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Abstract 

 

The causes of the known associations between poorer cognitive function and many adverse 

neuropsychiatric outcomes, poorer physical health, and earlier death remain unknown. We used 

linkage disequilibrium regression and polygenic profile scoring to test for shared genetic aetiology 

between cognitive functions and neuropsychiatric disorders and physical health. Using information 

provided by many published genome-wide association study consortia, we created polygenic profile 

scores for 24 vascular-metabolic, neuropsychiatric, physiological-anthropometric, and cognitive traits 

in the participants of UK Biobank, a very large population-based sample (N = 112 151). Pleiotropy 

between cognitive and health traits was quantified by deriving genetic correlations using summary 

genome-wide association study statistics applied to the method of linkage disequilibrium regression. 

Substantial and significant genetic correlations were observed between cognitive test scores in the UK 

Biobank sample and many of the mental and physical health-related traits and disorders assessed here. 

In addition, highly significant associations were observed between the cognitive test scores in the UK 

Biobank sample and many polygenic profile scores, including coronary artery disease, stroke, 

Alzheimer’s disease, schizophrenia, autism, major depressive disorder, BMI, intracranial volume, 

infant head circumference, and childhood cognitive ability. Where disease diagnosis was available for 

UK Biobank participants we were able to show that these results were not confounded by those who 

had the relevant disease. These findings indicate that a substantial level of pleiotropy exists between 

cognitive abilities and many human mental and physical health disorders and traits and that it can be 

used to predict phenotypic variance across samples. 
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Introduction  

Cognitive functioning is positively associated with greater longevity and less physical and psychiatric 

morbidity, and negatively associated with many quantitative disease risk factors and indices.1 Some 

specific associations between cognitive functions and health appear to arise because an illness has 

lowered prior levels of cognitive function.2, 3 For others, the direction of causation appears to be the 

reverse: there are many examples of associations between lower cognitive functions in youth, even 

childhood, and higher risk of later mental and physical illness and earlier death.4-6 In some cases, it is 

not clear whether illness affects cognitive functioning or vice versa, or whether both are influenced by 

some common factors. Many examples of these phenotypic and cognitive-illness associations are 

shown in Supplementary Table 1. Overall, the causes of these cognitive-health associations remain 

unknown and warrant further investigation. It is also well-recognised that lower educational 

attainment is associated with adverse health outcomes,7 and educational attainment has been used as a 

successful proxy for cognitive ability in genetic research.8, 9 A study that included three cohorts of 

twins indicated that the association between higher cognitive function and increased life-span was 

mostly due to common genetic effects.10 

 

The associations between cognitive and health and illness variables may, in part, reflect shared 

genetic influences. Cognitive functions show moderate heritability,11 and so do many physical and 

mental illnesses and health-associated anthropometric measures.12 Therefore, researchers have begun 

to examine pleiotropy between scores on tests of cognitive ability and health-related variables.13 

Pleiotropy is the overlap between the genetic architecture of two or more traits, perhaps due to a 

variety of shared causal pathways.14 Originally, the possibility of pleiotropy in cognitive-health 

associations was tested using family- and twin-based designs.15 However, now data from single 

nucleotide polymorphism (SNP) genotyping can assess pleiotropy, opening the possibility for larger-

scale, population-generalizable studies. 

 

Multiple methods can be used to test for pleiotropy using SNP-based genetic data. Calculating genetic 

correlations between health measures using the summary results of previous genome-wide association 
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studies (GWAS) has become possible using the method of linkage disequilibrium regression.16 In 

addition, the method of polygenic risk scoring17 also uses summary GWAS data to test whether 

genetic liability to a given illness or health-related anthropometric measurement is associated with 

phenotypes such as cognitive test scores in an second independent dataset. For example, lower 

cognitive functioning was associated significantly in healthy older people with higher polygenic risk 

for schizophrenia18 and stroke19, but not for dementia20. However, polygenic risk studies to date have 

been limited in the information they provide on this important topic: they have reported on single 

health outcomes, and have used relatively small cohorts with available cognitive data.  

 

We aimed to discover whether cognitive functioning is associated with many physical and mental 

health and health-related anthropometric measurements in part because of their shared genetic 

aetiology. We curated GWAS meta-analyses for 24 health-related measures, and used them in two 

complementary methods to test for cognitive-health pleiotropy. First, we used linkage disequilibrium 

(LD) regression to derive genetic correlations between cognitive function and educational attainment 

traits measured in UK Biobank, and 24 health-related measures from the GWAS meta-analyses. 

Second, to provide a measure of the phenotypic variance that these genetic correlations account for, 

the summary data from GWAS meta-analyses were used to calculate polygenic risk scores in UK 

Biobank, which includes cognitive, educational and genome-wide SNP data on over 110 000 

individuals. We calculated the associations between polygenic risk scores for the 24 health-related 

measures and the cognitive domains of memory, processing speed, and verbal-numerical reasoning, 

and educational attainment in UK Biobank participants. These new data and results provide a 

substantial advance in understanding the aetiology of cognitive-health associations. 

 

Methods 

Study design and participants 

This study includes baseline data from the UK Biobank Study (http://www.ukbiobank.ac.uk).21 UK 

Biobank received ethical approval from the Research Ethics Committee (REC).  The REC reference 

for UK Biobank is 11/NW/0382. UK Biobank is a health resource for researchers that aims to 
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improve the prevention, diagnosis, and treatment of a range of illnesses. 502 655 community-dwelling 

participants aged between 37 and 73 years were recruited between 2006 and 2010 in the United 

Kingdom. They underwent cognitive and physical assessments, provided blood, urine, and saliva 

samples for future analysis, gave detailed information about their backgrounds and lifestyles, and 

agreed to have their health followed longitudinally. For the present study, genome-wide genotyping 

data were available on 112 151 individuals (58 914 female) aged 40-73 years (mean age = 56.9 years, 

SD = 7.9) after the quality control process (see below). 

