dam/illumina-
support/documents/documentation/software_documentation/has/has_userguide_15041353b.pdf  
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Methods 

The questions we asked 

• Does Isaac find any variants? 
• Does it find variants that should be there? If not, what is the rate of false negatives? 
• If it does not find variants, can that be fixed with some parameter tuning? 
• Does it find variants that should not be there? If so, what is the rate of false positives? 

Testbeds 

The bulk of the work presented in this report was performed on the high-memory node of the 
Innovative Systems Lab (ISL2.0) at NCSA http://www.ncsa.illinois.edu/about/org/isl/ (Table 2). 
We chose this highly advanced machine, because we were running into difficulties running Isaac 
on any other, more conventional system (see the performance section). 

Node High Memory iForge Biocluster 

System Dell PowerEdge R920 Intel Xeon Phi Development 
System in a cluster SGI UV1000 Nodes in a cluster 

CPU 4 of Intel Xeon 2.6 GHz, 
yielding 48 dual-threaded cores, 
which allows for 96 threads 

2 x 6-core Intel Xeon x5670 
"Westmere" 3.06 GHz 

384 of Intel Xeon 2.67 CPUs per 
node 

RAM 3 TB 96 GB per node 2 TB per node 

Storage 2 of 300 GB HDD, 
6 of 1 TB HDD, 
4 of 800 GB SSD, 

No internal node storage, files 
saved over cluster’s GPFS 

No internal node storage, files 
saved over cluster’s GPFS 

Inter 
connect 1 Gbps and 10 Gbps Ethernet QDR Infiniband 10 Gbps ethernet 

Table 2. Computer systems we used to test Isaac for this report. Our tests were successful on the high memory 
machine administered by ISL2.0 at NCSA. However, tests resulted in errors and segmentation faults on two clusters: 
iForge (NCSA), and Biocluster (Institute for Genomic Biology http://help.igb.illinois.edu/Biocluster).  

We also made a run on one node in BaseSpace (https://basespace.illumina.com/dashboard), but 
the hardware specifications are unknown. The BWA-GATK workflows were run on Blue Waters 
supercomputer (bluewaters.ncsa.illinois.edu). We also used AWS (https://bcbio-
nextgen.readthedocs.org/en/latest/contents/cloud.html) to run BWA-GATK and Isaac: a single 
Amazon EC2 r3.8xlarge instance with 32 cores and 244Gb of memory, using an EBS 
provisioned SSD volume with 3000 IOPS. 
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Runtime parameters and commands 

All alignments were done against hg19, which was indexed by Isaac with seed length 32. All 
parameters for the alignment were default except specifying seed depth of the reference index, 
and the maximum RAM to use, which was specified as 2.999 out of the available 3 TB. All 
parameters for variant calling were default unless specified otherwise. All the 96 threads 
available on the machine were used. The box below lists the commands used during a typical test 
run. 

Alignment 
/PathTo_Isaac_install/bin/isaac-align  
-r /Full/Path/sorted-reference.xml  
-b /full/Path/FolderWithFASTQFiles  
--base-calls-format fastq (or fastq-gz) -m 2999 --seed-length 32 
–j 96 
 
It was sometimes necessary to use: 
–variable-read-length on 
 
Variant Calling 
mkdir VarCallFolder 
cd VarCallFolder 
 
cp /PathTo_Isaac_VariantCallerFolder/etc/ivc_config_default.ini ./config.ini 
 
/PathTo_Isaac_VariantCallerFolder/bin/configureWorkflow.pl  
--BAM=/PathToAlignedBAM/input.BAM --ref=/PathToReferenceFile/hg19.fa  
--config=./config.ini  
--output-dir=./myAnalysis 
 
cd ./myAnalysis 
make -j 96 

When needed, we ran the GATK best-practices workflow using the following commands and 
parameters:  

Alignment:  
bwa mem -k 32 -t 30 -I 300,30 -R 'read-group-string' /Path/To/Reference/Index 
/Path/To/leftreads /Path/rightreads | samblaster -o /Path/To/Output/SAM 
 
or 
 
Novoalign -g 40 –x 5 –I PE 175,50 –r Random –hdrhd off –v 120 
 
Convert to BAM:  
samBAMba view -t 32 -f BAM -S /Path/To/Output/SAM -o /Path/To/Output/BAM  
 
