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Abstract  
 
Despite the central role of alternative sigma factors in bacterial stress response and 

virulence their regulation remains poorly understood. Here we investigate one of best-

studied examples of alternative sigma factors: the σB network that controls the general 

stress response of Bacillus subtilis to uncover widely relevant general design principles  

that describe the structure-function relationship of alternative sigma factor regulatory 

networks. We show that the relative stoichiometry of the synthesis rates of σB, its anti-

sigma factor RsbW and the anti-anti-sigma factor RsbV, plays a critical role in shaping 

the network behavior by forcing the σB network to function as an ultrasensitive negative 

feedback loop. We further demonstrate how this type of negative feedback regulation 

insulates alternative sigma factor activity from competition with the housekeeping sigma 

factor for RNA polymerase and allows multiple stress sigma factors to function 

simultaneously with little competitive interference. 
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Introduction 

 
Bacteria survive in stressful environmental conditions by inducing dramatic changes in 

their gene expression patterns (1, 2). For a variety of stresses, these global changes in 

gene expression are brought about by the activation of alternative sigma factors that 

bind the RNA polymerase core enzyme and direct it towards the appropriate stress 

response genes (3). The ability of these alternative sigma factors to capture core-RNA 

polymerase and direct the expression of their stress regulon is determined by their free 

concentrations and affinity for core-RNA polymerase (4). Consequently, to ensure that 

these sigma factors are only active under specific environmental conditions, bacteria 

have evolved regulatory systems to control their production, activity and availability (3, 

5). These regulatory networks can be highly complex but frequently share features such 

as anti-sigma factors, partner switching mechanisms and proteolytic activation (5). The 

complexity of these networks has prevented the development of a clear mechanistic 

understanding of their structure-function relationship. In this study, we focus on one of 

the best studied examples of alternative sigma factors, the general stress-response 

regulating σB in Bacillus subtilis (6) to understand how the structure of the sigma factor 

regulatory networks is related to their functional response. 

 

The σB-mediated response is triggered by diverse energy and environmental stress 

signals and activates expression of a broad array of genes needed for cell survival in 

these conditions (6). σB activity is tightly regulated by a partner-switching network (Fig. 

1A) comprising σB, its antagonist anti-sigma factor RsbW, and anti-anti-sigma factor 

RsbV. In the absence of stress, RsbW dimer (RsbW2) binds to σB and prevents its 

association with RNA polymerase thereby turning OFF the σB regulon. Under these 

conditions RsbW2 inactivates most of RsbV by using its kinase activity to phosphorylate 

RsbV. The phosphorylated form of RsbV (RsbV~P) has a low affinity for RsbW2 and 

cannot interact with it effectively (7). However, in the presence of stress, RsbV~P is 

dephosphorylated by one or both of the dedicated phosphatases, RsbQP for energy 

stress and RsbTU for environmental stress (8-11). Dephosphorylated RsbV attacks the 

σB-RsbW2 complex to induce σB release, thereby turning ON the σB regulon (12). 

Notably, the genes encoding σB and its regulators lie within a σB-controlled operon (13), 

thereby resulting in positive and negative feedback loops.  

 

Recently, it was shown that under energy stress σB is activated in a stochastic series of 

transient pulses and increasing stress resulted in higher pulse frequencies (14). It has 

also been shown that increase in environmental stressor such as ethanol leads to a 

single σB pulse  with an amplitude that is sensitive to the rate of stressor increase (15). 

While it is clear that the pulsatile activation of σB is rooted in the complex architecture of 

its regulatory network (Fig. 1A) its mechanism is not fully understood. Previous 
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mathematical models of the σB network either did not produce the pulsatile response 

(16) or made ad hoc simplifications to the network (14) that are somewhat inconsistent 

with experimentally observed details. As a result, it remains unclear which design 

features of the σB network enable its functional properties.   

