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The ready availability of vast amounts of
genomic sequence data has created the need
to rethink comparative genomics algorithms
using “big data” approaches. Neptune is an
efficient system for rapidly locating differentially
abundant genomic content in bacterial populations
using an exact k -mer matching strategy, while
accommodating k -mer mismatches. Neptune’s
loci discovery process identifies sequences that
are sufficiently common to a group of target
sequences and sufficiently absent from non-targets
using probabilistic models. Neptune uses parallel
computing to efficiently identify and extract
these loci from draft genome assemblies without
requiring multiple sequence alignments or other
computationally expensive comparative sequence
analyses. Tests on simulated and real data sets
showed that Neptune rapidly identifies regions that
are both sensitive and specific. We demonstrate
that this system can identify trait-specific loci from
different bacterial lineages. Neptune is broadly
applicable for comparative bacterial analyses, yet
will particularly benefit pathogenomic applications,
owing to efficient and sensitive discovery of
differentially abundant genomic loci.

Introduction

Capacity to cheaply and quickly generate high
volumes of sequence reads has made possible the
ability to study the genomes of entire populations
of organisms, especially those organisms with
relatively small-genomes such as bacteria.
Computational biologists have historically used
a wide range of bioinformatics software tools
to compare small numbers of bacterial genomes
and to perform basic characterizations at the
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nucleotide, gene, and genome scale. However,
there now exists a need for bioinformatics software
to perform efficient comparative analysis and
characterization of entire populations of bacterial
genomes. Some tools have emerged. Most of
these tools focus on the identification of single
nucleotide variants (SNVs) using reference mapping
approaches [6, 19], or distance estimations based
on small exact substrings (k -mers) [10, 15, 22]
since these approaches scale well using simple
parallelization strategies. Microbial genome-wide
association studies (GWAS) that analyze bacterial
genome populations to correlate genomic features
with phenotypic traits are now also possible
thanks to recent methodological developments that
address the problems inherent in bacterial genomes
that confound conventional GWAS approaches,
such as long range linkage disequilibrium and
clonal population structure [8]. Some software
tools for bacterial GWAS have been developed
that associate SNVs or k -mers with biological
traits [13]. However, for bacterial GWAS, it
is important to identify all modes of bacterial
genomic variation including larger scale genomic
gains and losses, particularly for the majority of
bacteria that engage in horizontal gene transfer
to acquire novel biologic traits. Scalable software
that can rapidly extract the large scale genomic
loci that differentiate one population from another
while tolerating allelic variation within those loci,
is valuable to accomplish bacterial GWAS and
has utility for many other applications such as
developing targeted molecular diagnostics.

To address this challenge, we looked to the field
of genomic signature discovery, where a signature
is defined as a genomic locus that is sufficiently
represented in a target, or “inclusion” group,
and sufficiently absent from a background, or
“exclusion” group. An effective signature discovery
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algorithm is both sensitive and specific, while quick
to compute. However, in practice, it remains
difficult to develop algorithms that possess all three
of these attributes. Early algorithmic approaches
for signature discovery were developed with the
specific aim of generating pathogen detection
diagnostic assays [23]. In general, these approaches
involve exhaustively comparing all sequences using
alignment-based methods, such as BLAST [1], to
locate signature regions in an inclusion group that
are absent in the exclusion group. However, these
approaches do not scale efficiently and are focused
on generating molecular diagnostic primers of a
fixed length.

Other more sophisticated approaches attempt
to address efficiency by using computationally
optimized string processing approaches that encode
fixed size substrings from the genome in rapidly
searchable data structures, then analyzing these
data structures for unique substrings [18]. These
approaches are very fast and scale well, but
cannot handle variability in the target sequence and
are artificially limited to fixed length signatures.
Variability in the target can be achieved by
grouping similar sequences using multiple sequence
alignments [23] or other clustering operations [2].
However, these common clustering techniques come
at a high computational cost and do not scale
well. Some algorithms incorporate a data reduction
step prior to clustering to reduce the amount of
unnecessary computation. For example, Insignia
[18], TOFI [21], and TOPSI [20] use efficient suffix
trees to precompute exact matches within inclusion
targets and an exclusion background. However,
depending on the size of the background database,
this may remain a computationally expensive
operation. One interesting novel implementation
is CaSSiS [2], which approaches the problem of
signature discovery more thoroughly than other
signature discovery pipelines. The software
produces signatures simultaneously for all locations
in a hierarchically clustered data set, such as
a phylogenetic tree, thereby producing candidate
signatures for all possible subgroups. However,
this process requires the input data to be provided
in a hierarchically clustered format, such as
computationally expensive phylogenies. In addition
to the efficiency-versus-sensitivity trade off, most of
the programs that have been developed thus far for
signature discovery have additional shortcomings
that make them unsuitable for identifying common
variation between populations of genomes. For
example, they may restrict the analysis to a
single inclusion genome [21], they don’t permit
user-supplied genomes for target identification [18],
or they do not provide the software to the end
user [23].