 
Sort BAM:  
novosort --threads 32 --index /Path/To/Output/BAM -o /Path/To/Output/BAM.sorted 
 
 
Gatk Create realignment targets 
-T RealignerTargetCreator  
-R genome.fa -known dbsnp_135.hg19.vcf.gz 
-I BAM.sorted -o BAM.sorted.realign-list  
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Realignment: 
-T IndelRealigner  
-R genome.fa -known dbsnp_135.hg19.vcf.gz 
-targetIntervals BAM.sorted.realign-list  
-I BAM.sorted -o BAM.sorted.realigned 
 
 
Base score recalibration: 
-T BaseRecalibrator  
-R genome.fa --knownSites dbsnp_135.hg19.vcf.gz  
-I BAM.sorted.realigned.BAM --out BAM.sorted.realigned.recal-report.grp  
-nct 32 
 
 
Print reads: 
-T PrintReads  
-R genome.fa  
-BQSR BAM.sorted.realigned.recal-report.grp 
-I BAM.sorted.realigned.BAM --out BAM.sorted.realigned.recalibrated 
-nct 32 
 
 
Variant calling: 
-T UnifiedGenotyper  
-R genome.fa  
-I BAM.sorted.realigned.recalibrated -o raw.vcf  
-glm BOTH  
--output_mode EMIT_VARIANTS_ONLY  
-A Coverage  
-A AlleleBalance  
-dcov 250  
-rf BadCigar  
-nt 8 -nct 4  

 

Concordance measurement 

To measure the concordance of variant calls, we would have liked to perform comparisons of vcf 
files as well as the alignment BAMs, as the latter can sometimes help explain discordance. Since 
Isaac changes the read names, the BAM comparison is therefore impossible. Instead, we spot-
checked the Isaac aligned BAMs in a genome browser.  

Additionally, Isaac outputs variants in a GVCF, which conforms to the VCF4.1 specifications 
but also includes non-variant sites. This can cause conventional VCF comparison tools to report 
incorrect results. Thus, we extracted the variants from the Isaac's output gvcf. The Isaac 
documentation recommends using extract_variants from gvcf-tools. After using it, we 
found that it performs the same function as a linux awk command, but slower. Indeed, one has to 
use awk afterwards anyway to inspect the variants that did not pass the various filters. Thus, we 
used the following commands to go from Isaac's GVCF to a VCF that can be used in comparison 
exercises: 
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awk ‘$1!~/^#/ && $5!~/\./ {print $0}’ sorted.genome.vcf > sorted.genome.vcf.ALT 

awk ‘$7~/PASS/ {print $0}’ sorted.genome.vcf.ALT > sorted.genome.vcf.ALT.PASS 

The first command produces the list of all variants, whether or not they passed the filters 
(discussed in the Results section). The second command produces the list of only those variants 
that have passed the filters. Afterwards, we manually inspected the vcfs and used existing tools, 
such as vcf-compare, as well as our own perl and python scripts. The “confident regions” 
from the Illumina Platinum Genomes v8 were also used in the analysis. The minimum length of 
a targeted region (in WES) or a confident region (from the Platinum set) that was considered in 
the concordance analysis was 20 nt. 

Generating synthetic WGS with NEAT 

To test Isaac on synthetic whole human genome with known variants (WGS), we produced one 
synthetic dataset using NEAT (https://github.com/zstephens/genReads1) at 50X depth. The 
variants were inserted at random, at the average rate of 0.00034. The simulated fragment length 
was 300 nt, standard deviation of 30 nt, read length of 100 nt. The sequencing error rates were 
modeled after the data generated at the local sequencing facility 
(http://www.biotech.uiuc.edu/htdna), and were inserted at the rate of 0.1%. The software 
produces the synthetic reads, a “golden” vcf containing the variants synthetically inserted into 
the reference, and the “golden” sam containing the “true” read alignment based on the reference 
loci where the reads were generated from. 