 

Procedures 

Cognitive phenotypes  

Three cognitive tests were used in the present study. These tests, which cover three important 

cognitive domains, were Reaction Time (n = 496 891; of whom 111 484 also had genotyping data), 

Memory (n = 498 486; 112 067 with genotyping), and Verbal-numerical Reasoning (n = 180 919; 36 

035 with genotyping). The Reaction Time test was a computerized ‘Snap’ game, in which participants 

were to press a button as quickly as possible when two ‘cards’ on screen were matching. There were 

eight experimental trials, with a Cronbach α reliability of 0.85. In the Memory test, participants were 

shown a set of twelve cards (six pairs) on a computer screen for five seconds, and had to recall which 

were matching after the cards had been obscured. We used the number of errors in this task as the 

(inverse) measure of Memory ability. The Verbal-numerical Reasoning task involved a series of 

thirteen items assessing verbal and arithmetical deduction (Cronbach α reliability = 0.62). 492 513 

participants also reported whether or not they had a college or university degree (henceforth referred 

to as ‘Educational Attainment’), 111 114 of whom had genotyping data. Full details on the content 

and administration of each test (and the Educational Attainment question) are provided in the 

Supplementary Materials. Supplementary Figure 1 shows that the broad age distribution of the 

cognitive tests did not differ between the full and genotyped samples. 

 

Genotyping and quality control 
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152 729 UK Biobank blood samples were genotyped using either the UK BiLEVE array (N = 49 

979)22 or the UK Biobank axiom array (N = 102 750). Details of the array design, genotyping, quality 

control and imputation are available in a publication22 and in the Supplementary Materials. Quality 

control was performed by Affymetrix, the Wellcome Trust Centre for Human Genetics, and by the 

present authors; this included removal of participants based on missingness, relatedness, gender 

mismatch, non-British ancestry, and other criteria, and is described in the Supplementary Materials. 

 

Genome-wide association analyses (GWAS) in the UK Biobank sample 

GWAS analyses were performed on the three UK Biobank cognitive test scores and on the 

Educational Attainment data in order to use the summary results for linkage disequilibrium 

regression. Details of the GWAS procedures are provided in the Supplementary Materials. 

 

Curation of summary results from GWAS consortia on health-related variables 

In order to conduct LD score regression and polygenic profile score analyses between the UK 

Biobank cognitive data and the genetic predisposition to a large number of health-related variables, 

selected because of previous associations with cognitive functions (Supplementary Table 1), we 

gathered 24 sets of summary results from international GWAS consortia. Details of the health-related 

variables, the consortia’s websites, key references, and number of subjects included in each 

consortia’s genome-wide association study are given in Supplementary Table 2.  

 

Statistical Analysis 

Computing genetic associations between health and cognitive variables 

We used two methods to compute genetic associations between health variables from 24 GWAS 

consortia, and cognitive and Educational Attainment variables measured in UK Biobank: LD score 

regression and polygenic profile/risk scoring. Each provides a different metric to infer the existence of 

pleiotropy between pairs of traits. LD score regression was used to derive genetic correlations to 

determine the degree to which the polygenic architecture of a trait overlaps with that of another. Next, 

the polygenic risk score method was used to test the extent to which these genetic correlations are 
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predictive of phenotypic variance across samples. Both LD score regression and polygenic risk scores 

are dependent on the traits analysed being highly polygenic in nature, i.e. where a large number of 

variants of small effect contribute toward phenotypic variation.16, 17 This was tested for each trait prior 

to running the LD score regression and polygenic risk analyses.  

 

LD score regression 

In order to quantify the level of pleiotropy between the traits assessed here, LD score regression was 

used.13, 16 LD score regression is a class of techniques that exploits the correlational structure of the 

single nucleotide polymorphisms (SNPs) found across the genome. In Supplementary Materials we 

provide more details of LD score regression. Here, we use LD score regression to derive genetic 

correlations between health-related and cognitive traits using 24 large GWAS consortia data sets that 

enable pleiotropy of their health-related traits to be quantified with the cognitive traits in UK Biobank. 

We followed the data processing pipeline devised by Bulik-Sullivan et al.16, described in more detail 

in the Supplementary Materials. In order to ensure that the genetic correlation for the Alzheimer’s 

disease phenotype was not driven by a single locus or biased the fit of the regression model, a 500kb 

region centred on the APOE locus was removed and this phenotype was re-run. This additional model 

is referred to in the Tables and Figures below as ‘Alzheimer’s disease (500kb)’. 

 

Polygenic profiling 

The UK Biobank genotyping data required recoding from numeric (1, 2) allele coding to standard 

ACGT format prior to being used in polygenic profile scoring analyses. This was achieved using a 

bespoke programme developed by one of the present authors (DCML), details of which are provided 

in the Supplementary Materials.  