We designed Neptune as a system for discovering

discriminatory bacterial sequence signatures and
conducting comparative analyses of arbitrary
groups of genome sequences that leverages
existing strategies for signature detection, but in
a novel way that is both efficient and accurate.
Neptune identifies genomic loci uniquely shared
among a user-specified interest group but lacking
from a background group. Independent of
pre-computation, restriction on targets, and
slow clustering approaches, Neptune applies
reference-based, parallelized exact-matching k -mer
strategy for speed, while making allowances
for inexact matches to enhance sensitivity.
Neptune’s signature discovery is guided with
probabilistic models that make decisions with
a measure of statistical confidence. Neptune
is open-source software freely available at
github.com/phac-nml/neptune and is broadly
applicable for rapid comparative assessments of
bacterial populations.

Results

Neptune Design Principles

We define a genomic signature as a string
of characters (nucleotides) sufficiently unique to
a user-specified set of targets (the inclusion
group) that discriminates it from a user-defined
background group (the exclusion group). We
define a “reference” sequence as any inclusion
target from which to extract signatures. Targets
will typically comprise draft and closed genome
assemblies. Signature discovery aims to locate
unique and conserved regions within the inclusion
group, but absent or minimally present in the
exclusion group.

Validation

We applied Neptune to identify differentially
abundant genomic loci (genomic signatures) for
distinct bacterial datasets from broad phyla.
In order to validate methodology and highlight
mathematical considerations, we first applied
Neptune to a simulated Bacillus anthracis data
set. To demonstrate behaviour in populations with
genomic variation dominated by gene gain and loss,
we applied Neptune to identify signatures within
a clinically-relevant Listeria monocytogenes data
set. Lastly, we demonstrated Neptune’s capacity
to locate genome signatures in a more structurally
and compositionally diverse Escherichia coli data
set.
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ID Length (bp) Summary
1 23338 O-antigen transport
2 50038 toxin pilus
3 12259 phage replication
4 9652 phage integrase
5 4282 N-acetylneuraminate lyase
6 10155 neuraminidase

Table 1: Genomic islands naturally found within
Vibrio cholerae (NC 012578.1) chromosome I. These
islands were used as in silico signatures and artificially
inserted within a Bacillus anthracis genome. These
islands were identified with IslandViewer 3 [7].

Simulated Dataset

In order to show that Neptune identifies signatures
as expected, the software was run with an
artificially created data set. We created an initial
inclusion genome by interspersing non-overlapping,
virulence- and pathogen-associated genes from
Vibrio cholerae M66-2 (NC 012578.1) throughout a
Bacillus anthracis genome (NC 007530) (Table 1).
We selected 6 signature regions, varying from 4
kb to 50 kb in size, and spaced these signatures
evenly throughout the B. anthracis genome with
each signature represented only once. The initial
exclusion genome consisted of the wildtype B.
anthracis genome lacking modification. Lastly,
we broadened both the inclusion and exclusion
groups to 20 genomes each, by generating copies
of the corresponding original inclusion or exclusion
genome and incorporating a 1% random nucleotide
mutation rate, with all possible mutations being
equally probable.

Neptune was used to identify the inserted
pathogenic and virulence regions in our simulated
B. anthracis data set. We specified a k -mer
size of 27, derived from Equation 2, and used
Neptune’s default single nucleotide variant (SNV)
rate of 1%. Neptune produced signatures from
all 20 inclusion targets (supplementary material)
and these signatures were consolidated into a
single file. We aligned these signatures to the
initial inclusion genome and used GView Server
[17] to visualize the identified signatures from
all references. Neptune identified 7 consolidated
signatures, corresponding to the 6 expected V.
cholerae regions, with the largest signature region
(50 kbp) misreported as two adjacent signatures
(10,136 bp and 39,763 bp) with a gap of 143
bp between them. However, by Equation 9, we
expect to see erroneous signature breaks with a
frequency inversely proportional to our confidence
level (95%) when extending signatures over k -mer
gaps. Indeed, upon investigation, the break
location contained six mutations almost evenly
spaced within the 143 bp region. Importantly,

we observed that all Neptune-identified signatures
corresponded to the artificially inserted V. cholerae
regions and were consistently detected for all
references. Neptune reported all of the in silico
signatures and reported no false positives. Hence,
we conclude that Neptune is able to locate all in
silico signatures; although some regions identified
are reported as two adjacent signatures.

Listeria monocytogenes

Neptune was used to locate signature regions
within two distinct serotypes of Listeria
monocytogenes. L. monocytogenes is an
opportunistic environmental pathogen that
causes listeriosis, a serious and life-threatening
bacterial disease in humans and animals [16].
L. monocytogenes is comprised of a group of
genetically heterogeneous strains consisting of
clonal isolates with very low recombination rates.
However, recent L. monocytogenes evolution
has been characterized by gene deletion events
resulting from horizontally acquired bacteriophage
and genomic islands. Hence, we anticipated finding
signatures corresponding to these events.