Generating synthetic WES with Wessim 

To test Isaac on synthetic whole human exome with known variants (WES), we produced one 
synthetic dataset using Wessim (Kim et al. 2013):  

1. We ran a standard GATK workflow on ERR250949 human exome from the 1000 
genomes project, detected variants and segregated out those belonging to chromosome 1.  

2. We generated some random variants as well, using Genome Smasher (10% insertions, 
5% deletions and the rest are SNPs; regions with repetitive Ns were avoided). 

3. Then we combined those two sets of variants together and inserted them into hg19 
reference using GATK FastaAlternateReferenceMaker. Only variants located within 
exonic regions identified according to hg19 annotation, were considered in concordance 
measurement. 

4. Finally, we used that mutated reference to simulate whole exome sequencing on 
chromosome 1 using Wessim, generating 100-nucleotide paired-ended reads at 50X 
depth.  
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Results 

Synthetic WGS 50X, generated with NEAT 

Isaac 01.14.11.27 detects no variants 

It was desirable to test Isaac’s variant detection against a known “ground truth”, in order to 
evaluate its accuracy unequivocally, and independently of the properties of other variant callers. 
Thus, we generated a synthetic WGS dataset based on hg19 at 50X using NEAT, and compared 
Isaac’s results to the list of variants that were inserted by the read simulator. Unfortunately, Isaac 
01.14.11.27 did not detect any variants at all. The final GVCF contained no entries in the ALT 
column, only dots. 

We hypothesized that perhaps our variants were filtered out by the variant caller, so we relaxed 
the following filters that have to do with local read depth and read mapping quality (by the way, 
these parameters have different names in the starling manual and Isaac variant caller 
configuration file): 

isSkipDepthFilters=1 
maxInputDepth=-1 
depthFilterMultiple=1000 
minMapq=0 
minGQX=0 

This had no effect. Inspecting the BAM in genome browser indicates that some expected variants 
do in fact get detected in alignment – but are not reported by the variant caller. For example, this 
variant was inserted into the dataset when simulated reads were created, and is present in the 
“golden” vcf (line abbreviated): 

chr1    240578  .       G       A       . 

However, Isaac variant caller reports nothing for the respective region (lines abbreviated): 

#CHROM  POS    ID      REF     ALT     QUAL    FILTER 

chr1    240547  .       T       .       .       HighDPFRatio 
chr1    240549  .       A       .       .       HighDPFRatio 
chr1    240553  .       G       .       .       HighDPFRatio 
chr1    240583  .       A       .       .       HighDPFRatio 
chr1    240596  .       C       .       .       HighDPFRatio 

Meanwhile, the same variant is clearly visible in Isaac’s alignment (Figure 1). 
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Both Novoalign-GATK, and BWA-GATK work fine on this kind of data and report excellent 
concordance of variants (Figure 2). 

Figure 2. Results of running the standard GATK workflows on the NEAT synthetic WGS, 50X. Reads were 
simulated with varying sequencing error rates (abscissa). Perfect matches denote the number of variants found by 
the GATK workflow that corresponded to the “golden” vcf. False positives (FP) denote the number of variants 
found by the GATK workflow, but which were not inserted into the data at the time of simulation. 

Figure 1. Isaac’s alignment on NEAT synthetic data; snapshot from the genome browser IGV. The variant at 
position chr1:240578 is highlighted in green. 
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Isaac v2 provides concordance of up to 97% on NEAT data 

Release of Isaac v2 aligner resulted in significant improvement. While the earlier version 
detected no variants at all, v2 provides fairly high concordance (Table 3). 

 +homs, +failed +homs, +failed, 
confident regions only 

-homs, -fail -homs, -failed, 
confident regions only 

Perfect matches 923,881 (95.54%) 906,463 (97.73%) 906,334 (93.73%) 892,735 (96.25%) 

False negatives 43,113 (4.46%) 21,086 (2.27%) 60,660 (6.27%) 34,814 (3.75%) 

False positives 18,212 (1.93%) 14,157 (1.54%) 64 (0.01%) 71 (0.01%) 

Table 3. Concordance between variants called using Isaac_v2 and the variants inserted into the synthetic 
reads by NEAT. Measurements were done both ways: on all reported variants, including those that are homozygous 
and failed filtration (+homs, +failed), and also on the subset excluding those two categories (-homs, -failed).  

