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Abstract Accurate detection of the human metaphase
chromosome centromere is an critical element of cytoge-

netic diagnostic techniques, including chromosome enu-
meration, karyotyping and radiation biodosimetry. Ex-
isting image processing methods can perform poorly in

the presence of irregular boundaries, shape variations
and premature sister chromatid separation, which can
adversely affect centromere localization. We present a
centromere detection algorithm that uses a novel profile

thickness measurement technique on irregular chromo-
some structures defined by contour partitioning. Our al-
gorithm generates a set of centromere candidates which

are then evaluated based on a set of features derived
from images of chromosomes. Our method also parti-
tions the chromosome contour to isolate its telomere re-

gions and then detects and corrects for sister chromatid
separation. When tested with a chromosome database
consisting of 1400 chromosomes collected from 40 meta-
phase cell images, the candidate based centromere de-
tection algorithm was able to accurately localize 1220
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centromere locations yielding a detection accuracy of
87%. We also introduce a Candidate Based Centromere

Confidence (CBCC) metric which indicates an approx-
imate confidence value of a given centromere detection
and can be readily extended into other candidate re-

lated detection problems.

Keywords Centromere detection · Chromosome

analysis · Laplacian based thickness measurement ·
Support vector machines

1 Introduction

The centromere of a human chromosome (figure 1) is

the primary constriction to which the spindle fiber is
attached during the cell division cycle (mitosis). The
detection of this salient point is the key to calculating
the centromere index which can lead to the type and
the number of a given chromosome. The reliable de-
tection of the centromere by image analysis techniques
is challenging due to the high morphological variations
of chromosomes on microscope slides. This variation is
caused by various cell preparatory and staining meth-
ods along with many other factors during mitosis. Irreg-

ular boundaries and large variations in morphology of
the chromosome can cause a detection algorithm to miss
the constriction, especially in higher resolution chromo-
somes. Premature sister chromatid separation can also
pose a significant challenge, since the degree of sepa-
ration varies from cell to cell, and even among chro-
mosomes in the same cell. In such cases, the width con-
striction can be missed by image processing algorithms,
and can result in incorrect localization of a centromere
on one of the sister chromatids.

From an image analysis perspective, the high mor-
phological variations in human chromosomes due to
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Fig. 1 Demonstrates the anatomy of a human metaphase
chromosome using a simple graphical design with key com-
ponents labeled.

their non rigid nature pose a significant challenge. Cell
preparation and staining techniques and also vary among
on the laboratories. The end results obtained from clin-
ical cytogenetic vs. reference biodosimetry laboratories
can produce chromosome images that differ significantly
in their appearance. As an example, chromosomes that
were DAPI (4’,6-Diamidino-2-Phenylindole) stained wo-
uld demonstrate different intensity features and bound-
ary characteristics from chromosomes subjected only to
Gei-msa staining. Additionally, the stage of metaphase
in which the cells were arrested along with environ-
mental factors such as humidity can dictate the shape

characteristics of each individual cell and introduce a
large variance to the data set. Furthermore, in some
preparatory methods, the cells are denatured introduce

significant noise at the chromosome boundary. These
same factors can also dictate the amount of premature
sister chromatid separation in some of the cells. Effec-
tive algorithms for centromere detection need to be able

to handle the high degree of shape variability present
in different chromosomes, while correcting for artifacts
such as premature sister chromatid separation. Figure 2

below illustrates a sample set of shapes of chromosomes
in the data set and their high morphological variations.

This research is a prerequisite for the development
of a set of algorithms for detecting dicentric chromo-

somes (possessing two centromeres) which are diagnos-
tic of radiation exposures in cytogenetic biodosimetry.
The ability of the proposed algorithm to handle high

degrees of morphological variations and also to detect
and correct for the artifact created by premature sister
chromatid separation in cell images is also critical to
detecting dicentric chromosomal abnormalities.

Numerous computer algorithms have been proposed
over time for chromosome analysis ranging from metap-
hase finding [1], Karyotype analysis [2] to centromere

and dicentric detection [3], [4]. These methods are ei-
ther constrained by the protocol used for staining the
cell image or by the morphology of the chromosome.
We have previously proposed an algorithm to locate
the centromere by calculating a centerline with no spu-
rious branches irrespective of boundary irregularities
or the morphology of the chromosome [5]. Mohammad
proposed an approach where he used our previous ap-

(a) (b) (c)

(d) (e) (f)

Fig. 2 Depicts various degrees of sister chromatid separa-
tion present in some Geimsa stained chromosome cell images
(fig 2(a), (b) & (c)) as well as some lengthy chromosomes
characteristic to those prepared at a cytogenetic laboratory
(fig 2(d), (e) & (f)).

proach to derive the centerline and then used a curva-
ture measure to localize the centromere location instead
of the width measurements [6]. Another interesting ap-

proach by Jahani and Setarehdan involves artificially
straightening chromosomes prior to creating the trellis
structure using the centerline derived through morpho-

logical thinning [7]. Yet all these methods, including
our previous approach, work well only with smooth ob-
ject boundaries. The absence of a smooth boundary will
directly affect the centerline and thus make the fea-

ture calculations noisy. Furthermore, the accuracy of
all these methods is adversely impacted by sister chro-
matid separation.