 

Polygenic profiles were created for 24 health-related phenotypes (see Table 3, and Supplementary 

Table 1) in all genotyped participants using PRSice.23 PRSice calculates the sum of alleles associated 

with the phenotype of interest across many genetic loci, weighted by their effect sizes estimated from 

a GWAS of that phenotype in an independent sample. Prior to creating the scores, SNPs with a minor 
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allele frequency < 0.01 were removed and clumping was used to obtain SNPs in linkage equilibrium 

with an r2 < 0.25 within a 200bp window. Multiple scores were then created for each phenotype 

containing SNPs selected according to the significance of their association with the phenotype. The 

GWAS summary data for each of the 24 health-related phenotypes were used to create five polygenic 

profiles in the UK Biobank participants, at thresholds of p < 0.01, p < 0.05, p < 0.1, p < 0.5 and all 

SNPs. 

 

Correlation coefficients were calculated between each of the UK Biobank cognitive phenotypes. The 

associations between the polygenic profiles and the target phenotype were examined in regression 

models (linear regression for the continuous cognitive traits, and logistic regression for the binary 

education variable), adjusting for age at measurement, sex, genotyping batch and array, assessment 

centre, and the first ten genetic principal components to adjust for population stratification. We 

corrected for multiple testing across all polygenic profile scores at all significance thresholds for 

associations with all cognitive phenotypes (470 tests) using the False Discovery Rate (FDR) method.24 

We conducted sensitivity analyses as follows. Where the original findings were FDR significant, UK 

Biobank participants with cardiovascular disease (N=5300) were then removed from analyses of 

coronary artery disease, those with diabetes (N=5800) were removed from type 2 diabetes analyses, 

and those with hypertension (N=26 912) were removed from systolic blood pressure analyses. See 

Supplementary Materials for further details of these sensitivity analysis.  Four multivariate regression 

models were then performed, including all 24 polygenic profile scores and the covariates described 

above. 
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Results 

Phenotypic and genetic associations among the UK Biobank’s cognitive traits 

In addition to descriptive statistics, Table 1 shows phenotypic correlations and genetic correlations 

(calculated using LD score regression) among the cognitive traits in UK Biobank. There were modest 

correlations between the three cognitive test scores; those who did well on one test tended to do well 

on the other two. Verbal-numerical Reasoning showed the highest phenotypic correlation with 

Educational Attainment (r = 0.30). The strongest genetic correlation was also between Verbal-

numerical Reasoning and Educational Attainment (rg = 0.79). All but one of the other genetic 

correlations were statistically significant: there was a non-significant genetic correlation between 

Educational Attainment and Reaction Time. These results show that different cognitive traits and 

Educational Attainment correlate, in part, due to overlapping genetic architecture.  

 

Cognitive-health pleiotropy: overview 

To test for pleiotropy between cognitive and health traits, we present the LD score regression (Table 

2, Figure 1) and polygenic risk score (Table 3, Supplementary Tables 4a-d) results for the four UK 

Biobank cognitive function and Educational Attainment traits, and the 24 health-related traits from 

GWAS consortia. Results are FDR-corrected for multiple comparisons.  

 

In overview, using LD score regression results, Educational Attainment showed significant genetic 

correlations with 14 of the 22 health-related traits, Verbal-numerical Reasoning had significant 

genetic correlations with ten of the 24, and Memory and Reaction Time both correlated significantly 

with three of the 24 (Table 2, Figure 1). 

 

In the polygenic profile score results, using the best SNP threshold of the five that were created, 

summary GWAS data from 19 of 22 consortia predicted significant phenotypic variation in 

Educational Attainment in the UK Biobank sample (Table 3). For Verbal-numerical Reasoning, 

results from 15 of the 24 consortia predicted significant phenotypic variation. The numbers for 

Memory and Reaction Time were seven and six, respectively. The numbers of SNPs included in each 
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polygenic threshold score for each of the 24 health-related traits are shown in Supplementary Table 3. 

The fuller results relating all five of the SNP thresholds for all 24 health-associated variables with the 

UK Biobank cognitive phenotypes are shown in Supplementary Tables 4a-d. 

 

Cognitive-health pleiotropy: brain-cognitive traits 

Cognitive and brain traits provided a first check prior to moving to more mainstream health measures 

whose phenotypes appear more distant from cognitive function. In LD score regression analyses we 

expected significant genetic correlations between GWAS consortia results from cognitive- and brain-

related traits and the UK Biobank GWAS results for cognitive variables. In polygenic risk score 

analyses we expected the polygenic scores based on the health-related GWAS consortia’s results to 

predict phenotypic variation in UK Biobank’s cognitive traits. 

 

Using LD score regression, genetic correlations of greater than 0.9 were found between UK 

Biobank’s Education Attainment variable and GWAS consortia results from childhood cognitive 

ability, college degree attainment, and years of education (Table 2, Figure 1). The genetic correlation 

between UK Biobank’s Educational Attainment variable and ENIGMA’s intracranial volume was 

0.44 and with Early Growth Genetics Consortium’s (EGG) infant head circumference was 0.25. 

Verbal-numerical reasoning in UK Biobank had a genetic correlation of 0.81 with childhood cognitive 

ability, of 0.75 with attaining a college degree from the Social Science Genetic Association 

consortium (SSGAC), 0.72 with years of education (SSGAC), and 0.24 with intracranial volume. 

These results demonstrate substantial shared genetic aetiology between brain size, cognitive ability, 

and educational attainment. Reaction time and memory did not have significant genetic correlations 

with the brain, cognitive or educational variables. 

 

In summarising polygenic profile analyses’ results in the text we shall use standardised betas (β). 

Polygenic profiles for higher childhood cognitive ability and a higher level of educational attainment 

(SSGAC) were significantly associated with increased likelihood of a college degree (β between 0.12 

and 0.28), higher scores on verbal numerical reasoning (β between 0.08 and 0.11), and faster reaction 
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time (β about 0.001). Only childhood cognitive ability was significantly associated with memory (β = 

0.01). Polygenic profiles for greater intracranial volume and greater infant head circumference were 

significantly associated with increased likelihood of a college degree (β = 0.04 and 0.05, 

respectively), and higher scores on verbal numerical reasoning (both β = 0.02). 