Synthetic WGS 50X, generated with VarSim 

We tested Isaac_v2 on synthetic data generated with VarSim, as an alternative to our NEAT 
synthetic reads. The VarSim data were downloaded from the developer’s repository. The Isaac 
alignment aborted with the message: 

Opened gz fastq stream on lane1_read1.fastq.gz 
Opened gz fastq stream on lane1_read2.fastq.gz 
ERROR: Thread: 1 caught an exception first:Invalid 
argument:Isaac_v2/isaac2/src/c++/include/io/fastqReader.hh(170): Throw in function 
InsertIt isaac::io::fastqReader::extractBcl(const Isaac::flowcell::ReadMetadata&, 
InsertIt) const [with InsertIt =__gnu_cxx::__normal_iterator<char*, std::vector<char> 
>] 
Dynamic exception type: 
boost::exception_detail::clone_impl<isaac::io::FASTQFormatException> 
std::exception::what: Invalid oligo M found in lane1_read2.fastq.gz at offset 
5966430356 
:Invalid oligo M found in lane1_read2.fastq.gz at offset 5966430356 

Looking back at the synthetic sequences, they did indeed contain the “nucleotide” M: 

grep -n M VarSim/lane1_read2.fastq 
94111002: 
CAGCTTGCTCTTCATTAGCGCTACATAGCTGMCTTATTATTCGTGGTCCCGTATGACCCCCTGATCATTTTCCCTGAGGGTGCATA
TTTATTCACTAACT 
103350290: 
TGTTTTTCATTTTCTTGATTTATTTCTGAATTCAGCTTGCTCTTCATTAGCCCTACATAGCTGMCTTATTATTCGTGGTCCCCTAT
GACCCCCTGGTCAT 
116458522: 
CATTAGCGCTACATAGCTGMCTTATTATTCGTGGTCCCCTATGACCCCCTGATCATTTTCCCTGAGGGTGCATATTTATTCACTAA
CTATGTTACAATCA 
123122630: 
AATTCAGCTTGCTCTTCATTAGCGCTACATAGCTGMCTTATTATTCGTGGTCCCCTATGACCCCCTGATCATTTTCCCTGAGGGTG
CATATTTATTCACT 
128669782: 
CTTGATTTATTTCTGAATTCAGCTTGCTCTTCATTAGCGCTACATAGCTGMCTTATTATTCGTGGTCCCCTATGACCCCCTGATCA
TTTTCCCTGAGGGT 
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Wessim synthetic WES, 50X  

Isaac 01.14.11.27 generates a high number of false positives 

We produced one synthetic dataset using Wessim (Kim et al. 2013), which is known to closely 
simulate the properties of Illumina exome sequencing data. The Isaac version 01.14.11.27 did 
report some variants on this dataset, but with a very high rate of false positives (at least 251%) 
and false negatives (at least 28%). Out of 7,314 artificially inserted variants (all within exonic 
regions, according to hg19 annotation; see salmon ellipse on Figure 3), 2,048 were undetected 
(false negatives). Out of 23,638 variants that Isaac claimed to be present in this dataset (cyan 
ellipse on Figure 3), 18,374 were not a part of the synthetic set (false positives).  

 

 

Figure 3. Concordance statistics on the synthetic WES chr1 
data generated by Wessim. Out of 7,314 simulated variants, 
5,266 were detected by Isaac, but only 281 of those actually 
passed the default filters. Salmon ellipse: synthetic variants. 
Cyan ellipse: variants detected by Isaac. Purple ellipse: 
variants that were detected by Isaac and passed the default 
filters.  

 

 

Looking at Isaac’s output vcf more closely, it appears that few of the claimed variants pass the 
default filters (purple ellipse on Figure 3). Those filters are listed in Table 4, copy-pasted from 
Isaac’s vcf header. 

Filter Description 
IndelConflict Locus is in region with conflicting indel calls. 
SiteConflict Site genotype conflicts with proximal indel call. This is typically a heterozygous SNV call 

made inside of a heterozygous deletion. 
LowGQX Locus GQX is less than 30 or not present. 
HighDPFRatio The fraction of basecalls filtered out at a site is greater than 0.3. 
HighSNVSB SNV strand bias value (SNVSB) exceeds 10. 
HighDepth Locus depth is greater than 3x the mean chromosome depth. 