 

To address these issues we develop a detailed mathematical model of the σB network 

and examine its dynamics to understand the mechanistic principles underlying the 

pulsatile response. By decoupling the post-translational and transcriptional components 

of the network we show that an ultrasensitive negative feedback between the two is the 

basis for σB pulsing. Moreover we find that the relative stoichiometry of σB, RsbW and 

RsbV synthesis rates plays a critical role in determining the qualitative nature of the σB 

response. We also use our model, together with experimental data, to explain how the 

σB network is able to encode the rate of stress increase and the size of stochastic bursts 

of stress phosphatase into the amplitudes of σB pulses. 

 

 
 

Figure 1. σB general stress response network. A. Network diagram of the σB general stress 

response. Energy and environmental stresses activate the stress-sensing phosphatases RsbQP 

(QP) and RsbTU (TU) which dephosphorylate RsbV which in turn activates σB by releasing it 

from the σB-RsbW2 complex. B. Dynamics of free σB and BT in response to a step-increase in 

phosphatase concentration. C. Representation of the σB pulsatile trajectory in (B) in the σB-BT 

phase plane (green curve). Blue and cyan curves show the decoupled post-translational 

response at high and low phosphatase respectively. The black curve shows the transcriptional 

response. D. (λW, λV) stoichiometry parameter space divided into three Regions (I, II, III) 

corresponding to differences in sign of the σB network feedback and response. Positive 

feedback in Region I, negative feedback in Region II (ultrasensitive in blue sub-region) and non-

responsive in Region III (free σB is always low). Red circles mark the selected values of (λW, λV) 
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used in panels E-G. E-G. Simplified view of the decoupled post-translational and transcriptional 

components of the σB network in Regions I-III. Blue and black curves show the post-

translational and transcriptional responses respectively. Gray circles mark the steady states of 

the full system. Dashed orange curves show linear asymptotic approximations of the post-

translational response (see text). The dashed vertical line in (G) shows the critical level of 

operon expression beyond which free σB decreases as a function of BT.  

 

 

We further develop this model to investigate how the network functions in the context of 

other sigma factors. As in many other bacteria, σB is one of the many sigma factors that 

complex with RNA-polymerase core that is present in limited amounts (3, 17). 

Therefore, when induced these alternative sigma factors compete with one another and 

the housekeeping sigma factor σA for RNA polymerase. We use our model to investigate 

how the design of this network enables it to function even in the presence of competition 

from σA which has a significantly higher affinity for RNA polymerase (18). Lastly, we 

investigate how multiple alternative sigma factors cross-talk and compete when cells 

are exposed to multiple stresses simultaneously. Using our model we identify design 

features that are ubiquitous in stress sigma factor regulation and critical to bacterial 

survival under diverse types of stresses. 

 

Results 

 

Biochemically accurate model of σB pulsing  

 

In a recent study, Locke et. al. (14) demonstrated that a step-increase in energy stress 

results in pulsatile activation of σB. The study also proposed a minimal mathematical 

model of the network which reproduced pulsing in σB. However, this model included 

several ad hoc assumptions: (i) Phosphorylation and dephosphorylation reactions were 

assumed to follow Michaelis-Menten kinetics despite the fact that kinase (RsbW) and 

phosphatase concentrations are known to be comparable to substrate (RsbV) 

concentrations (19), (ii) σB and RsbV are represented as a single lumped variable rather 

than separate species and, (iii) partner-switching, and the formation and dissociation of 

various RsbW2 complexes were not included explicitly. Though this minimal model 

produces pulses resembling their experimental observations, it does not depict a 

biochemically accurate picture of the σB network. Consequently it cannot be used to 

uncover the design features that enable σB pulsing. 