 

Cognitive-health pleiotropy: neuro-psychiatric disorders 

Using LD score regression, there were negative genetic correlations between Alzheimer’s disease and 

UK Biobank’s Educational Attainment variable and Verbal-numerical Reasoning (rg between −0.27 

and −0.39) (Table 2, Figure 1). Autism had positive genetic correlations with the same two Biobank 

variables: 0.34 for Educational Attainment and 0.19 for Verbal-numerical Reasoning. Bipolar disorder 

and schizophrenia showed a pattern of having a positive genetic correlation with Educational 

Attainment (0.22 and 0.13, respectively) and a negative genetic correlation with verbal-numerical 

reasoning (−0.11 and −0.30, respectively). Schizophrenia was genetically associated with slower 

reaction time (−0.24) and poorer memory (−0.34). Bipolar disorder was also genetically associated 

with poorer memory (−0.24). There were no significant genetic correlations with major depressive 

disorder and any UK Biobank cognitive trait. 

 

Polygenic profile scoring replicated the directions of association found with LD score regression-

estimated genetic correlations (Table 3). Higher polygenic risk for Alzheimer’s disease was associated 

with lower Educational Attainment and a lower score on verbal-numerical reasoning (β between 

−0.01 and −0.05).  Higher polygenic risk for ADHD was associated with lower Educational 

Attainment (β = 0.03). Higher polygenic risk for autism was associated with higher Educational 

Attainment and better Verbal-numerical Reasoning (β = 0.07 and 0.02, respectively). Higher 

polygenic risk for bipolar disorder and schizophrenia had a positive association with Educational 

Attainment (β = 0.06 and 0.03, respectively), and the genetic risk for schizophrenia and major 

depressive disorder had a negative association with Verbal-numerical Reasoning (β = −0.06 and 

−0.02, respectively). 
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Cognitive-health pleiotropy: vascular-metabolic diseases 

There were significant negative genetic correlations between UK Biobank’s Educational Attainment 

variable and coronary artery disease (−0.26), ischaemic stroke (−0.17), and large vessel disease stroke 

(−0.34) (Table 2, Figure 1). There was a significant negative genetic correlation between ischaemic 

stroke and Verbal-numerical Reasoning (−0.23). 

 

Greater polygenic risk for coronary artery disease, type 2 diabetes, and ischaemic, and large and small 

vessel disease stroke were all associated with lower Educational Attainment (β between −0.02 and 

−0.05). Greater polygenic risk for coronary artery disease, and ischaemic and large vessel disease 

stroke were associated with lower Verbal-numerical Reasoning scores (β between −0.01 and −0.02). 

Greater polygenic risk for large vessel disease stroke was associated with more errors in the Memory 

task (β = −0.01). There was little change to the results for coronary artery disease when individuals 

diagnosed with cardiovascular disease were removed from the analyses, and little change for type 2 

diabetes results when individuals with diabetes were removed (Table 3). 

 

Cognitive-health pleiotropy: physical, physiological and anthropometric measures 

There were significant genetic correlations between UK Biobank’s Educational Attainment variable 

and BMI (−0.23), and height (0.12), both obtained from the GIANT consortium. There was a 

significant negative genetic correlation between BMI and Verbal-numerical Reasoning (−0.12) and a 

significant positive genetic correlation with Memory (0.15). 

 

Greater polygenic risk for diastolic and systolic blood pressure (obtained from ICBP), and BMI were 

all associated with lower Educational Attainment (β of −0.02, −0.04, and −0.09, respectively). A 

polygenic profile for greater height was associated with higher Educational Attainment (β = 0.07). 

Higher Verbal-numerical Reasoning scores were associated with lower polygenic risk for BMI (β = 

−0.03), and a polygenic profile for greater height (β = 0.02) and higher systolic blood pressure (β = 

0.01). Results for systolic blood pressure changed little when individuals with hypertension were 

removed from the analysis (Table 3). 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 10, 2015. ; https://doi.org/10.1101/031120doi: bioRxiv preprint 

https://doi.org/10.1101/031120


14 
 

 

Multivariate models predicting cognitive variance using many polygenic profile scores 

We next ran four multivariate regression models that included all 24 polygenic profile scores 

alongside the same covariates as were described above. This tested whether there was redundancy 

amongst the polygenic profile scores, and the extent to which including them all together in a 

multivariate model would improve the prediction of the cognitive phenotype. We compared the R2 

value of models including all the profile scores to models including only the covariates. The 

polygenic profile scores alone accounted for 3.33% of the variance in Educational Attainment of a 

college or university degree, 2.26% of the variance in Verbal-numerical Reasoning scores, 0.12% in 

Reaction Time, and 0.16% in Memory scores. See Supplementary Table 5 for full results. 