Listeria isolates were serotyped using standard
laboratory serotyping procedures [11]. Serotypes
1/2a and 4b were selected for evaluation as
they represent distinct evolutionary lineages and
are clinically relevant [16]. Of the 13 L.
monocytogenes serotypes, serotype 1/2b and 4b
(lineage I) and serotype 1/2a (lineage II) are most
commonly associated with human illness globally
[16]. L. monocytogenes lineage I is characterized
by low diversity and low recombination rates
and strains from this lineage are overrepresented
amongst human isolates, as compared to lineage II
strains, which exhibit increased levels of genomic
diversity, owing to recombination and horizontal
gene transfer and have an over representation
among food, food-related and natural environments
[16]. In total, 112 serotype 1/2a and 39 serotype
4b targets were available to be used as inclusion
and exclusion groups. These were independently
assessed to identify 1/2a signatures as well as the
reciprocal 4b signatures, by reversing the inclusion
and exclusion groupings. These groups were evenly
and randomly subdivided into a test set and a
validation set.

Neptune was executed on the L. monocytogenes
test data in order to produce both 1/2a and 4b
signatures for validation. Neptune produced 105
1/2a signatures and 75 4b signatures from their
respective inclusion targets. We further evaluated
the top-scoring (≥ 0.95) 1/2a and 4b signatures.
The top-scoring signatures identified for L.
monocytogenes serotype 1/2a are listed in Table
2. These signatures included phosphotransferase
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Rank Score Length Locus Information L. monocytogenes
(bp) serotype 1/2a str.

EGD-e coordinates

1 0.99 4830 peptidoglycan-bound protein colossin A 2653185 - 2658013
2 0.99 5336 PTS system, L-ascorbate (L-Asc) family 2042111 - 2047447
3 0.99 4059 bvrABC locus, beta-glucoside-specific sensory system 2872894 - 2876952
4 0.99 5454 PTS system, glucose–glucoside (Glc) family 764364 - 769817
5 0.98 1938 hypothetical 776415 - 778355
6 0.98 4514 two-component response regulator 1086579 - 1091092

and ABC transport systems
7 0.98 2839 internalin 169228 - 172066
8 0.98 1673 glycosyl-transferase 532558 - 534230
9 0.97 967 hypothetical 2717382 - 2718348
10 0.96 169 hypothetical, partial 270157 - 270325
11 0.96 2591 lineage II specific heat-shock system 441513 - 444103
12 0.95 548 hypothetical 804275 - 804822

Table 2: A summary of top-scoring ≥ 0.95 L. monocytogenes serotype 1/2a signatures generated by Neptune
relative to a serotype 4b background. These signatures were mapped against L. monocytogenes 1/2a EGD-e
(NC 003210) and 08-5578 (NC 013766) to infer annotations.

systems, proteins involved in regulating virulence
genes in response to environmental cues, and a
surface-exposed internalin protein gene, many of
which are known to be critical factors for human
pathogenesis [3]. Furthermore, a lineage II-specific
heat-shock system [24], constituting an operon with
3 genes, was present among high scoring signatures.
Likewise, the top-scoring signatures identified for
L. monocytogenes serotype 4b (Table 3) included
proteins related to the cell wall, such as teichoic
acid biosynthesis and a cell wall anchor protein,
and a variety of other signatures encoding broad
functional diversity.

These test-generated signatures were then
compared against the wet-lab verified validation
data sets to evaluate their in silico sensitivity and
specificity. We used BLASTN [1] to independently
align the top-scoring signatures against our
validation data sets. With a percent identity
threshold of 95% and a minimum alignment length
of 95% the size of the signature length, 670 out
of 672 (99.7%) 1/2a signature alignments against
the 1/2a validation targets met our sensitivity
criteria. Likewise, 199 out of 200 (99.5%) 4b
signature alignments against 4b validation targets
met this strictness. Similarly, when relaxing
the percent identity threshold to 50% and the
minimum alignment length to 50% the size of the
signature length, we found no 1/2a hits against
4b validation targets and no 4b hits against 1/2a
validation targets, indicating that the signatures
were specific to the inclusion group. These results
suggest that our top-scoring Neptune-identified L.
monocytogenes serotype 1/2a and 4b signatures
have high in silico sensitivity and specificity to their
respective serotypes against the other serotype
background.

Escherichia coli

We then applied Neptune to locate signatures
corresponding to Shiga-toxin producing
Escherichia coli (STEC). Specifically, we chose
to interrogate E. coli genomes that produce the
Stx1 toxin. This toxin requires the expression
of both the Stx1a and Stx1b subunits to be
functional. Therefore, we expected to locate the
genes encoding for these subunits using Neptune.
As E. coli exhibits significantly increased genomic
diversity over L. monocytogenes, we expect it
makes identifying related signatures a more
computationally challenging problem.

The inclusion and exclusion data sets were
comprised of 6 STEC (Stx1) and 11 non-STEC
draft assemblies, respectively (PRJNA57781).
Neptune produced 371 signatures corresponding to
STEC. The top-scoring signature had nearly 100%
in silico sensitivity and specificity with respect to
the inclusion and exclusion groups. We further
investigated the top-scoring (≥ 0.95) consolidated
signatures (Table 4) by aligning these signatures
against an E. coli O157:H7 str. Sakai reference
(NC 002695.1, NC 002127.1, NC 002128.1) to infer
sequence annotations. This alignment included
the chromosome and both plasmids, pO157 and
pSKA1. The Sakai reference was selected because
it contains a copy of the Stx1 toxin and is well
characterized.