We propose a candidate based centromere localiza-

tion algorithm capable of processing highly bent chro-
mosome images prepared with a variety of staining tech-
niques. This method can also detect and correct for
the artifacts introduced by premature sister chromatid

separation. Since centerline-based methods tend to per-
form better than other methods, we have proposed an
algorithm which utilizes the centerline simply to di-
vide the chromosome contour into two nearly symmet-
ric partitions, rather than using this feature as a basis
for width measurements. In centerline-based methods,
boundary irregularities often get embedded in the cen-
terline, which therefore introduces noise into the width
profiles. By avoiding the centerline as the basis for mea-
surements, the condition of the chromosome boundary
does not impact the smoothness of width profile mea-
surements. Then, a Laplacian-based algorithm that in-
tegrates intensity measurements in a weighting scheme,

biases the thickness measurement by tracing vectors
across regions of homogeneous intensity. To address im-
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age processing artifacts arising from sister chromosome
separation, an improved contour partitioning algorithm
is presented. This paper also introduces the Candidate-
Based Centromere Confidence (CBCC) metric, which
measures the confidence in an accurate centromere as-
signment [8]. This metric is used in tests of the algo-
rithm on a large data set of chromosomes, with the aim
of validating the performance of the algorithm.

2 Methods

The following section will describe the proposed can-
didate based centromere detection algorithm in detail.
This method can be functionally divided into following
sections for clarity,

– Segmentation & centerline extraction
– Contour partitioning & correcting for sister chro-

matid separation
– Chromosome thickness measurement using the in-

tensity integrated Laplacian method

– Candidate point generation & metaphase centromere
detection

The proposed method operates on well-separated

chromosomes that do not overlap or touch others. To
ensure that the metaphase cells with the maximum
number of segmentable chromosomes are analyzed, cells
with incomplete chromosome complements and those

with higher densities of overlapping and touching chro-
mosomes are initially deprecated using a content-based
classification procedure [9].

To develop the method, individual chromosomes were
first selected manually, while the remainder of the pro-
cess has been automated. Our Automated Dicentric
Chromosome Identifier (ADCI) software also automat-
ically selects individual chromosomes [10]. Once a chro-
mosome is selected, the proposed method segments this
object by local thresholding [11] and Gradient Vec-
tor Flow (GVF) active contours [12]. Upon extraction
based on the GVF boundaries, the contour of the chro-
mosome is partitioned using a polygonal shape simpli-

fication algorithm known as Discrete Curve Evolution
(DCE) [13] which simplifies the shape of the object by
iteratively deleting vertices based on their importance
to the overall shape of the object. Then a Support Vec-
tor Machine (SVM) classifier is used to pick the best
set of points to isolate the telomeric regions i.e. at the
ends of the chromosome. The segmented telomere re-
gions are then tested for evidence of sister chromatid
separation using a second trained SVM classifier de-
signed to capture shape characteristics of the telom-
ere regions and then corrected for that artifact. After-

wards, the chromosome is split into two partitions along

the axis of symmetry and a modified Laplacian based
thickness measurement algorithm (called Intensity In-
tegrated Laplacian or IIL) is used to calculate the width
profile of the chromosome [8]. This profile is then used
to identify a possible set of candidates for centromere
location(s) and features are calculated for each of those
locations. Next, a third classifier is trained on expert-
classified chromosomes to detect centromere locations
in test chromosomes. In most instances, each chromo-
some will contain at least one centromere. therefore, the
correct centromere should be present among the candi-
dates. The distance from the separating hyperplane is
used as an indicator for the goodness of fit of a given
candidate and thereafter used to select the best candi-
date from the pool of candidates. We test the hypothesis
that best candidate for a given chromosome is a cen-
tromere location. In the following sections, we present
further details of the algorithm. Section 2.1 and 2.3 have
been previously published [8] and have been included
in this paper to improve readability.

2.1 Segmentation & Centerline extraction

Once the user selects a point contained within a chro-
mosome, a region of interest (ROI) containing the chro-

mosome is selected and extracted. These regions will be
processed separately in subsequent steps. Pre-processing
consists of the application of a median filter followed

by intensity normalization for the extracted window
around the chromosome. The chromosome is first thresh-
olded using Otsu’s method and then the contour of that
binary object is used as the initial contour for GVF ac-

tive contours. The use of GVF active contours provides
a contour that is smooth and that converges to bound-
ary concavities [14].

In order to calculate the width profile of the chro-
mosome using the thickness measuring algorithm, the
chromosome contour is divided longitudinally into two
approximately symmetric segments. We used Discrete
Curve Evolution (DCE)- based skeletal pruning [15], [5]
to obtain an accurate centerline. DCE is a polygon evo-
lution algorithm which evolves through vertex deletion

based on a relevance measurement [15]. The objective
of this stage of the algorithm is to obtain the set of an-
chor points (end points of the centerline). This set of
anchor points is denoted by EP (

∣∣EP ∣∣ = 2), where |.|
is the cardinality operator).