 

Discussion 

The present study has combined the power of UK Biobank’s very large genotyped and cognitively-

tested sample with the summary results of 24 large international GWAS consortia of physical and 

mental disorders and health-related traits. Two methods—LD score regression and polygenic profile 

scoring based on previous GWAS findings—discovered extensive cognitive-health pleiotropy and 

showed that it can be used to predict phenotypic variance between GWAS data sets. Our results 

provide comprehensive new findings on the overlaps between phenotypic cognitive ability levels, 

genetic bases for health-related characteristics such as height and blood pressure, and liabilities to 

physical and psychiatric disorders even in mostly healthy, non-diagnosed individuals. They make 

important steps toward understanding the specific patterns of overlap between biological influences 

on health and their consequences for key cognitive abilities. For example, some of the association 

between educational attainment—often used as a social background indicator—and health appears to 

have a genetic aetiology. These results should stimulate further research that will be informative about 

the specific genetic mechanisms of the associations found here, which likely involves both protective 

and detrimental effects of different genetic variants. 
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Findings for polygenic risk for coronary artery disease were not confounded by individuals with a 

diagnosis of cardiovascular disease, findings for type 2 diabetes were not confounded by individuals 

with a diagnosis of diabetes, and findings for systolic blood pressure were not confounded by 

individuals with a diagnosis of hypertension. These results indicate that even in healthy individuals, 

being at high polygenic risk for coronary artery disease, type 2 diabetes or high blood pressure is 

associated with lower cognitive function and lower educational attainment.    

 

Using LD score regression, we quantified for the genetic correlations from molecular genetic 

evidence between tests of cognitive ability and a wealth of health and anthropometric traits in over 

100 000 individuals. As shown in Table 2, Verbal-numerical Reasoning and Educational Attainment 

showed a greater degree of pleiotropy than Reaction Time and Memory, with many of the health and 

anthropometric variables studied here. Novel genetic correlations were quantified between cognitive 

function, using Verbal-numerical Reasoning, and schizophrenia, Alzheimer’s disease, and ischaemic 

stroke. It has not escaped our notice that there are multiple possible interpretations of these genetic 

correlations. Not only might particular genes contribute both to cognitive and health-related traits, but 

genetic variants relating to health conditions could have indirect effects on cognitive ability (e.g., via 

medications used to treat disorders), and vice versa (e.g., via cognitively-associated lifestyle choices). 

See Solovieff et al.14 for discussion of these issues of causality and pleiotropy. 

 

Perhaps counter-intuitively, our results indicated that the genetic variants associated with obtaining a 

college degree were also related to higher genetic risk of schizophrenia, bipolar disorder, and autism. 

For the cognitive tests, only polygenic risk for autism was related with higher cognitive ability, in 

agreement with a previous study.25 Genes related to bipolar disorder were negatively related to all of 

the cognitive tests, and genes related to schizophrenia even more so. Previous epidemiological studies 

indicate that both very high and very low educational achievement is associated with an increased risk 

of bipolar disorder26 and high polygenic risk of schizophrenia and bipolar disorder were recently 

associated with higher levels of creativity.27 The discrepancy between the cognitive and educational 

results may be explained by the age of the participants: if schizophrenia genes are detrimental to 
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cognitive functioning only later in life, they may have differential effects on educational attainment, 

which tends to peak before age 30, and the cognitive tests, which were taken in UK Biobank at an 

average age of 56.9 years. It should also be noted the UK Biobank sample consists of individuals who 

are on average older than those in most schizophrenia genetic studies, have a higher level of education 

and are of a higher social class. It is also likely to have been the case that individuals in middle age 

with a history of serious mental illness will have been less likely than those without such a history to 

volunteer as UK Biobank participants. These demographic and clinical factors might have contributed 

to apparently contradictory findings with respect to cognitive function and previous educational 

attainment. 

 

The Educational Attainment variable demonstrated pleiotropy with 20 of the 24 health-related 

variables, indicating that the genetic variants that collectively act to facilitate an individual’s progress 

through the educational system to degree level make important contributions to many important health 

outcomes. One explanation for this is that the educational attainment variable shows the greatest 

degree of pleiotropy with general cognitive ability in childhood with a genetic correlation of 0.906. 

This could indicate that it is genes related to cognitive ability early in life that are responsible for the 

pleiotropy with health variables: educational attainment, therefore, might act as a proxy phenotype for 

general cognitive ability, as others have demonstrated.8 

 

The significant genetic correlations across traits enabled the use of polygenic profile scores to predict 

phenotypic cognitive variance in the UK Biobank sample. The amount of variance explained by the 

polygenic risk profiles for each UK Biobank cognitive phenotype is small, as would be expected by 

the fact that not all SNPs were genotyped, and those that were do not necessarily accurately tag the 

causal genetic variants. The multivariate polygenic risk score analyses showed that additional 

variance can be accounted for when the polygenic liabilities of multiple disorders and traits are 

combined; this implies that there are risk alleles unique to each disorder and trait that affect cognitive 

and educational traits. 
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The results of the present study are supported by a previous study examining the genetic associations 

between polygenic profile scores for psychiatric and cognitive traits, and many phenotypic traits, 

showing comparable directions of effect28. However, due to the much smaller sample size (3000 

versus 112 000 in the present study), this study yields insufficient power to detect several of the 

associations found in the present study. That same study also supported the results of the LD 

regression analyses of the present study between several psychiatric and cognitive traits, but the 

following traits show novel associations with cognitive ability and educational attainment in the 

present study: coronary artery disease, ischaemic stroke, infant head circumference and years of 

education. 

 

The polygenic profile analysis replicated previous, smaller studies that showed associations between 

higher cognitive function and higher polygenic risk for autism25 and lower polygenic risk for 

schizophrenia18 and stroke19. We did not replicate the previous finding that higher cognitive function 

is associated with higher Type 2 diabetes genetic risk29, but we did find that higher Type 2 diabetes 

genetic risk is associated with decreased likelihood of obtaining a college degree. Unlike a previous 

small, underpowered, study20 we found that higher polygenic risk for Alzheimer’s disease is 

associated with lower cognitive function.  