As expected, Neptune identified the
Stx1-encoding region as the highest
scoring signature (Table 4). Other salient
Neptune-identified signatures included several
virulence regions such as the urease gene cluster,
various phage-related genes, intimin transcription
regulator (perC ) sequences, plasmid-encoded
hemolysin gene cluster (Figure 1) and type 3
secretion system (T3SS)-related regions (Table 4).
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Rank Score Length Locus Information L. monocytogenes
(bp) serotype 4b str.

F2365 coordinates

1 0.99 223 hypothetical 478246 - 478468
2 0.99 3081 gltA-gltB operon 2787943 - 2791023
3 0.99 4004 N-acetylmuramic acid metabolism 1685737 - 1689738
4 0.98 1709 cell wall anchor 2684246 - 2685954
5 0.97 1786 RHS repeat-containing protein (partial) 471882 - 473667
6 0.97 4912 RHS repeat-containing protein (partial) 466603 - 471499
7 0.97 5917 multiple, including: hypothetical, cell surface 428382 - 434298

membrane anchor, multidrug efflux transporter like
8 0.97 1785 pyruvyl-transferase 117970 - 199754
9 0.95 1654 teichoic acid biosynthesis 2190231 - 2191883
10 0.95 1741 serine protease 1924193 - 1925933

Table 3: A summary of top-scoring ≥ 0.95 L. monocytogenes serotype 4b signatures generated by Neptune
relative to a serotype 1/2a background. The signatures were mapped to L. monocytogenes strain 4b F2365
(NC 2973) to infer annotations.

Figure 1: Neptune signature (top) corresponding to a plasmid-encoded E. coli hemolysin gene cluster
(bottom). GView [17] was used to visualize the 7,697 bp signature above the E. coli O157:H7 str. Sakai
pO157 plasmid encoding the hemolysin gene cluster.

In the plasmid alignments, the hemolysin-predicted
signature was the only top-scoring signature (6th
rank; 0.97 score) located on the pO157 plasmid.
Furthermore, using BLASTN [1], we found that
many of the Neptune top-scoring signatures aligned
to characterized E. coli O157:H7 O-Islands (a set
of mobile genetic islands characterized to carry
virulence factors). This included signatures 1-3,
5, 7-15; notably Shiga toxin I (as predicted), a
urease gene cluster, and several phage elements.
We conclude that Neptune is effective at locating
known pathogenic regions and horizontally
acquired regions within STEC with high in silico
sensitivity and high specificity.

Discussion

Parameters

While many of Neptune’s parameters are
automatically calculated, there are a few
parameters that deserve special mention. The
minimum number of inclusion hits and maximum
gap size are sensitive to the SNV rate and the
size of k. When estimating these parameters,
a slightly higher than expected SNV rate is
recommended. This conservative approach will
avoid false negatives at the expense of false
positives. However, many of these false positives
will be removed during the filtering stage at the

expense of increased computational time.

Computation Time

Neptune is parallelizable and performs well on
high-performance computing clusters. In order
to show the scalability of Neptune, we created
a simulated data set by generating one hundred
copies of a L. monocytogenes serotype 1/2a isolate,
one hundred copies of a serotype 4b isolate, and
incorporating a 1% random nucleotide mutation
rate in each generated copy, with all possible
mutations being equally probable. We ran Neptune
on a homogeneous computing cluster where there
were always more resources available than required
by the software. This demonstrates the scalability
of Neptune when computing resources are not
a limitation (additional information appears in
supplementary material). We ran Neptune on 50,
100, 150, and 200 total genomes, with even numbers
of inclusion and exclusion genomes, and observed
a linear relationship between running time and
number of genomes (supplementary material). We
observed a relationship suggesting each additional
genome added as input would require an additional
10.2s to complete and, more generally, a 53%
increase in running time for each additional fold
increase in input size.

Neptune may also be run as a parallel process
within a single-machine environment. When
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Rank Score Length Locus Information E. coli O157:H7
(bp) Sakai coordinates

1 1.00 1375 Shiga toxin 2924383 - 2925757
2 0.99 5433 urease gene cluster: ureA-G 1390114 - 1395545
3 0.98 3291 bacteriophage related, integrase and other 2593022 - 2596313
4 0.98 438 perC, transcriptional activator of EaeA/BfpA, partial 1183201 - 1183639
5 0.98 1223 phage tail length tape measure protein, partial 2170250 - 2171473
6 0.97 7697 hemolysin gene cluster: hylC, hylA, hylB, hylD 15716 - 23412 (pO157)
7 0.96 1260 colonization factor 1769157 - 1767898
8 0.96 962 hypothetical 2200204 - 2201165
9 0.96 495 hypothetical 2186614 - 2186120
10 0.96 796 phage origin, serine/threonine protein phosphatase 3488405 - 3489201
11 0.96 1364 hypothetical, colicin-like & small toxic polypeptide 1397029 - 1398393
12 0.96 987 hypothetical, putative membrane protein 3486570 - 3487557
13 0.95 916 putative serine acetlyltransferase of prophage 2605160 - 2606076
14 0.95 300 hypothetical, potential T3SS effector 2209466 - 2209765
15 0.95 1136 T3SS effector protein NleH 1804974 - 1806122