Since the minimum polygon is a triangle, the end

result of this process is a skeleton traversing the length
of the chromosome that is connected to a single spu-
rious branch (3 branches). Throughout this paper, we
use the supercript P to refer to various point sets on
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the chromosome object contour. If C ∈ R2 is the con-
tour of the chromosome, the DCE initial anchor points
(skeletal end points) for the centerline are denoted by

EP̂ (
∣∣∣EP̂ ∣∣∣ = 3). In order to obtain the centerline, the

shortest branch of the resulting skeleton is pruned out
to reveal the centerline of the chromosome. This yields
the set of anchor points EP . This set of points is used
for contour partitioning in the next section. The center-
line was then shortened by 10% to discard any skeletal
bifurcations that occur close to the end of the chromo-
some.

2.2 Contour partitioning & correcting for sister
chromatid separation

Sister chromatid separation in chromosomes is an inte-
gral process that occurs during the metaphase stage of
mitosis. Depending on the stage of mitosis at which the
cells were arrested, varying degrees of sister chromatid
separation may be evident. Furthermore colcemid, a

chemical agent which is used mainly as a preparatory
chemical in biodosimetry studies, can cause or exac-
erbate this condition and prematurely produce sister

chromatid separation on metaphase cells. It is impor-
tant that the algorithm and associated software be able
to analyze chromosomes with sister chromatid separa-
tion.

In order to identify and correct for sister chromatid
separation, we proposed an automated contour parti-
tioning and shape matching algorithm. Our chromo-

some thickness measurement algorithm requires an ap-
proximate symmetric division of the contour of the chro-
mosome. Accurate partitioning of the telomere region is
necessary to identify evidence of sister chromatid sepa-

ration and therefore correct for any such artifact as well
as to split the contour into two segments accurately.
Curvature of the contour is one of the most commonly
used features for detecting salient points that can be
used for partitioning [16]. An important requirement
is that the location of these salient points needs to be
highly repeatable under varying levels of object bound-
ary noise. The DCE method described in the previous
section was adapted to provide a set of initial salient
points on the contour of the chromosome outline. This
is because this method performs well with boundaries
regardless whether they are smooth or not, yielding re-
peatable results [17]. The ability to terminate the pro-

cess of DCE shape evolution at a given number of ver-
tices further lends to its applicability. It was empirically
established that a termination at 6 DCE points would
ensure that the required telomere end points will be re-
tained within the set of candidate salient points. Two of

those 6 points will be selected as the end points of the
centerline calculated in section 2.1. Contour partition-
ing is performed by selecting the best 4 point combina-
tion (including the two anchor points) that represents
all the telomere end points.

The approach for selecting the optimal contour par-
titioning point combination occurs in two stages. Ini-
tially, a SVM classifier is trained to detect and label
preferred combinations from the given 12 possible com-
binations for each chromosome. At this stage, all the
combinations across the data set are used as a pool
of candidates to train the classifier. Then, the signed
Euclidian distance from the separating hyperplane (say
ρ) is computed for each of the candidates for a given
chromosome, considering only the combinations of that
chromosome. This process ranks all the candidates ac-
cording to the likelihood they are a preferred candidate.
Unlike traditional rule-based ranking algorithms, this
approach requires very little high level knowledge of the
desirable characteristics. The positioning of the sepa-
rating hyperplane encapsulates this high level informa-

tion through user-specified ground truth. The highest-
ranked candidate is the best combination of contour
partitions for the given chromosome. The formal de-
scription of this procedure follows.

Features used for contour segmentation will be rep-
resented by F s, while a second set of features used
for centromere localization will be denoted by F c (dis-

cussed in section 2.4).

Let Φh be the curvature value at candidate point h
and S ∈ R2 be the skeleton of the chromosome with 6
DCE point stop criteria. We now define the following

set of points,

– DP (⊂ C) is the set of six DCE vertices.
– SP constitutes of all the points inDP except the an-

chor points (EP ). These are the four telomere end-
point candidates.

Then the family of sets TP for all possible combi-

nations with the sets EP and SP would contain,{
EP1 , S
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P
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P
2
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,
{
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.

Figure 3 illustrates one such combination where the
selected (connected by the blue line segments) combi-
nation for the contour partitioning points are given by{
EP1 , S

P
4 , E

P
2 , S

P
1

}
.

In order to identify the best possible combination
for contour partitioning, we have used a SVM classifier
trained with the 11 different features (F s) indicated
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Fig. 3 Demonstrates one possible combination for contour
partitioning where the anchor point (red ’+’ sign) EP1 is con-
nected with the candidate point SP4 while the other anchor
point EP2 is connected with candidate point SP1 which cap-
tures the telomere regions. The (blue) line connects the set
of points constituting the considered combination in this in-
stance.

below. Features F s1 and F s2 provide an indication to

the saliency of the candidate point with respect to the
skeletonization process. Features F s3 to F s5 are three
normalized features which capture the positioning of
each candidate in the given combination. F s6 and F s7
represent the shape or the morphology of the chromo-
some of interest (same values for all 12 combinations).
The rationale behind the inclusion of these features is

that they account for morphological variations across
the cell images in the data set. F s8 and F s9 represent the
curvature of the candidate points as well as the concav-

ity/convexity of those locations. The features F s10 and
F s11 are two Euclidean distance-based features which
capture the proportion of each telomere region in the
combination to the perimeter of the rectangle made by
connecting the 4 candidate points. During our investi-
gation, we observed a significant improvement of the
accuracy of classification by the inclusion of these two
features.