 

To the extent that these genetic associations between cognitive and health measures are explained by 

shared genetic influences, they support the theoretical construct of bodily system integrity30. System 

integrity was formulated as a latent trait which is manifest as individual differences in how effectively 

people meet cognitive and health challenges from the environment, and which has some genetic 

aetiology. Whereas it is recognised that some illnesses will cause changes in cognitive functions, 

system integrity suggests in addition that there is shared variance in how well different complex 

bodily systems operate and that this underlies correlations between higher cognitive functioning and 

good health and longevity. 
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The present study has a number of strengths. First, the large sample size of UK Biobank (N > 

100,000) affords powerful, robust tests of genetic association. Second, the participants took identical 

cognitive tests, which were always administered in the same computerised fashion, reducing any 

potential bias due to heterogeneity in test content and administration. Third, all of the UK Biobank 

genetic data were processed in a consistent matter, on the same platform and at the same location. 

Fourth, our use of summary data from a large number of international GWAS studies allowed a 

comprehensive and detailed examination of shared genetic aetiology with cognitive ability across a 

wide range of health-related phenotypes, producing many of the first estimates of the genetic 

correlation between traits.  

 

The present study has some limitations. The three cognitive tests were brief, bespoke measures. 

However, they covered three major cognitive domains (reasoning, processing speed, and memory), 

showed acceptable internal consistency, and had validity in that they showed the expected correlations 

with one another and with age and educational attainment.31, 32 The Verbal-numerical reasoning test 

has types of item that are the same as those found in tests of general cognitive ability. In addition, 

Verbal-numerical Reasoning and Educational Attainment showed strong genetic correlations (0.812 

and 0.906, respectively) with childhood general cognitive function. This suggests that the variance in 

these traits is largely the product of the same genetic variants that underpin general cognitive function. 

The GWAS studies we curated to perform LD score regression and extract the polygenic profile 

scores were often consortia studies, involving meta-analyses across datasets with substantial 

heterogeneity in sample size, genome-wide imputation quality, and phenotypic measurement. We 

expect that, with larger and more consistent independent datasets, we would be able to use the 

polygenic profile scores to predict more variance in cognitive test performance. Some of the GWAS 

consortia studies did not have ethical approval to be used for genetic correlation and polygenic profile 

scoring analyses associated with education, meaning that we were unable to estimate a few 

correlations. Clustering in genetic population structure meant that we restricted the genotyped samples 

to individuals of white British ancestry. Our results thus need to be replicated in large samples of 
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different genetic backgrounds; the sample sizes available in UK Biobank were not large enough for us 

to model, with adequate power, data from UK Biobank individuals of other ancestries. 

 

The best method for showing pleiotropy using GWAS data would be to obtain the genome wide 

significant hits from two GWAS and correlate the effect sizes. However, there are two reasons why 

this is suboptimal at present. The first reason is that many significant SNP hits are needed in multiple 

GWAS data sets which is currently not possible. The second reason is that GCTA has shown that 

many true associations do not reach statistical significance due to low power, therefore SNPs that do 

not attain statistical significance should also be considered. Both LD regression and polygenic profile 

score analyses provide the opportunity to use the full GWAS output to examine pleiotropy.   

 

Because the optimum number of SNPs used to generate a particular polygenic profile can differ 

between traits, we created five profile scores per physical and mental health trait and tested each in a 

regression against each of the UK Biobank cognitive traits to determine the score that explained the 

greatest variance in each cognitive trait. We found that these did differ between different trait 

combinations, suggesting that the amount of shared genetic aetiology differs between different pairs 

of traits. However, as pleiotropy was quantified using LD score regression to perform a single test for 

each pair of phenotypes, the multiple testing problems associated with the polygenic profile score 

method did not confound the estimates of pleiotropy shown here. Whereas the estimate of phenotypic 

variance explained by the polygenic profile method was small, this should be considered as the 

minimum estimate of the variance explained. Due to pruning SNPs in LD, the PGRS method makes 

the assumption of a single causal variant being tagged in each LD block considered. If this assumption 

is not true for the phenotypes considered, the proportion of variance explained will be underestimated 

here.  

 

Conclusion 

It is notable that, a short while ago, a single result from the dozens of reported here would have been 

considered a major novel finding and reported as a study in itself.17 With so many findings, it has not 
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been possible fully to discuss their implications. For example, the genetic associations between infant 

head circumference and intracranial volume with Educational Attainment and verbal-numerical 

reasoning are important in themselves, as are many other cognitive-mental health and cognitive-

physical health associations. Taken all together, these results provide a resource that advances the 

study of aetiology in cognitive epidemiology substantially. 
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Figure Legends 

 

Figure 1 

Heat map of LD regression results. 
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Table 1. Descriptive statistics and phenotypic (below diagonal) and genetic (above diagonal and shaded) correlations for the UK Biobank cognitive and educational 

variables. Genetic correlations are based on the results of genome-wide association studies of the UK Biobank variables. P-values for the correlations are shown in 

parentheses. For the phenotypic variables, Pearson correlations used for continuous-continuous correlations and point-biserial correlations for continuous-categorical 

correlations. All variables are coded such that higher scores indicate better performance. *, p-value < 0.0001; †, pvalue < 0.05 

Variable Mean (SD) Phenotypic/genetic correlation 

Reaction Time Memory Verbal-numerical Reasoning Educational Attainment 

Reaction Time (ms) 555.08 (112.69) - 0·179* 0·206* 0·066 

Memory (errors) 4.06 (3.23) 0·140* - 0·436* 0·126† 

Verbal-numerical Reasoning  

(max. score 13) 

6.16 (2.10) 0·179* 0·186* - 0·792* 

Educational Attainment 30.5% with degree 0·081* 0·046* 0·301* - 
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Table 2. Genetic correlations between the cognitive and education phenotypes documented in the UK Biobank data set and the health-related variables 

collected from GWAS consortia. Statistically significant p-values (after False Discovery Rate correction; threshold: p < 0.016) are shown in bold. There was 

no evidence for a sufficient polygenic signal in the small vessel disease data set and so no genetic correlation could be derived as shown in supplementary 

Table 3. 