Table 4. Default filters used by Isaac, copy-pasted from an output vcf.  

In the particular case of Wessim-generated reads, most of the inserted variants fail to pass the 
LowGQX or HighDepth filters (Table 4). GQX has the meaning of genotype quality score, 
generalized to both variant and non-variant loci. An example of such filtered variants is 
displayed on Figure 4. 
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Filter Number of 
variants 

HighDepth 4591 
HighDepth, HighSNVSB 2 
HighDPFRatio 12 
HighDPFRatio, HighDepth 80 
LowGQX 217 
LowGQX, HighDepth 1 
LowGQX, HighDPFRatio 21 
LowGQX, HighDPFRatio, HighDepth 16 

Table 5. Synthetic variants that were found by Isaac but did not pass the default filters, broken down by the 
filter. 

Filtering variants based on the sequencing depth and quality score is, of course, normal, and 
expected. The problem lies not with the fact that variants get filtered out, but with the extremely 
small number of passed variants that we know have actually been inserted into the data during 
the process of read simulation.  

The cause of this is the way Wessim simulates exome sequencing: reads are grabbed from the 
reference, in and around target regions. There are usually reads present that do not strictly belong 
to exons, and they will usually have coverage issues. Once we focus only on the 3,792 synthetic 
variants that belong strictly to the targeted regions (defined by the Agilent SureSelect bed file, 
and only considering regions with length > 100), actually Isaac detects 98.55% of them (3,737 
variants), but only 15 of them pass the filters. Additionally, Isaac finds 2,781 extra variants that 
should not be there (73.34%, only 36 passed filters; false positives) within the targeted regions 
and does not find 55 (1.45%; false negatives) variants that should in fact be present within the 
dataset. In other words, Isaac does find strictly exonic variants within the targeted regions, but its 
filters are a bit stringent for this dataset, and need some tuning to work properly. This tuning is 
difficult: when the filters are relaxed, the true variants will pass filtration, but the false positive 
variants will pass it too. 

Finally, Isaac assigned 993 variants to chromosomes other than chr1 (all regions), even though 
the input reads were simulated for chr1 only. This is normal, due to some sequence similarities 
between chromosomes. None of these variants passed the default filters.  

Based on these data it appears that Isaac 01.14.11.27 can be quite sensitive to variants, but also 
has an incredibly high rate of false positives, which is only somewhat compensated by stringent 
variant filters.  
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Figure 4. Example of two synthetic variants that were detected but did not pass the filters. This is a screenshot 
of IGV genome browser zoomed in on loci chr1:809,792 and chr1:809,956 within an output BAM from 
Isaac aligner. The first synthetic variant (G→C) is highlighted with blue in the figure, but is filtered out as 
HighDepth. The second variant (T→A) is on the tail edge of the simulated exon and is only covered by two reads, so 
it is barely visible, but is nonetheless present in Isaac vcf and marked as LowGQX. 

Isaac v2 does not eliminate false positives on Wessim data  

Since Isaac v2 aligner improved the results on synthetic NEAT data, we applied it to Wessim 
data as well. Unfortunately, the number of false positives was still extremely high (Table 6).  

 +homs, +failed +homs, +failed 
targeted regions only 

-homs, -fail -homs, -fail, 
targeted regions only 

Perfect matches 5,248 (71.76%) 3,826 (98.53%) 268 (3.66%) 26 (0.67%) 

False negatives 2,065 (28.24%) 57 (1.47%) 7,045 (96.34%) 3,857 (99.33%) 

False positives 18,058 (77.49%) 2,764 (41.96%) 3,585 (93.04%) 31 (54.39%) 

Table 6. Concordance between variants called using Isaac_v2 and the variants inserted into the synthetic 
reads by Wessim. Measurements were done both ways: on all reported variants, including those that are 
homozygous and failed filtration (+homs, +failed), and also on the subset excluding those two categories (-homs, -
failed). Concordance within the Platinum Confidence regions of hg19 is even worse than within targeted regions 
(73.85% perfect matches, 26.15% false negative, 77.66% false positives on +homs, +failed). 