Table 4: A summary of Stx1-containing E. coli signatures generated by Neptune relative to a background
of non-toxigenic E. coli. The signatures were mapped to E. coli O157:H7 str. Sakai reference (NC 002695.1,
NC 002127.1, NC 002128.1) to infer annotations.

performing a similar scalability experiment on
a smaller real data set comprised of 112 L.
monocytogenes serotype 1/2a isolates and 38
serotype 4b isolates, run on a single compute
node with 48 cores and 80 GB of memory, we
observed a linear relationship between the number
of genomes and completion time (supplementary
material). We varied the size of the input data such
that runs maintained an approximate proportion
of 70-75% inclusion genomes and 25-30% exclusion
genomes. We observed a relationship suggesting
each additional genome added as input would
require an additional 7.9s to complete and, more
generally, a 36% increase in running time for each
additional fold increase in input size. The observed
difference between this experiment and the previous
can be partially attributed to the proportionally
smaller exclusion group, from which mutations
create more work for the algorithm than from
within the inclusion group.

We do not directly compare Neptune against
other software, because none of these software
are capable of identifying differentially abundant
genomic loci with sequence variation, while
permitting ad hoc input and a variable signature
locus size.

Limitations

Neptune’s signature extraction step avoids false
negatives at the expense of false positives. The
software attempts to locate signatures that may
not contain an abundance of exact matches. This
approach produces some false positives. However,
false positives are removed during signature
filtering and requires increased computational time.
As signatures are extracted from a reference,

repeated regions do not confound signature
discovery. However, if a repeated region is a true
signature, then Neptune will report each region as
a separate signature. In this circumstance, user
curation may be required.

Neptune cannot locate isolated SNVs and other
small mutations. Any region with a high degree
of similarity to the exclusion group will either
not produce candidate signatures or be removed
during filtering. Neptune is designed to locate
general-purpose signatures of arbitrary size (above
a minimum of the k -mer size) and does not
consider application-specific physical and chemical
properties of signatures. While Neptune is capable
of producing signatures as small as the k -mer
size, we observed that very short signatures (<
100 bases) may not contain any seed matches
with filtering targets when performing alignments
during the filtering process, thereby preventing
the signature from being evaluated correctly. We
recommend either using smaller seed sizes during
pairwise alignments, at the expense of significantly
increased computation time, or discretion when
evaluating very short signatures.

Finally, Neptune makes assumptions about
the probabilistic independence of bases and
SNV events; while these events do not occur
independently in nature, they allow for significant
mathematical simplification. Nonetheless, Neptune
is capable of producing highly sensitive and specific
signatures using these assumptions.

Revealing Biology

This study demonstrates that Neptune is a very
useful tool for the rapid characterization and
classification of pathogenic bacteria of public
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health significance, as it can efficiently discover
differential genomic signatures. Although both L.
monocytogenes 4b and 1/2a serotypes, belonging to
lineages I and II respectively, are associated with
human illness, lineage I strains are overrepresented
among human cases whereas lineage II isolates
are widespread in food-related, natural and farm
environments. Among the LiDS-NG project
isolates used in our study, 46% of 4b and 17%
of 1/2a serotype isolates had a clinical human
host origin. Among the signatures for serotype
1/2a, multiple PTS systems and ABC transport
systems were found (Table 2 and Supplementary
Table 1) which may be correlated to the fact that
the presence of a variety of PTS and transport
systems provides L. monocytogenes serotype 1/2a
with a competitive advantage to survive under
broad environmental conditions due to its ability
to utilize a variety of carbon sources. Among
the L. monocytogenes 4b serotype signatures
found were genes coding for cell-wall anchor
proteins, RHS protein known to be associated with
mediating intercellular competition and immunity
[12], and cell wall polysaccharides and teichoic
acid decoration enzymes were found (Table 3
and Supplementary Table 2). In keeping with
predilection of lineage I for human clinical disease,
such cell-surface components play a role in
bacterial-host interactions [4]. The potential
involvement of these genes in the virulence and
pathogenesis of serotype 4b should be an interesting
area of future inquiry.

Interestingly, two very large, but divergent
signature sequences corresponding to the 4b (rank
16; score 0.93; length 12685 nt) and 1/2a (rank
14; score 0.94; length 22937) inclusion groups were
found by Neptune (Supplementary Table 1 and 2).
These serotype-specific signature regions contained
non-homologous teichoic acid biosynthesis and
transport system genes at equivalent chromosomal
locations in the two serotype subgroupings. In
addition, another signature (rank 26; score 0.84;
length 6348 nt; Supplementary Table 2) spanning
7 genes corresponding to Listeria Pathogenicity
Island 3 (LIPI-3, or the listeriolysin S cluster [5])
was only identified in 4b isolates.

In a recent study by Maury et al., (2016)
a pattern correlation of gene families with
the infection/food ratio of isolates in Listeria
pangenome identified virulence associated
genes such as LIPI-3 and teichoic acid
biosynthesis-related gene clusters in serotype
4b strains to be strongly associated with infectious
potential at the population level. Analyzing
the same lineage I and II data set analyzed in
Maury et al., 2016, Neptune identified signatures
that overlapped with our prior, independently
generated and distinct genomes for lineage I and

II isolates (data not shown).