 Verbal-numerical Reasoning 

(n = 36 035) 

Reaction Time 

(n = 111 484) 

Memory 

(n = 112 067) 

Educational Attainment 

(n = 111 114) 

Health -related variables from 

GWAS consortia 
rg SE p rg SE p rg SE p rg SE p 

Vascular-Metabolic Diseases             

Coronary Artery Disease −0·086 0·062 0·163 0·058 0·066 0·378 0·058 0·074 0·430 −0·262 0·048 5·6×10−8 

Stroke: Ischaemic −0·231 0·092 0·012 −0·007 0·088 0·935 0·035 0·095 0·711 −0·168 0·066 0·011 

Stroke: Cardioembolic −0·037 0·133 0·781 −0·104 0·125 0·405 −0·056 0·134 0·679 −0·027 0·092 0·771 

Stroke: Large Vessel Disease −0·408 0·187 0·029 −0·061 0·156 0·695 0·010 0·172 0·953 −0·336 0·145 0·020 

Stroke: Small Vessel Disease - - - - - - - - - - - - 

Type 2 Diabetes −0·023 0·064 0·725 0·034 0·064 0·590 0·059 0·077 0·444 −0·090 0·050 0·074 

             

Neuro-Psychiatric Disorders             

ADHD −0·334 0·147 0·023 −0·072 0·138 0·599 −0·043 0·159 0·788 −0·305 0·141 0·030 

Alzheimer's Disease −0·394 0·124 0·002 0·042 0·085 0·622 −0·131 0·116 0·256 −0·266 0·082 0·001 

Alzheimer's Disease (500kb) −0·325 0·081 6·0×10−5 0·036 0·070 0·603 −0·117 0·097 0·229 −0·223 0·057 1·0×10−4 

Autism 0·187 0·066 0·005 −0·160 0·067 0·016 −0·092 0·081 0·258 0·344 0·053 6·7×10−11 

Bipolar Disorder −0·107 0·063 0·091 −0·131 0·066 0·048 −0·237 0·073 0·001 0·219 0·047 4·0×10−6 

Major Depressive Disorder −0·108 0·093 0·248 −0·248 0·087 0·004 −0·217 0·106 0·042 −0·103 0·082 0·213 

Schizophrenia −0·295 0·045 3·5×10−11 −0·240 0·040 2·1×10−9 −0·339 0·041 1·1×10−16 0·128 0·034 1·1×10−16 

             

Brain Measures             

Hippocampal Volume −0·040 0·107 0·710 0·222 0·124 0·073 0·014 0·132 0·916 −0·076 0·086 0·380 

Intracranial Volume 0·245 0·101 0·015 −0·175 0·098 0·073 0·084 0·114 0·463 0·442 0·084 2·0×10−4 

Infant Head Circumference 0·193 0·093 0·038 −0·048 0·080 0·547 0·103 0·097 0·287 0·248 0·069 3·0×10−4 
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Physical and physiological measures             

Blood Pressure: Diastolic −0·071 0·057 0·213 −0·074 0·054 0·172 −0·050 0·065 0·442 −0·071 0·039 0·067 

Blood Pressure: Systolic −0·061 0·058 0·297 −0·027 0·052 0·600 −0·010 0·063 0·873 −0·082 0·037 0·026 

BMI −0·119 0·033 2·0×10−4 −0·028 0·028 0·317 0·154 0·035 1·0×10−5 −0·233 0·024 3·6×10−22 

Height 0·056 0·029 0·054 0·067 0·027 0·014 −0·017 0·033 0·609 0·120 0·024 5·0×10−7 

Longevity 0·111 0·092 0·226 −0·067 0·086 0·437 0·130 0·114 0·254 NA NA NA 

Forced Expiratory Volume in 1s (FEV1) 0·109 0·054 0·044 −0·061 0·048 0·209 −0·023 0·066 0·722 NA NA NA 

             

Life-course Cognitive Traits and 

Proxies 

            

Childhood cognitive ability 0·812 0·094 6·2×10−18 0·067 0·089 0·451 0·100 0·112 0·370 0·906 0·082 4·2×10−28 

College degree 0·749 0·055 3·3×10−42 0·046 0·053 0·388 −0·050 0·060 0·404 0·984 0·041 3·8×10−130 

Years of Education 0·720 0·056 2·0×10−38 0·031 0·048 0·523 −0·050 0·059 0·403 0·948 0·041 1·4×10−115 

Abbreviations: rg, genetic correlation; SE, standard error. 

  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 10, 2015. ; https://doi.org/10.1101/031120doi: bioRxiv preprint 

https://doi.org/10.1101/031120


28 
 

Table 3. Associations between polygenic profiles of health related traits created from GWAS consortia summary data, and UK Biobank cognitive and 

education phenotypes controlling for age, sex, assessment centre, genotyping batch and array, and ten principal components for population structure. FDR-

corrected statistically significant values (P<0.0188) are shown in bold. Cognitive and education phenotypes are scored such that higher scores indicate better 

performance. The associations between the polygenic profile with the largest effect size (thresh) and each cognitive and education phenotype are presented. 