1000 human genomes, WES data 

Isaac 01.14.11.27 generates high number of false positives 

To eliminate any uncertainty in our evaluation that may have resulted from incorrect read 
simulation by Wessim, we proceeded to test Isaac on real datasets. We used whole exome 
sequencing dataset ERR250440 from the 1000 genomes project. The reads were aligned against 
hg19 using Novoalign and then run through the best practices GATK workflow. 
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The resultant vcf was used as a standard to compare Isaac’s vcf against. Once again, some of the 
same variants were detected, but most were marked as not passing the filters, mainly due to high 
coverage (Figure 5). 

 

The number of false negative variants is still high (13.44%), and interestingly some of these are 
clearly visible in alignment, but not reported by Isaac. For example, the box below lists 
neighboring locations in Isaac’s and GATK’s vcfs, and matches the region displayed in the 
genome browser screenshot on Figure 6. All six variants listed in the box appear present in the 
alignment: their respective loci are highlighted in color within the box. 

Isaac 

chr1    1650807 .    T    C    222  HighDepth   SNVSB=-22.1;SNVHPOL=4   
GT:GQ:GQX:DP:DPF:AD     0/1:255:222:147:39:99,48  ! RIGHTMOST BLUE on top panel of 
Figure 4 

chr1    1650832 .    A    G    335  HighDepth   SNVSB=-39.3;SNVHPOL=2   
GT:GQ:GQX:DP:DPF:AD     0/1:368:335:187:4:117,70  ! RIGHTMOST BROWN on top panel of 
Figure 4 

chr1    1650845 .    G    A    59   HighDepth   SNVSB=-7.9;SNVHPOL=3   
GT:GQ:GQX:DP:DPF:AD     0/1:92:59:210:3:159,51  ! RIGHTMOST GREEN on top panel of 
Figure 4 

GATK 

chr1    1650787 .    T    C    2851.22 .   
ABHet=0.54;AC=1;AF=0.50;AN=2;BaseQRankSum=1.712; 
DP=235;Dels=0.00;FS=1.680;HRun=0;HaplotypeScore=8.3   ! LEFTMOST BLUE 

chr1    1650797 .    A    G    2575.48 .    
ABHet=0.54;AC=1;AF=0.50;AN=2;BaseQRankSum=-4.643; 
DP=234;DS;Dels=0.00;FS=0.000;HRun=0;HaplotypeScore=56.15   ! LEFTMOST BROWN 

chr1    1650801 .    T    C    3132.88 .   
ABHet=0.54;AC=1;AF=0.50;AN=2;BaseQRankSum=8.750; 
DP=235;DS;Dels=0.00;FS=1.048;HRun=0;HaplotypeScore=60.07   ! MIDDLE BLUE 

Figure 5. Concordance statistics on the variants 
detected with novoalign-GATK and those detected by 
Isaac. Out of 211,175 variants detected by GATK 
(salmon circle), 182,793 (86.56%) were also found by 
Isaac, but only 8,936 of those passed the filters. A large 
number of false positives is observed again (300,376), but 
only 798 of them pass the filters. Cyan circle: variants 
found by Isaac. Purple circle: variants found by Isaac that 
also passed filtration. 
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Figure 6. Example of variant mismatch between GATK and Isaac. Top panel is a screenshot of IGV genome 
browser zoomed in on the region chr1:1,650,701-1,650,901 within an output BAM from Isaac aligner. 
Bottom panel is the same location within an output BAM from Novoalign. . 

At first it might look like reads are misaligned, and single variants became split into two, and 
only one half got called. For example, variant chr1:1650807 got called by Isaac, but 
chr1:1650801 and chr1:1650787 did not, even though they seem to have similar characteristics. 
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However, the alignment performed by Novoalign looks extremely similar in the same region 
(Figure 6, bottom panel). Perhaps the variant caller is the culprit? 

Isaac 01.15.04.01 and Isaac v2 both report high number of false positives on WES 

Newer versions of Isaac do not eliminate the high false positives rate, although the number of 
perfect matches within the Platinum v8 confident regions is quite high (Table 7).  