Let d (p, q) denote the Euclidean distance between

the points p and q. Similarly let l (p, q) represent the
length of the curve between p and q, which are points
from the set DP . Then, for each contour partitioning
combination in TP given by

{
EP1 , S

P
i , E

P
2 , S

P
j

}
(where

i and j are integer values such that 1 ≤ i, j ≤ 4 and
i 6= j), two main length measurement ratios (r1 and r2)
are used for both calculating length based features, as

well as for normalizing these features. r1 =
l(EP1 ,S

P
i )

l(EP1 ,S
P
j )

yields the chromosome width/length with respect to
the anchor point EP1 for the given contour partitioning

combination (refer figure 3). Similarly r2 =
l(EP2 ,S

P
i )

l(EP2 ,S
P
j )

is

calculated with respect to the anchor point EP2 . Then,

the set of features F s for each contour partitioning com-
bination is defined as follows,

1. F s1 = 1 if the point SPi belongs to a skeletal end
point (SPi ∈ (S ∩ C)). Otherwise, F s1 = 0.

2. F s2 = 1 if the point SPj belongs to a skeletal end
point (SPj ∈ (S ∩ C)). Otherwise, F s2 = 0.

3. F s3 =
[
1 −

∣∣∣ r1−r2
max(r1,r2)

∣∣∣] where 0 < F s3 < 1. This

calculates the chromosome width/length ratio for
each anchor point and the difference between the
two measures. Two similar fractions would result in
a high value for the feature F s3 .

4. F s4 =
[
1 − r1

max(r1,r2)

]
where 0 < F s4 < 1. This

calculates the chromosome width/length ratio with
respect to the first anchor point (EP1 ). Except for
smallest chromosomes at the highest degree of meta-
phase condensation, the telomere axis is shorter than
the longitudinal dimension of the chromosome. There-
fore, a lower length ratio measurement is a higher
value for the feature F s4 and is a desirable property.

5. F s5 =
[
1 − r2

max(r1,r2)

]
where 0 < F s5 < 1. This is

same as F s4 , but from the other anchor point, EP2 .

6. F s6 : ratio of length of the chromosome to area of the
chromosome. This provides a measure of elongation
of a chromosome.

7. F s7 : ratio value of perimeter of the chromosome to

the area of the chromosome. This provides a mea-
sure of how noisy the object boundaries are.

8. F s8 : average of the curvature values Φh of the candi-

dates. The curvature is an important measurement
of the saliency of the candidate points.

9. F s9 : number of the negative curvature values (Φh <
0) of the candidates points

(
SPi andS

P
j

)
. The telom-

ere region end points are generally characterized by
points with high convexity. The number of negative
angles yield how concave the points of interest are.

10. F s10 =
d(EP1 ,S

P
i )

D where D =
∑x=2
x=1,y=i,j d(EPx , S

P
y ).

This feature calculates the normalized Euclidean dis-
tance between the anchor point PE1 and the candi-
date PSi which makes up one telomere region.

11. F s11 =
d(EP2 ,S

P
j )

D where D =
∑x=2
x=1,y=i,j d(EPx , S

P
y ).

This is the same as feature F s10, but calculated for
the other anchor point.

A data set of 1400 chromosomes was collected from
40 metaphase cell images, which together yield 16,800
possible combinations of feature sets for contour par-

titioning. Three expert cytogeneticists marked the vi-
able combinations of the salient points that capture
the telomere regions for training the SVM classifier.
The procedure involved training and testing with 2 fold
cross validation (50% - train data, 50% - test data). We
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obtained values of accuracy, sensitivity and specificity
values of 94%, 97% and 68%, respectively. The results
demonstrate the ability of the feature set to effectively
detect good combinations of candidate points for parti-
tioning telomere regions. The slightly lower specificity
suggests that some false positive telomeres were detec-
tion. However, this does not affect the accuracy of the
contour partitioning, since the algorithm picks the op-
timal combination based on its rank rather than the
classification label.

Correcting the deviation of the centerline for the ef-
fects of premature sister chromatid separation can be
a difficult problem to solve. Once the best combination
for the end points of the telomere region is selected,
the telomere portions are segmented. Premature sister
chromatid separation is detected from differences in the
chromosome shape in the telomere region. This problem
is solved with an algorithm that creates a set of features
using functional approximation of the shape character-
istics unique to premature sister chromatid separation
and is derived from the coefficients calculated for each

telomere [8]. A second SVM classifier is trained on these
features to effectively detect these inherent shape vari-
ations of the sister chromatids. Once identified, correc-

tion is performed by extending the sample point (on
the pruned centerline) to pass through the mid point of
the partitioned telomere region. By getting the contour

partitioned accurately, the correction process is signifi-
cantly simplified.

2.3 Intensity integrated Laplacian method

The width profile, which is defined as the sequential
width measurements along the centerline or the axis of
symmetry of the chromosome, is an important measure-
ment used for deriving the centromere location.