 

To understand the σB network response we built on our earlier study (16) to develop a 

detailed mathematical model that explicitly includes all known molecular interactions in 

the network. We note that we made one significant change to the model discussed in 
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(16). The model in (16) assumed that the synthesis rates for total σB and its network 

partners (RsbW and RsbV) follow their stoichiometric binding ratios (i.e. WT/BT
 = λW = 2 

and VT/BT
 = λV = 2). In contrast, here following the experimental measurements of (19), 

we assumed that σB, RsbW and RsbV are produced in non-stoichiometric ratios (λW = 4 

and λV = 4.5). Simulations of this detailed model showed that it is able to reproduce the 

experimentally observed response. Specifically, we found that a step-increase in 

phosphatase concentration led to an increase in free σB followed by an increase in the 

total σB concentration (BT) (Fig. 1B). Thereafter free σB levels decreased thus exhibiting 

the pulsatile response observed in the experiments of Locke et. al. (14). 

 

To understand this pulsatile response, we decouple the network’s transcriptional and 

post-translational responses in our model. By varying the σB operon transcription rate, 

while keeping the ratio of operon component synthesis rates (λW, λV) fixed we were able 

to calculate the post-translational response of the σB network: σB = FP(BT, PT). This 

function describes how the concentration of free σB varies as a function of total σB 

concentration (BT) and total phosphatase concentration (PT). In parallel, we calculated 

the transcriptional response BT = FT(σB), describing how changes in free σB 

concentration affect the total σB concentrations (RsbW and RsbV concentrations are 

proportional to BT). In this analysis framework, the steady state of the complete closed 

loop network can be determined by simultaneously solving the post-translational and 

transcriptional functions, σB = FP(BT, PT) and BT = FT(σB), for σB and BT for each 

phosphatase concentration PT. PT controls this steady state via its role in the post-

translational response function FP(BT, PT). 

 

The effective sign of the feedback in the σB network is given by the product of the 

sensitivities (∂FT/∂σB)*(∂FP/∂BT). Since sigma factors function as activators of 

transcription, FT(σB) is a monotonically increasing function of σB (i.e. ∂FT/∂σB > 0). 

Consequently, the sign of the feedback in the σB network is given by the sign of the 

sensitivity of the post-translational response to BT (i.e. ∂FP/∂BT). Our results show that 

for the chosen parameters FP is a non-monotonic function of BT (Fig. 1C). At low BT, 

free σB increases as a function of BT because RsbW is sequestered in the W2V2 

complex. However at higher BT, the kinase flux dominates the phosphatase flux and the 

anti-sigma factor dimer RsbW2 sequesters σB in the W2σ
B complex such that free σB 

decreases ultrasensitively as a function of BT. In this regime the feedback loop between 

σB amount and activity is negative. Notably, negative feedback is one of the few network 

motifs that is known to be capable of producing adaption-like pulsatile responses (20). 

This explains how a step-increase in the phosphatase concentration in our model 

simulations leads to a σB pulse. Plotting the trajectory of the σB pulse on the (σB, BT) 

plane over the post-translational and transcriptional responses (Fig. 1C) illustrates the 

mechanism driving this pulsatile response. Starting at the initial steady state, an 
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increase in phosphatase shifts the ultrasensitive post-translational response so that free 

σB is rapidly released from the W2σ
B complex whereas BT remains relatively unchanged. 

Once the free σB level matches the post-translational response it stops increasing. The 

increase in σB operon transcription eventually causes accumulation of BT (and the anti-

sigma factor RsbW). This in turn forces the σB level to decrease, following the post-

translational response curve, to the new steady state which has very little free σB 

thereby completing the σB pulse.  

 

These new insights into the pulsing mechanism facilitates the identification of critical 

design features required for pulsing. For example, these results explain why pulsing 

does not occur in strains in which σB operon is transcribed constitutively (14). In this 

case, the σB network lacks the negative feedback necessary to produce a pulsatile 

response. A step-increase in phosphatase still leads to an increase in free σB due to the 

change in the post-translational response, however, this not followed by an increase in 

BT (Fig. S1A). Consequently, an increase in phosphatase results in a monotonic 

increase in free σB rather than a pulse (Fig. S1A). 

 

Our decoupling method also sheds light on the dependence of σB pulse amplitude on 

the phosphatase level and transcriptional and post-translational model parameters. 