 +homs, +failed +homs, +failed 
Illumina targeted 

regions only 

+homs, +fail, 
Platinum v8 confident 

regions only 

-homs, -fail 

Perfect matches 184,511 (87.42%, 87.52%) 34,336 (90.56%) 172,467 (95.66%, 95.97%) 8,430 (3.99%) 

False negatives 26,556 (12.58%, 12.48%) 3,579 (9.44%) 7,820 (4.34%, 4.03%) 202,637 (96.01%) 

False positives 306,873 (62.45%, 66.37) 11,064 (24.37%) 290,573 (62.75%, 66.41%) 863 (9.29%) 

Table 7. Concordance between variants called using Isaac 01.15.04.01 and Isaac_v2 (second % number, 
where applicable), and the variants detected by Novoalign-GATK in the WES reads from the ERR250440 
sample (1000 genomes project). Measurements were done both ways: on all reported variants, including those that 
are homozygous and failed filtration (+homs, +failed), and also on the subset excluding those two categories (-homs, 
-failed) 

NA12878: paired-ended data from GATK and GIAB, and mate-pair data from ENA 

Finally, to test variant detection for whole genome sequencing, we used three datasets derived 
from the Illumina Platinum genome NA12878. One dataset was sequenced by the Broad Institute 
http://gatkforums.broadinstitute.org/discussion/1292/which-datasets-should-i-use-for-reviewing-
or-benchmarking-purposes to produce high-coverage (>60X) paired ended reads hosted by the 
NCBI ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/working/20101201_cg_NA12878/. 
The second set was downloaded from Genome In A Bottle (GIAB) consortium. The third was 
sequenced using long insert mate pair library (2000 nt fragment length) and hosted by the ENA 
http://www.ebi.ac.uk/ena/data/view/ERP002490.  

The results are definitely better than for any dataset above. Was Isaac tuned to performed 
particularly well on NA12878? The number of false positives and false negatives is still 
noticeable in some cases, especially the mate pair ENA dataset (Table 8). This might be 
improved by setting the fragment length correctly, but it is not transparent from the 
documentation how to do that.  

For comparison, Table 8 also includes the concordance stats on the GIAB data analyzed using 
BWA-GATK HaplotypeCaller. 
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 GATK GIAB: Isaac GIAB: BWA-GATK ENA 

Perfect 
matches 

96.81% 94.12% 98.85% 93.57% 

False negatives 3.19% 5.9% 1.1% 6.43% 

False positives 2.69% 0.3% 0.7% 2.81% 

Table 8. Concordance for variants called using Isaac 01.14.11.27 and BWA-GATK HaplotypeCaller on 
NA12878 datasets of various origins. Measurements were made on all reported variants, including those that are 
homozygous and failed, but only inside the confident regions. Variants called on the datasets sourced from GATK 
and ENA were compared against the Platinum set v7. The variants called on datasets sourced from GIAB were 
compared to variants provided by GIAB. 

NA12878_rep4 recommended by Illumina team 

To test for the best concordance, the Illumina team shared with us in BaseSpace a dataset 
comprised of NA12878 sequenced on two lanes, paired-ended reads 126 nt long, 40X WGS. 
They called it NA12878_rep4 and recommended we compare the results against Illumina 
Platinum VCFs version 8.  

We downloaded these data to the high-memory machine and ran the analysis locally using Isaac 
01.15.04.01, with results comparable to those reported by Isaac 01.14.11.27 on the high coverage 
data from GATK. Isaac v2 was run on the NA12878_rep4 in BaseSpace, with very similar 
results (Table 9). 

 Isaac 01.15.04.01, local run Isaac v2, in BaseSpace 

 +homs, +failed +homs, +failed 
confident regions only 

+homs, +fail +homs, +fail, 
confident regions only 

Perfect matches 4,088,290 (91.68%) 3,886,538 (96.15%) 4,099,301 (91.93%) 3,895,220 (96.36%) 

False negatives 370,778 (8.32%) 155,675 (3.85%) 359,767 (8.07%) 146,993 (3.64%) 

False positives 346,085 (7.80%) 91,669 (2.30%) 35,020 (7.95%) 94,363 (2.37%) 

Table 9. Concordance between variants called on NA12878_rep4 using Isaac 01.15.04.01or Isaac v2, and the 
Platinum v8. Measurements were made on all reported variants, including those that are homozygous and failed 
filtration (+homs, +failed).  
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Performance 

Installation 

Isaac installs fairly easily on a linux box with standard, modern OS distribution and libraries. It 
does require boost and gnuplot as prerequisites. 