In previous studies, Laplacian-based thickness mea-
surement algorithms have been utilized for cortical thick-
ness measurement applications [18], [19]. This method
takes the second order derivative of the object contour
and solves the Laplacian heat equation to obtain the

steady state condition. This is performed by splitting
the object into two similar segments, maintaining them
at different temperature levels and then allowing heat
flow between the segments. The width profile of the
chromosome is obtained by creating trace lines extend-
ing from one contour segment to the other following the
static vector field created at steady state conditions on
the potential field. The width profile calculated using
this approach was observed to be more uniform and less
noisy relative to analogous approaches based on center-
line of the chromosome [20]. However, as a consequence

of the sole dependency on the object contour, the width

profile could still be adversely affected by irregularities
in the object boundary.

We have previously presented an algorithm, in which
intensity was introduced as an additional feature into
the standard Laplacian-based approach to improve its
accuracy by making it less dependent on the object
contour [8]. The intensity information is included as
an additional feature in the calculation in the form of
a weighting scheme for the Laplacian kernel. This bi-
ases the flow of heat towards similar intensities. The
intensity feature aids in minimizing the impact from ir-
regular boundary of the chromosome segmentation by
guiding the width profile trace lines to be contained
within chromosome bands, which are regions with sim-
ilar intensities.

2.4 Candidate point generation & metaphase
centromere detection

In a previously described candidate-based approach,
four candidate points were selected based on the min-
ima values from the width profile [21]. However, this

limits the number of possible locations that could be
detected as the centromere location. Especially in cases
where a high degree of sister chromatid separation is

evident, limiting the search to just few candidates can
have adverse effects. Therefore, we consider all possible
local minima locations as candidates for the centromere
location in a given chromosome, which are selected us-

ing the simple criteria given below.

Fig. 4 Illustrates an example where the contour C is split
into two approximately symmetric segments C1 and C1. The
width trace line, in red, connects the points C1

λ and C2
λ of

the two contour segments.

Our notation p is used to refer to any other point(s),
in general. Let the contour C be partitioned into two
contour segments C1 (starting segment for tracing lines)
and C2 (see figure 4). The width measurement of the
normalized width profile at the discrete index λ (W (λ))
is obtained using the trace line which connects the con-
tour points C1

λ and C2
λ from the two contours C1 and

C2. Then, the set of candidate points for the centromere
location pC (which stores the indices λ), where the local
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minima conditions of W (λ − 1) < W (λ) < W (λ + 1)
and W (λ − 2) < W (λ) < W (λ + 2) are fulfilled for all
valid locations λ of the width profile. In cases where the
above condition failed to secure any candidates (mainly
on extremely short chromosomes), the global minima
was selected as the only candidate. Next, the following
two sets of indices are created to correspond with each
given element pC(α) of pC ,

– pmL(α) = W (β) whereW (β) > W (γ), ∀ γ < pC(α).
Here pmL(α) stores the index of the global maxima
for the portion (referred to as a regional maxima,
henceforth) of the width profile prior to the candi-
date minima index pC(α).

– pmR(α) = W (β) whereW (β) > W (γ), ∀ γ > pC(α).
Similarly, pmR(α) stores the index of the global max-
ima for the portion of the width profile after the
candidate minima index pC(α).

Once the centromere candidate points pC and their

corresponding maxima points pmL and pmR are cal-
culated, the set of features F c are calculated as given
below. A set of 11 features F ck are proposed to train the

third SVM classifier which will then be used to calculate
the best candidate for a centromere location in a given
chromosome. Features F c1 to F c3 provide an insight on
the significance of the candidate point with respect to

the general width profile distribution. The normalized
width profile value itself is embedded in features F c4 and
F c8 where the latter scales the minima based on the av-

erage value of the width profile. Features F c5 and F c6
capture the contour curvature values that are intrin-
sic to the constriction at the centromere location. Fea-

tures F c7 ,F c9 and F c10 include distance measures which

indicate the positioning of the candidate point with re-
spect to the chromosome as well as to the width pro-
file shape. Finally the feature F c11 records the staining

method used in the cell preparation. This gives the clas-
sifier a crucial piece of information that is then used to
accommodate for specific shape features that may be
the result of the particular laboratory procedure used
to prepare and stain the sample.

Let i be a candidate member number assigned among
the pool of centromere candidates. Also, let d(1, i) be
the Euclidean distance along the midpoints of the width

profile trace lines (centerline) from a telomere to the
candidate point, and L be the total length of the chro-
mosome. Then, the set of features F c are stated as be-
low, where ‖.‖ yields the absolute value,

1. F c1 =
∥∥W (pC(i))−W (pmL(i))

∥∥. This feature cal-
culates the absolute width profile difference between
the candidate and the regional maxima prior to the
candidate point on the width profile.

2. F c2 =
∥∥W (pC(i))−W (pmR(i))

∥∥. This feature cal-
culates the absolute width profile difference between
the candidate and the regional maxima beyond the
candidate point on the width profile.