With the advent of genome-wide association
studies and their applications in bacteria to rapidly
scan genetic markers as the basis of bacterial
phenotypes such as host preference, antibiotic
resistance, and virulence across the complete sets
of genomes, Neptune offers to be a promising
tool to reveal discriminatory genetic markers and
associations to particular phenotypic traits. Hence,
by generating such a catalogue of differential loci,
Neptune is useful in identifying candidate regions
for further investigating the association of identified
regions with categorical phenotypes, biological
traits, or metadata, such as pathogen virulence or
persistence in niche environments.

Conclusion

Neptune allows one to efficiently and rapidly
identify genomic loci that are common to
one population and distinguishing them from
other populations. When applied to pathogens,
top-scoring signatures were specific to known
regions encoding mobile islands containing
pathogenicity-associated coding sequences. While
some signatures are reported as smaller, adjacent
signatures with intervening gaps, we demonstrated
that Neptune can locate signatures in both
simulated and biological data sets with high
sensitivity and specificity. Neptune provides
an array of gene candidates to investigate for
their possible role in pathogenesis and functional
genomics.

Although Neptune will be useful in broad
comparative applications, we anticipate it
will be particularly helpful in public health
scenarios, where rapid infectious agent screen
and characterization is crucial. Neptune may
be leveraged to reveal discriminatory signature
sequences to uniquely delineate one group of
organisms, such as isolates associated with a
disease cluster or event, from unrelated sporadic or
environmental microbes. Neptune’s computations
approach is well suited to comprehensive, ad
hoc comparisons. We conclude that Neptune
is a powerful and flexible tool for locating
signature regions with minimal prior knowledge
for wide-ranging applications of bacterial
characterization.

Availability

L. monocytogenes and E. coli data used in the
manuscript is stored under NCBI BioProject
PRJNA301341. Neptune is developed in Python
and the software requires a standard 64-bit Linux
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environment. The software is available at:
http://github.com/phac-nml/neptune
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Methods

Neptune uses the distinct k -mers found in each
inclusion and exclusion target to identify sequences
that are conserved within the inclusion group
and absent from the exclusion group. Neptune
evaluates all sequence, coding and non-coding, and
may therefore produce signatures that correspond
to intergenic regions or contain entire operons. The
k -mer generation step produces distinct k -mers
from all targets and aggregates this information,
reporting the number of inclusion and exclusion
targets that contain each k -mer. The signature
extraction step identifies candidate signatures from
one or more references, which are assumed to be
drawn from inclusion targets. Candidate signatures
are filtered by performing an analysis of signature
specificity using pairwise sequence alignments.
The remaining signatures are ranked by their
Neptune-defined sensitivity and specificity scores,
representing a measure of signature confidence.

We provide descriptions of the different stages
of signature discovery below and an overview
of the signature discovery process is found in
Figure 2. The majority of parameters within
Neptune are automatically calculated for every
reference. However, the user may specify any
of these parameters. A full description of the
mathematics used in the software is provided in
the supplementary materials. In our probabilistic
model, we assume that the probability of observing
any single nucleotide base in a sequence is equal
to and independent of all other positions and
the probability of all single nucleotide variant
(SNV) events (e.g. mutations, sequencing errors)
occurring is equal to and independent of all other
SNV events.

k-mer Generation

Neptune produces the distinct set of k -mers
for every inclusion and exclusion target and
aggregates these k -mers together before further
processing. The software is concerned only with
the existence of a k -mer within each target
and not with the number of times a k -mer is
repeated within a target. Neptune converts all
k -mers to the lexicographically smaller of either
the forward k -mer or its reverse complement.
This avoids maintaining both the forward and
reverse complement sequence [14]. The number
of possible k -mers is bound by the total length
of all targets. The k -mers of each target are
determined independently and, when possible, in
parallel. In order to facilitate parallelizable k -mer
aggregation, the k -mers for each target may be
organized into several output files. The k -mers
in each file are unique to one target (e.g., isolate

genome or sequence) and all share the same initial
sequence index. This degree of organization may
be specified by the user.

The k -mer length is automatically calculated
unless provided by the user. A summary of
recommended k -mer sizes for various genomes can
be found in Supplementary Table 1. We suggest
a size of k such that we do not expect to see
two arbitrary k -mers within the same target match
exactly. This recommendation is motivated by
wanting to generate distinct k -mer information,
thereby having matching k -mers most often be a
consequence of nucleotide homology. Let λ be
the most extreme GC-content of all targets and
ω be the size of the largest target in bases. The
probability of any two arbitrary k -mers, kX and
kY , matching exactly, P (kX = kY )A, where x 6= y,
is defined as follows:

P (kX = kY )A =

(
2

(
1− λ

2

)2

+ 2

(
λ

2

)2
)k

(1)

We use the probability of arbitrary k -mers
matching, P (kX = kY )A, to approximate the
probability of k -mers matching within a target,
P (kX = kY ). This is an approximation because
the probability of P (kX+1 = kY+1) is known to
not be independent of P (kX = kY ). However,
this approximation approaches equality as P (kX =
kY )A decreases, which is accomplished by selecting
a sufficiently large k, such that we do not expect to
see any arbitrary k -mer matches. We suggest using
a large enough k such that the expected number of
intra-target k -mer matches is as follows:

∑
x<y

P (kX = kY ) ≈(
ω − k + 1

2

)
·P (kX = kY )A < 0.05

(2)

The distinct sets of k -mers from all targets are
aggregated into a single file, which is used to
inform signature extraction. This process may be
performed in parallel by aggregating k -mers sharing
the same initial sequence index and concatenating
the aggregated files. Aggregation produces a
list of k -mers and two values (the number of
inclusion and exclusion targets containing the
k -mer, respectively). This information is used in
the signature extraction step to categorize some
k -mers as inclusion or exclusion k -mers.