Specifically, we found that σB pulse amplitude is a threshold-linear function of the 

phosphatase concentration (Fig. S2A). Below the phosphatase threshold, the post-

translational response σB=FP(BT, PT)~=0 and is insensitive to BT
 (Fig. S2B). Thus, the 

full system lacks the negative feedback and as a result σB does not pulse. Above the 

threshold, σB pulse amplitudes increase linearly as a function of phosphatase 

concentration. Our results further show that both the phosphatase threshold and 

sensitivity of pulse amplitudes to above-threshold phosphatase depend on post-

translational parameters that control the ultrasensitivity of the post-translational 

response, specifically the ratio of the phosphatase and kinase catalytic rate constants 

(kp/kk) (Fig. S2B) and binding affinity of σB and RsbV for the RsbW2 dimer (Fig. S2C).  

 

σB response dynamics depend on operon relative stoichiometry 

 

Next we further investigated the post-translational response of the σB network and found 

that the ratio of the synthesis rates of operon components (λW= WT/BT, λV= VT/BT)  plays 

a critical role in determining both qualitative and quantitative features of σB = FP(BT,PT). 

As shown in Fig. 1D, the (λW, λV) parameter space can be divided into three regions 

based on qualitative differences in the post-translational response.  

 

In Region I, the amount of RsbW, irrespective of PT, is insufficient to bind all of its 

partners. Consequently, a fraction of BT always exists as free σB. As a result, sensitivity 
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of free σB concentrations to BT is positive (dFP/dBT > 0) for all phosphatase 

concentrations. In contrast, in Region II, whether the amount of RsbW is sufficient to 

bind all of its partners depends on how much RsbV is in its inactive phosphorylated form 

RsbV~P (VP). As a result, for this region, the ratio of total kinase WT (=λW BT) and total 

phosphatase PT determines the post-translational dependence of free σB concentrations 

to BT. At low WT/PT, V is unphosphorylated and free σB concentrations increases as a 

function of BT (dFP/dBT > 0), but at high WT/PT, V is mostly in its phosphorylated form 

and free σB concentrations decreases as a function of BT (dFP/dBT < 0). Region III is the 

opposite of Region I in that the amount of RsbW, is more than sufficient to bind all of its 

partners, even when all V is unphosphorylated. Consequently, irrespective of PT levels, 

very little σB is free and its level is insensitive to changes in BT (dFP/dBT ~ 0). Figures 

1E-G illustrate the different post-translational responses in the three regions for three 

selected combinations (red circles in Figure 1D) of stoichiometric ratios (λW, λV). 

 

The boundaries of these three regions and the post-translational response within them 

can be clearly determined if σB and its partners bind strongly to each other. Since this is 

indeed the case for the σB network, we can assume that all species in the network exist 

in their respective complexed forms. Using this assumption we found that the post-

translational response of the network is defined by critical level of kinase W0 (=2kpPT/kk). 

Intuitively, W0 corresponds to the concentration of RsbW at which maximal kinase flux is 

equal maximal phosphatase flux and thus it is a function of phosphatase level and the 

catalytic rate constants of the kinase (kk) and phosphatase (kp) catalytic steps. When 

total kinase level is below this critical threshold (WT<W0(PT)), phosphatase flux 

dominates and V exists mostly in its unphosphorylated form. In contrast, for WT>W0(PT), 

kinase flux starts dominating and therefore VP accumulates in a kinase-concentration 

dependent manner. Taking this into account, it can be shown that this post-translational 

dependence of free σB on BT (proportional to total kinase WT) can be approximately 

described by the following equations (see Supplementary Text for derivation): 

  

 

   
 

 
T V W T 0 T W

T 0 T W0 T T W V deg k

B
B 1 + (λ   λ ) / 2 B < W P / λ

=
B W P / λB P B λ / 2 1  λ k / k   

σ



  

 

 

Where kdeg represents the rate constant for degradation (<<kk). Note that this equation 

provides a close approximation for the post-translational response of the σB network in 

different regions of the (λW, λV) parameter space (Fig. 1EF, dashed lines). Further this 

asymptotic description of the post-translational response can identify the boundaries of 

Regions I-III. Specifically we found that dσB/dBT is always positive for (λW <= 2 + 

λVkdeg/kk) – which therefore defines Region I. Further for (2 + λVkdeg/kk < λW < λV + 2), the 
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sign of dσB/dBT depends on PT, which is characteristic of Region II. Finally Region III is 

defined by λW > λV + 2, where RsbW exceeds all of its partners and σB/BT~0. 