3. F c3 = F c1 +F c2 which calculates the combined width
profile difference created by the candidate point.

4. F c4 = W (pC(i)). This captures the value of the
width profile (0 ≤ F c4 ≤ 1) at the candidate point
location.

5. F c5 is the local curvature value at the contour point
C1
λ which corresponds to the current centromere

candidate location (where λ = pC(i))
6. F c6 is the local curvature value at the contour point
C2
λ which corresponds to the current centromere

candidate location (where λ = pC(i))
7. F c7 = min (d(1, i), L− d(1, i)) /L. Gives a measure

where the candidate is located with respect to the
chromosome as a fractional measure (0 ≤ F c7 ≤ 0.5)

8. F c8 = W (pC(i))/W̄ , where W̄ is the average of the
width profile of the chromosome. This includes the
significance of the candidate point minima with re-
spect to the average width of the given chromosome.

9. F c9 = d(pmL(i), pC(i))/L. This gives the distance
between the candidate point location and the re-
gional maxima value prior to the candidate point,

normalized by the total length of the chromosome.
10. F c10 = d(pC(i), pmR(i))/L. This gives the distance

between the candidate point location and the re-

gional maxima value beyond the candidate point,
normalized by the total length of the chromosome.

11. F c11 is a boolean feature used to indicate the staining
process used during cell preparation. A logical ’0’

would indicate the use of DAPI chromosome stain-
ing while ’1’ would indicate a Geimsa-stained cell.

The detection of the centromere location assumes
that each chromosome at least contains one centromere
location within the chromosome. This is a reasonable
assumption, since the centromere region is an integral
part of chromosome anatomy which is normally retained

in cell division, with the exception of acentric fragments
produced by excessive radiation exposure, or rarely in
congenital and neoplastic conditions. This assumption
transforms the detection problem into a ranking prob-
lem in which we pick the best out of a pool of candi-
dates. Therefore, this enables the same approach to be
adopted that was utilized for the contour partitioning
algorithm (section 2.2); ie. in which the distance from
the separating hyperplane (ρ) represents a measure of
goodness-of-fit for a given candidate. This metric re-

duces the multidimensional feature space to a single di-
mension, which inherently reduces the complexity of the
ranking procedure for the candidate locations. Since the
large margin binary classifier (SVM) orients the sepa-
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rating hyperplane in the feature space, the 1D distance
metric directly relates to how well a given candidate
fits into the general characteristics of a given class la-
bel. A detailed introduction to the candidate-based cen-
tromere confidence metric is provided in the following
section.

2.4.1 Candidate-based centromere confidence (CBCC)

Although existing measures of accuracy can establish
performance of machine learning applications, these mea-
sures do not provide information on the reliability of the
method. We developed a confidence metric for accurate
detection of centromeres, which will be essential for as-
sessment and ultimately adoption of this approach for
diagnosis. We develop a Candidate Based Centromere
Confidence metric (CBCC) to assess detection of a cen-
tromere location relative to alternatives. This value is

obtained using the feature space derived via the classi-
fier and the distance metric ρ. For a given set of candi-
date points, ie. centromeres, of a chromosome pC , the
goodness of fit (GF) of the optimal candidate point (ρ̀)

is obtained by calculating
∥∥∥ (ρ̀−ρ̄)

2

∥∥∥, which is the average

distance of all the remaining candidate points. In the
ideal situation, the optimal candidate and the other

candidates as support vectors for the classifier reside
on opposite faces of the separating hyperplane (see fig-
ure 5). Therefore the optimal candidate distance (ρ̀) is

≈ 1, while the average of the remaining candidate dis-
tances (ρ̄) is ≈ −1. The GF value is truncated at unity,
since exceeding this value does not add additional in-
formation to the metric.

Fig. 5 Shows the expected scenario for candidate-based cen-
tromere detection, in which 6 candidates are assessed by the
SVM. The blue square represents the optimal candidate while
the other five candidates are given by the red squares in the
feature space.

3 Results

The complete data set used for developing and test-
ing the algorithm discussed in this paper consists of 40
metaphase cell images, of which 38 consisted from ir-
radiated samples obtained from cytogenetic biodosime-
try laboratories and 2 were non-irradiated samples from
clinical cytogenetic laboratories. The chromosome data
set comprised images of 18 Giemsa-stained cells and
22 DAPI-stained cells. The cells with minimal touch-
ing and overlapping chromosomes (a good metaphase
spread) was manually selected from a pool of 1068 cell
images for this experiment. Then 40 cell images were
selected to represent both DAPI (55%) and Giemsa
(45%) staining methods. During ground truth evalu-
ation, the expert was presented with the set of cen-
tromere candidates generated by the algorithm and was
asked to select the candidate that closely represent the
correct chromosomal location, while explicitly marking
other candidates as non-centromeres. In cases where
all the candidates suggested by the algorithm were in-

correct, all the positions were designated as negative
candidates. Intra-observer variability between experts
(ground truth) was minimal, as the two laboratory di-
rectors differed in assessment in a single centromere out

of > 500 chromosomes analyzed by both. The 1400
chromosome data set yielded 7058 centromere candi-
dates. A randomly selected portion comprising 50% of

this data set along with the corresponding ground truth
centromere assignments were used for training a sup-
port vector machine for centromere localization. Next,

the accuracy of centromere localization was calculated
and is provided in Table 1. This provides a breakdown
of the detection accuracy of the algorithm based on the
presence or the absence of sister chromatid separation

in the cell image for each staining method.