Performance benchmarks 

It takes a long time to index the reference: 8-12 hours depending on the number of available 
cores. This only needs to be done once. 

On the Dell machine with 48 dual-threaded cores and 3 TB of RAM, the alignment takes ~80-
120 minutes (depending on the version and OS activity), and variant calling in ~30 minutes on 
human WGS, 50X coverage. Performance definitely was degraded when sharing the machine 
with other bioinformatics applications, and sometimes Isaac crashed in those cases. On less 
powerful servers the alignment can take up to 4.5 hours and variant calling ~ 40 minutes. In 
BaseSpace, the entire workflow took 13.5 hours on a single server. In AWS, Isaac alignment 
took 4.5 hours, and variant calling took 45 minutes. 

Isaac aligner seems to use all available computational resources on the host machine during the 
run (Figure 7). According to Isaac whitepaper, the alignment consists of three distinct phases, 
which manifest in performance profiles as well. The first phase generates mapping position 
candidates via seed-based search, and finds exact matches on a stream of input data, which seem 
to be kept in memory. The second phase finds best mapping among all selected candidate 
mappings and determines alignment scores. This phase is highly i/o intensive and CPU intensive. 
Finally, duplicates are found and removed - a process that seems to happen in RAM as much as 
possible. The aligner logs also mention realignment around gaps during this phase.  
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Figure 7. Performance profile on Isaac aligner, made by parsing /proc/PID every second. Top panel: RAM 
utilization measurements, specifically Vm size (red) and resident set size (green). The roman numerals mark the 
three computational phases discussed in the text. Middle panel: the rate of data reads (red) and writes (green). 
Bottom panel: number of utilized threads (red) and CPU load (green).  

Issues 

One issue prevented us to successfully test the version 01.14.11.27 (and earlier versions) in a 
cluster environment: Isaac does not respect the boundaries placed on the usage of threads and 
RAM.  

For example, when specified to use 48 threads for reference indexing on the “high-memory” 
machine, Isaac still uses all available 96 threads in certain phases of computation, according to 
its ouput log. Similarly, Isaac aligner does not tend to respect the user-set number of threads 
specified to it on the command line using option -j. For example, when we ran tests on the “high-
memory node”, which has 48 dual-threaded cores, with -j 48, the aligner logs still indicated that 
in fact all 96 virtual threads were used. 

For this reason, when running on a cluster node, especially in a shared mode with other users, 
Isaac throws a “libgomp: Thread creation failed” error (found both on Biocluster and 
iForge). For example the Biocluster nodes in question have 384 CPUs per node, and 2 TB of 
RAM per node. Thus, we are not exceeding the number of cores on the node by asking Isaac 
aligner to use 48 threads via the –j option, and also telling the PBS script to submit the Isaac job 
with a limitation of 48 threads, so that other users could utilize the other threads. However, Isaac 

I II III 
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appears to ignore these limitations: not only ignoring the -j option, but also not complying with 
the scheduler's limits, and throwing the “libgomp: Thread creation failed” error. 

Isaac was probably designed to run alone on a computer, and that may be why we are seeing this 
error. It was reported to the developers, who did come up with a fix in January 2015. We did not 
test it on a cluster again. 

Summary and conclusions 

In summary, the Isaac workflow appears to be optimized for whole genome sequencing on 
NA12878. It reports high number of false positive variants on exome data, both synthetic and 
real. However, its accuracy has improved steadily over several versions. On synthetic WGS, the 
accuracy of Isaac v2 is comparable or slightly worse than BWA-GATK and Novoalign-GATK. 
Special attention to variant filters is required when evaluating results.  

In terms of performance, it is best to dedicate a single server to Isaac, where it will not compete 
with other software for hardware resources, otherwise the user might notice unstable behavior.  
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