Thresh; the p-value threshold with the largest effect size. 

  

Health -related variables 

from GWAS consortia 

Verbal-Numerical Reasoning 

(n = 36 035) 

Reaction Time 

(n = 111 484) 

Memory 

(n = 112 067) 

Educational Attainment 

(n = 111 114) 

thresh β p thresh β p thresh Β p thresh β p 

Vascular-Metabolic 

Diseases 

            

Coronary Artery Disease 0·5 −0·019 0·0002a 0·1 0·001 0·0875 0·1 −0·004 0·2265 1 −0·047 7·92×10−13b 

Stroke: Ischaemic 0·05 −0·014 0·0068 0·01 −0·001 0·0791 0·01 −0·004 0·1759 0·5 −0·020 0·0026 

Stroke: Cardioembolic 1 −0·009 0·0937 0·01 0·001 0·0817 0·01 0·005 0·0638 0·5 −0·003 0·6931 

Stroke: Large Vessel 

Disease 

0·01 −0·013 0·0155 0·05 2·26×10−4 0·6714 0·05 −0·008 0·0056 0·1 −0·031 5·31×10−6 

Stroke: Small Vessel 

Disease 

0·05 −0·012 0·0250 1 −0·001 0·3188 1 −0·004 0·1388 0·1 −0·034 2·96×10−7 

Type 2 Diabetes 1 −0·006 0·2490 0·1 −4·50×10−4 0·3982 0·1 0·003 0·2614 0·5 −0·025 0·0002c 

             

Neuro-Psychiatric 

Disorders 

            

ADHD 1 −0·008 0·1054 1 −0·001 0·2485 1 0·001 0·6520 1 −0·027 4·68×10−5 

Alzheimer's Disease 0·05 −0·023 1·27×10−5 0·5 −0·001 0·0516 0·5 −0·011 1·22×10−4 1 −0·046 2·33×10−12 

Autism 1 0·023 1·43×10−5 0·1 0·001 0·1176 0·1 0·002 0·4385 0·5 0·068 5·00×10−25 

Bipolar Disorder 0·01 −0·006 0·2695 0·01 −0·002 0·0007 0·01 −0·017 3·21×10−8 0·5 0·057 1·35×10−17 

Major Depressive Disorder 1 −0·020 0·0002 0·1 −0·002 0·0005 0·1 −0·014 1·91×10−6 1 −0·009 0·1905 

Schizophrenia 0·05 −0·062 7·73×10−32 0·1 −0·006 1·88×10−25 0·1 −0·039 4·49×10−39 0·05 0·025 0·0002 

             

Brain Measures             

Hippocampal Volume 0·01 0·005 0·3552 0·5 0·001 0·1144 0·5 −0·005 0·0848 0·5 0·007 0·2887 

Intracranial Volume 0·5 0·016 0·0021 0·01 0·001 0·3306 0·01 0·005 0·0778 1 0·043 2·91×10−10 

Infant Head Circumference 0·5 0·024 8·53×10−6 0·01 -0·001 0·0468 0·01 0·005 0·0782 0·1 0·050 4·01×10−14 
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Physical and physiological 

measures 

            

Blood Pressure: Diastolic 0·05 0·004 0·5044 0·01 0·001 0·2325 0·01 −0·002 0·5342 0·1 −0·022 0·0011 

Blood Pressure: Systolic 0·1 0·013 0·0116 0·5 −4·97×10−4 0·3460 0·5 −0·003 0·3149 0·1 −0·035 7·61×10−8d 

BMI 0·5 −0·027 3·34×10−7 0·01 3·96×10−4 0·4507 0·01 0·016 7·31×10−8 0·5 −0·093 6·40×10−45 

Height 1 0·021 9·23×10−5 0·5 4·46×10−4 0·4135 0·5 0·003 0·3579 1 0·070 2·95×10−24 

Longevity 0·01 0·004 0·4091 0·05 3·23×10−4 0·5426 0·05 0·006 0·0484 NA NA NA 

Forced Expiratory Volume 

in 1s (FEV1) 

0·5 0·012 0·0220 0·05 −0·001 0·1302 0·05 −0·005 0·0840 NA NA NA 

             

Life-course Cognitive 

Traits and Proxies 

            

Childhood cognitive ability 1 0·079 3·49×10−51 0·5 0·002 0·0002 0·5 0·014 1·65×10−6 1 0·122 3·92×10−75 

College degree 0·5 0·102 3·19×10−83 0·5 0·001 0·0133 0·5 −0·002 0·4688 0·5 0·280 0 

Years of Education 1 0·106 2·96×10−89 0·1 0·001 0·0156 0·1 −0·004 0·1563 1 0·210 0 

a Excluding individuals with cardiovascular disease β=-0·018, p=0·0007; b excluding individuals with cardiovascular disease β=-0·044, p=4·66×10-11; c excluding individuals with diabetes β=-

0·020, p=0·0032; d excluding individuals with hypertension β=-0·028, p=0·00016 
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Figure 1 

Heat map of genetic correlations calculated using LD regression between cognitive phenotypes in UK 

Biobank and health-related variables from GWAS consortia. Hues and colours depict, respectively, 

the strength and direction of the genetic correlation between the cognitive phenotypes in UK Biobank 

and the health-related variables. Red and blue indicate positive and negative correlations, respectively. 

Correlations with the darker shade associated with a stronger association. Based on results in Table 2
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