Table 1 The detection accuracy values for chromosomes
used for the larger data set based on the staining method
and the sister chromatid separation (SC Sep.)

Chromo- Number Number Detec-
-some of of -tion

morphology chromo- accurate accuracy
-somes detections

DAPI without 114 104 91.2%
Sc Sep

DAPI with 587 517 88.1%
Sc Sep

Giemsa with 699 599 85.6%
Sc Sep

Table 2 depicts CBCC values for accurately detected

chromosomes as opposed to inaccurately detected chro-
mosomes. It also includes a third category termed ”All
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nonviable candidate chromosomes” (a subset of the in-
accurate centromere detection category), where none of
the candidates for a given chromosome were marked as
capturing the true centromere of the chromosome.

Table 2 Shows that CBCC metric demonstrates higher val-
ues in cases with accurate centromere detection.

Category Chromo- Mean Std. Dev
-somes (µ) (σ)

Accurate detection 1220 0.7861 0.3000
Inaccurate detection 180 0.3799 0.3293
Nonviable candidates 124 0.2696 0.2457

Figure 6 shows a representative sample of cases where
the centromere was accurately localized. These cases in-
clude chromosomes with and without sister chromatid
separation. The method does not detect centromere lo-
cations in all cases, some of which are impacted by the
algorithm’s inability to fully correct for the adverse ef-
fects of sister chromatid separation (depicted in Fig-
ure 7).

(a) (b) (c)

(d) (e) (f)

Fig. 6 Demonstrates some sample results of the algorithm
where the accurately detected centromere location (selected
candidate) is depicted by a yellow dot while the segmented
outline is drawn in blue. Figure 6(a) is a result of DAPI
stained chromosomes while Figure 6(b)-(f) are results of
Geimsa stained chromosomes. These results reported a CBCC
measures of (a) 1.000, (b) 1.000, (c) 1.000, (d) 0.995, (e) 1.000,
(f) 0.661 respectively.

4 Discussion

The candidate based approach for centromere detec-
tion used a trained SVM classifier based on half of
the input chromosomes. The accuracy of the method
was then tested using the remaining 50% of the data

(a) (b) (c)

Fig. 7 Demonstrates results where algorithm failed to yield
an accurate centromere location. The detected centromere lo-
cation (selected candidate) is depicted by a yellow dot while
the segmented outline is drawn in blue. These results reported
a CBCC measures of (a) 0.368, (b) 0.066, (c) 0.655 respec-
tively.

set (2 fold cross validation); accuracy, sensitivity and
specificity were 92%, 96% and 72% respectively. Two
fold cross validation was used instead of other meth-
ods such as the leave on out method, since it yields a
reasonable estimation of the accuracy with a low com-
putational cost. The higher sensitivity of this algorithm

relative to our previous efforts [5] can be attributed to
improvements in the performance of the classifier on
both typical and sister chromatid separated chromo-

somes. The lower specificity is predominantly related
to lower confidence detection by the integrated inten-
sity Laplacian algorithm of centromeres in acrocentric

chromosomes, in which the centromeric constriction is
not readily apparent because of its close proximity to
one of the telomeres.

The objective of this study was to accurately de-

tect the preferred centromere location (points) for each
chromosome, even though the SVM produces a set of
candidate points that can each be classified separately.
All candidates in each chromosome were analyzed sepa-
rately and the best candidate from this set was selected
based on the distance metric value (ρ) of which the re-
sults are produced in table 1. Upon testing, the algo-

rithm accurately located a correct centromere location
in 1220 of 1400 chromosomes (87%). It is notable that
124 of the 180 chromosomes that were missed were in-
stances of non-viable candidate chromosomes. Some of
these were caused by segmentation of acrocentric chro-
mosomes, where the lighter intensity of the short-arm
satellite regions were segmented out, while others were

primarily the result of an extreme degree of sister chro-
matid separation, such that the pairs of telomeres from
sister chromatids could not be unequivocally paired.
The values in table 1 further suggest a slight reduction
in accuracy for Giemsa-stained images, which contained
significantly higher levels of sister chromatid separation
and noisy chromosome boundaries.

The proposed method performed centromere local-
ization accurately for chromosomes with high morpho-
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logical variations (see figure 6). From a machine learn-
ing point of view, figure 6(a), (b) and (c) are fairly
straightforward centromere localizations. The CBCC
values for all three cases were 1.000 which was truncated
from an even higher value. This further validates the
CBCC metric, indicating that the selected candidate
is prefereable than the other candidates in the same
chromosome. It is important to notice that the bound-
ary conditions at the telomeric region of figure 6(c) is
similar in appearance to those in figure 3 and figure 4.
However, with further separation and intensity fading
between the two sister chromatid arms, the segmenta-
tion algorithm could converge to a concave morphology
in the telomere region that links the sister chromatids.
Figure 6(e) represents such an instance where sister
chromatid separation has had a significant effect on the
chromosome segmentation. However, as a result of cor-
recting for this effect, the algorithm has localized the
centromere accurately with a CBCC value of 1.000. The
chromosome segmentation in figure 6(d) demonstrates
evidence of extensive sister chromatid separation and

therefore the CBCC value is at 0.995, which still is a
high value for the data set. The figure 6(f) represents
a chromosome which is highly bent and also presents

with very significant sister chromatid separation. Nev-
ertheless, the algorithm was capable of localizing an ac-
curate centromere location though the CBCC value was

low (0.661), which indicates a less than ideal separation
among the centromere candidates.