Extraction

Signatures are extracted from one or more
references, which are drawn from all inclusion
targets, unless specified otherwise. However,
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Figure 2: An overview of Neptune’s signature discovery process for a single target. The first step involves
generating k -mers from all inclusion and exclusion targets. These k -mers are aggregated and provided
as input to signature extraction. Signature extraction produces candidate signatures, which are filtered
and then sorted by their sensitivity and specificity scores.

our probabilistic model assumes all references
are included as inclusion targets. In order to
identify candidate signatures, Neptune reduces the
effective search space of signatures by leveraging
the spatial sequencing information inherent within
the references. Neptune evaluates all k -mers in each
reference, which may be classified as inclusion or
exclusion k -mers. An inclusion k -mer is observed
in a sufficient number of inclusion targets and
not observed in a sufficient number of exclusion
targets. The sufficiency requirement is described
below. Inclusion and exclusion k -mers are used
to infer inclusion and exclusion sequence, with
signatures containing primarily inclusion sequence.
An inclusion k -mer may contain both inclusion
and exclusion sequence because, while they may
contain exclusion sequence, k -mers that overlap
inclusion and exclusion sequence will often be
unique to the inclusion group. An exclusion
k -mer is, by default, any k -mer that has been
observed at least once in any exclusion target.
However, in some applications it may be desirable
to relax this stringency. For example, leniency may
be appropriate when the inclusion and exclusion
groups are not fully understood. This may be the
case when meta data is incomplete or unreliable.
An exclusion k -mer should, by design, not contain
any inclusion sequence. Neptune outputs several
“candidate signatures”, which begin with the
last base position of the first inclusion k -mer,
contain an allowable number of k -mer gaps and
no exclusion k -mers, and end with the first base
position of the last inclusion k -mer (Figure 3).
This process is conceptually similar to taking
the intersection of inclusion k -mers and allowable

k -mer gaps. Furthermore, it avoids generating
a candidate containing exclusion sequence found
in inclusion k -mers that overlap inclusion and
exclusion sequence regions.

An inclusion k -mer is considered sufficiently
represented when it is observed in a number
of targets exceeding a minimum threshold. We
assume that if there is a signature present in all
inclusion targets, then the signature will correspond
to homologous sequences in all these targets
and these sequences will produce exact matching
k -mers with some probability. We start with the
probability that two of these homologous bases, X
and Y , match is:

P (X = Y )H =

(1− ε)2 + (ε)2 · P (XM = YM )H
(3)

where ε is the probability that two homologous
bases do not match exactly, and P (XM = YM )H
is the probability that two homologous bases both
mutate to the same base. The default probability
of ε is 0.01. We assume that when the homologous
bases do not match, the observed base is dependent
on the GC-content of the environment. Let λ be the
GC-content of the environment. The probability of
P (XM = YM )H is defined as follows:

P (XM = YM )H =(
2

(
λ

λ+ 1

)2

+

(
1− λ
λ+ 1

)2
)

(1− λ)

+

(
2

(
1− λ
2− λ

)2

+

(
λ

2− λ

)2
)

(λ)

(4)

This probability depends significantly on
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Figure 3: An overview of Neptune’s signature extraction process. The reference is decomposed into
its composite k -mers. These k -mers may be classified as either inclusion or exclusion and are used to
infer inclusion and exclusion sequence in the reference. A signature is constructed from inclusion k -mers
containing sufficiently small k -mer gaps and no exclusion k -mers.

GC-content of the environment. We assume
that the probability of each base matching is
independent. Therefore, the probability that two
homologous k -mers, kX and kY , match:

P (kX = kY )H = (Pr(X = Y )H)k (5)

We model the process of homologous k -mer
matches with a binomial distribution. If we are
observing a true signature region in a reference,
we expect that corresponding homologous k -mers
exist in all inclusion targets and infer this homology
from aggregated k -mer information. An observed
reference k -mer will exactly match a corresponding
homologous k -mer in another inclusion target with
a probability of p = P (kX = kY )H and not match
with a probability of q = 1 − p. The expected
number of exact k -mer matches with a reference
k -mer will be µ = (n−1) ·p and the variance will be
σ2 = (n−1)·p·q, where n is the number of inclusion
targets. We require n − 1 because the reference
is an inclusion target and its k -mers will exactly
match themselves. However, we compensate
for this match in our expectation calculation.
We assume the probability of each k -mer match
is independent and that k -mer matches are a
consequence of homology. When the number of

inclusion targets and the probability of homologous
k -mers exactly matching are together sufficiently
large, the binomial distribution is approximately
normal. Let α be our statistical confidence and
Φ−1(α) be the probit function. The minimum
number of inclusion targets containing a k -mer,
∧in, required for a reference k -mer to be considered
an inclusion k -mer is defined as follows:

∧in = 1 + µ− Φ−1(α)σ (6)

The ∧in parameter is automatically calculated
unless provided by the user and will inform
candidate signature extraction. However, there
may be mismatches in the reference, which exclude
it from the largest homologous k -mer matching
group. We accommodate for this possibility by
allowing k -mer gaps in our extraction process.
We model the problem of maximum k -mer gap
size between exact matching inclusion k -mers as
recurrence times of success runs in Bernoulli trials.
The mean and variance of the distribution of the
recurrence times of k successes in Bernoulli trials is
described in Feller 1960 [9]:

µ =
1− pk

q · pk
(7)
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σ2 =
1

(q · pk)2
− 2k + 1

q · pk
− p

q2
(8)

This distribution captures how many bases we
expect to observe before we see another homologous
k -mer match. The probability of a success is
defined at the base level as p = P (X = Y )H and
the probability of failure as q = (1 − p). This
distribution may not be normal for a small number
of observations. However, we can use Chebyshev’s
Inequality to make lower-bound claims about the
distribution:

P (|X − µ| ≥ δσ) ≤ 1

δ2
(9)

where δ is the number of standard deviations, σ,
from the mean, µ. Let P (|X − µ| ≥ δσ) be our
statistical confidence, α. The maximum allowable
k -mer gap size, ∨gap, is calculated as follows:

∨gap = µ+

√
1

1− α
· σ (10)

The ∨gap parameter is automatically calculated
unless specified. Candidate signatures are
terminated when either no additional inclusion
k -mers are located within the maximum gap size,
∨gap, or an exclusion k -mer is identified. In
both cases, the candidate signature ends with the
last inclusion k -mer match. The consequence
of terminating a signature early is that a large,
contiguous signature may be reported as multiple
smaller signatures. We require the minimum
signature size, by default, to be four times the
size of k. However, for some applications, such
as designing assay targets, it may be desirable to
use a smaller or larger minimum signature size.
Signatures cannot be shorter than k bases. We
found that smaller signatures were more sensitive
to the seed size used in filtering alignments. There
is no maximum signature size. As a consequence of
Neptune’s signature extraction process, signatures
extracted from the same target may never overlap
each other.

Filtering

The candidate signatures produced will be
relatively sensitive, but not necessarily specific,
because signature extraction is done using exact
k -mer matches. The candidate signatures are
guaranteed to contain no more exact matches with
any exclusion k -mer than was specified in advanced
by the user. However, there may exist inexact
matches within exclusion targets. Neptune uses
BLAST [1] to locate signatures that align with
any exclusion target and, by default, removes
any signature that shares 50% identity with any

exclusion target aligning to at least 50% of the
signature, anywhere along the signature. This
process is done to avoid investigating signatures
that are not highly discriminatory. The remaining
signatures are considered filtered signatures and
are believed to be sensitive and specific, within
the context of the relative uniqueness of the input
inclusion and exclusion groups, and the parameters
supplied for target identification.

Scoring

Signatures are assigned an overall score
corresponding to their highest-scoring BLAST [1]
alignments with all inclusion and exclusion targets.
This score is the sum of a positive inclusion
component and a negative exclusion component,
which are analogous to sensitivity and specificity,
respectively, with respect to the input data. Let
|A(S, Ii)| be the length of the highest-scoring
aligned region between a signature, S, and
an inclusion target, Ii. Let |S| be the length
of signature S, PI(S, Ii) the percent identity
(identities divided by the alignment length)
between the aligned region of S and Ii, and |I|
be the number inclusion targets. The negative
exclusion component is similarly defined. The
signature score, score(S), is calculated as follows:

score(S) =

|I|∑
i=0

|A(S, Ii)| · PI(S, Ii)

|S||I|

−
|E|∑
i=0

|A(S,Ei)| · PI(S,Ei)

|S||E|

(11)

This score is maximized when all inclusion targets
contain a region exactly matching the entire
signature and there exists no exclusion targets that
match the signature. Signatures are sorted based
on their scores with highest-ranking signatures
appearing first in the output.

Output

Neptune produces a list of candidate, filtered,
and sorted signatures for all references. The
candidate signatures are guaranteed to contain, by
default, no exact matches with any exclusion k -mer.
However, there may still remain potential inexact
matches within exclusion targets. The filtered
signatures contain no signatures with significant
sequence similarity to any exclusion target. Sorted
signatures are filtered signatures appearing in
descending order of their signature scores. A
consolidated signature file is additionally provided
as part of Neptune’s output. This file contains
a consolidated list of the top-scoring signatures
produced from all reference targets, such that
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homologous signatures are reported only once.
However, because this file is constructed in a greedy
manner, it is possible for signatures within this
file to overlap each other. To identify redundancy
across the reference targets, we recommend
evaluating the signatures identified from each
individual reference target in combination with this
consolidated file when evaluating signatures.
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