 

Notably, since σB always increases as a function of BT in Region I and since σB 

transcriptionally activates BT production, a positive feedback exists in the σB network in 

this region. Similarly since (dFP/dBT ~ 0), in Region III the network is non-responsive in 

this Region. As a result, step-increases in phosphatase concentration in Regions I and 

III of the (λW, λV) parameter space do not produce σB pulse (Fig. S1BC). This absence 

of pulsing can be explained by the lack of negative feedback in these regions. Thus our 

model shows that the relative stoichiometry of σB operon expression rates and post-

translational sensitivity of σB to operon expression levels play a critical role in 

determining the qualitative nature of the σB response. In the following sections, we used 

our model to further investigate the design-function relationship of the σB network. 

 

Under energy stress conditions σB network encodes phosphatase burst size into 

pulse amplitudes 

 

Thus far we have shown how the σB network responds to a step-increase in 

phosphatase by producing a single pulse of activity. However, in a recent study Locke 

et. al. (14) have shown that an increase in energy stress leads to a sustained response 

with a series of stochastic pulses in σB activity. This study further showed that this 

sustained pulsing response is driven by noisy fluctuations in level of energy-stress-

specific phosphatase RsbQP. While the mean level of RsbQP level is regulated 

transcriptionally by energy stress (9, 14), it’s concentration in single cells can be noisy 

and fluctuate due to the stochasticity of gene expression. To determine if our model 

could explain this response to stochastic fluctuations in RsbQP, we modified our model 

to include noise in the concentration of this phosphatase. 

 

Based on previous theoretical (21, 22) and experimental (23) studies we assume that 

this fluctuating phosphatase level follows a gamma distribution which is described by 

two parameters - burst size (b, average number of molecules produced per burst) and 

burst frequency (a, number of bursts per cell cycle). The mean phosphatase in this case 

is the product of burst size and burst frequency (<PT> = ab). Thus, stress can increase 

mean phosphatase by either changing burst size or burst frequency.  

 

From the results of (14) it is unclear whether the increase in phosphatase at high stress 

is the result of increased mean burst size or burst frequency. First, we performed 

stochastic simulations in which mean phosphatase concentration was varied by 

changing burst size. These simulations showed that it is able to reproduce all the 

experimentally-observed features of the σB pulsatile response. Specifically our results 
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show that stochastic bursts in stress phosphatase levels lead to pulses of σB activity 

(Fig. 2A). Moreover, consistent with the experimental observations of (14), our model 

showed that the amplitude of σB pulses is a linear function of the stress phosphatase 

level (Fig. 2B). Finally we found that stress-mediated increases in phosphatase 

concentration lead to an increase in the frequency of  σB pulsing (Fig. 2C) and an 

ultrasensitive increase in the level of σB target expression (Fig. 2D). 

 

 
 

Figure 2. Pulsatile response of the σB network to stochastic phosphatase bursts during 

energy stress. A. Simulations of the detailed σB network model show that stochastic bursts in 

energy stress-sensing phosphatases RsbQP levels lead to pulses of σB target promoter activity. 

Light and dark green curves show sample trajectories from stochastic simulation at high and low 

stress respectively. B. σB pulse amplitudes increase linearly as a function of mean phosphatase 

level. Green circles and errorbars show mean and standard deviations calculated from 

stochastic simulations. Black line shows a linear fit. C. σB pulse frequency increases 

ultrasensitively as a function of mean phosphatase level. Green circles show the mean pulse 

frequency calculated from stochastic simulations. Black curve shows a Hill-equation fit with 

nHill=5.6. D. Mean σB target expression increases ultrasensitively as a function of mean 

phosphatase level. Green curves show the mean σB target expression calculated from 

stochastic simulations. Black curve shows a Hill-equation fit with nHill = 2. 