Some of the shortcomings of the proposed method
are represented in figure 7. Most of these (86%) were

observed to be cases where none of the candidates were
deemed to contain the actual centromere. This was mai-
nly due segmentation problems and very high levels of
sister chromatid separation. Figure 7(b) depicts an ex-
ample where the segmentation algorithm failed to cap-
ture the constriction in an acro-centric chromosome.
The CBCC value in this example was as low as 0.066,

which indicates that the algorithm selected a weak can-
didate for the centromere. Figure 7(a) demonstrates
a case where extreme sister chromatid separation has
caused the segmentation algorithm to treat each indi-
vidual chromatid arm separately. This chromosome had
a low CBCC value of 0.368, which is consistent with
the acentric nature (morphological) of the separated

arm. Figure 7(c) shows another impact of extreme sister
chromatid separation, namely, the incorrect connection
of the long arm of a pair of sister chromatids, leading to
an apparent, bent chromosome, instead of detecting sis-
ter chromatid separation. The CBCC measure fails to
distinguish this chromosome from a normal bent chro-
mosome, but nevertheless yielded a relatively high value
of 0.655.

Although it was not the focus of this study, we car-
ried out a preliminary analysis of the capability of this
algorithm to detect both chromosomes in a set of dicen-
tric chromosomes, which were present among an excess
of normal single centromere chromomes, due to irrada-
tion of some of the cytogenetic samples analyzed. The
constriction at the second centromere is similar mor-
phologically to the first centromere in these images,
and therefore, it should be feasible that it be among
the candidates found by the algorithm. We hypothe-
sized that along with the optimal candidate, the sec-
ond centromere was also expected to exhibit a short
distance to the hyperplane and be well separated from
the other candidates. These distances were compared
for all centromere candidates, and probable dicentric
chromosomes were identified by determining if the cor-
rect, ground truth centromeres were among the top four
ranked candidates. The breakdown of the candidates
which captured the second centromere location is given
in table 3, where 20 cases (out of 31) reported the sec-
ond centromere location as the second highest ranked

candidate location. Among the 31 dicentric chromo-
somes present in the data set, the first candidate (the
selected centromere) was accurate in all instances. There
were only two instances where the second centromere

was not among the top four candidates. In both of these
cases, the chromosomes exhibited a high degree of sis-
ter chromatid separation. Nevertheless, the proposed

method provides a good framework for detecting di-
centric chromosomes in radiation biodosimetry appli-
cations.

Table 3 Shows that the proposed method ranked the second
centromere in dicentric chromosomes higher in most of the
cases.

Rank of the Number of
second centromere cases

02 20
03 6
04 3
05 1
06 1

5 Conclusions

We have described a novel candidate-based centromere
detection algorithm for analysis of metaphase cells pre-
pared by different culturing and staining methods. The
method performed with an 87% accuracy level when
tested with a data set of 1400 chromosomes from a
composite set of metaphase images. The algorithm was
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capable of correcting for the artifact created by pre-
mature sister chromatid separation. The majority of
chromosomes with centromere constrictions were de-
tected with very high sensitivity. We have also tested
an promising extension of the centromere detection al-
gorithm to accurately identify dicentric chromosomes
for cytogenetic biodosimetry. Loss of specificity in both
mono and dicentric chromosomes was primarily the re-
sult of segmentation errors in acrocentric chromosomes,
as well as in chromosomes with extreme degrees of sister
chromatid separation. A better segmentation algorithm
that addresses these challenging morphologies would
further improve the detection accuracy of the proposed
method. Furthermore, the telomere partitioning algo-
rithm needs to be improved in order to handle chromo-
somes with extreme sister chromatid separation which
are commonly encountered in radiation biodosimetry
applications. In addition, an algorithm to accurately
separate touching and overlapping chromosomes will
also be required to fully automate this process. It is
also necessary to analyze a larger data set to gauge

performance of the proposed method.

The framework used for adding intensity into the
Laplacian thickness measurement algorithm can be eas-

ily extended to include other features besides the cal-
culation of chromosome width. Further investigation
aimed at both improving centromere detection accu-

racy and applications of this algorithm to other de-
tection problems is warranted. The Candidate Based
Centromere Confidence (CBCC) was introduced as a
measure for confidence in each centromere detection.

However, this metric can be applied to any problem
which required a selection of a candidate from a pool
of candidates. We suggest that the CBCC metric may

be extensible to indicate the relative quality of a given
cell image or of a set of slide containing a set of meta-
phases cells from the same patient. If successful, the

CBCC metric may eventually limit the amount of time
required to evaluate samples both prior to and during
centromere detection.
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