 

Stochastic simulations of the σB network where mean phosphatase concentration was 

varied by changing burst frequency also led to an increase in σB pulsing. A key 

difference was that σB pulse amplitude increases ~5-fold for burst size modulation (Fig. 

2B), whereas it remains constant for burst frequency modulation (Fig. S3A). Additionally, 

we found that in the case of burst size the increase in σB pulse frequency is non-linear, 

whereas in the case of burst frequency the increase is linear (compare Figs. 2C and 

S3B). Both burst size and burst frequency modulation led to a non-linear increase in the 

level of σB target expression (Figs. 2D and S3C). Notably the experimental observations 

reported in (14) show that σB pulse amplitude does increase (~3-fold) with an increase 

in energy stress thus suggesting that increase in phosphatase concentration at high 

stress is primarily the result of increase in burst size. 
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To further reinforce the role of mean burst size modulation in controlling the σB pulse 

response we next examined the cumulative histograms of pulse amplitudes at different 

phosphatase concentrations. These histograms carry different signatures for burst size 

or burst frequency encoding. Our results show that the distribution of pulse amplitudes 

is unchanged with increase in burst frequency (Fig. S3D). This is because the 

distribution of phosphatase burst sizes does not change when burst frequency is 

increased. In contrast, if phosphatase levels are controlled by changing mean burst size 

then the distribution of phosphatase burst size changes and so does the distribution of 

pulse amplitudes (Fig. S3E). Consequently, the normalized cumulative histograms of 

pulse amplitudes overlap for burst frequency encoding but not for burst size encoding. 

Applying this test to the data from (14), we found that in fact the normalized cumulative 

pulse amplitudes histograms do not overlap (Fig. S3F). These results confirm that the 

σB network adopts the mean burst size modulation strategy and encodes phosphatase 

burst size into σB pulse amplitudes. 

 

 

σB network encodes rate of environmental stress increase into pulse amplitudes 

 

We also used our model to study the response of the σB network to changes in 

environmental stress. Unlike the energy stress phosphatase, the environmental stress 

phosphatase RsbU is regulated post-translationally activated by binding of RsbT (24-

26). Under unstressed conditions, RsbT is trapped by its negative regulators but it is 

released upon stress. Consequently, the concentration of RsbTU complex is tightly 

controlled on posttranslational level and therefore expected to be relatively insensitive to 

the effects stochastic gene expression fluctuations but depend on the level of 

environmental stress. As a result, step-up increases in environmental stress agents like 

ethanol produces rapid increase in RsbTU and result in only a single pulse of σB activity 

(15). However it has been shown that for gradual increases in stress, σB pulse 

amplitude depends on the rate of stress increase (15). To explain this response, we 

modeled gradual stress with ramped increase in RsbTU complex concentration (Fig. 

3A). Our simulations showed that the detailed model is indeed able to capture the effect 

of rate of stress increase on σB pulse amplitudes. Specifically for a fixed RsbTU 

complex increase, the pulse amplitudes decrease non-linearly as a function of duration 

of the phosphatase ramp (Fig. 3B, E).  
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Figure 3. Rate sensitivity of the σB pulsatile response to environmental stress. A. Ramped 

increases in RsbTU complex concentration used as model inputs for σB network to simulate 

different rates of stress increase. B. σB pulse amplitudes in the wildtype model (kdeg = 0.72 hr-1) 

resulting from the ramped increases in phosphatase concentration shown in (A). Note that the 

pulse amplitude decreases as phosphatase ramp durations increase. C,D. σB pulse amplitudes 

resulting from the ramped increase in phosphatase concentration shown in (C) for various 

degradation/dilution rates (D). Note that the pulse amplitudes decrease as degradation/dilution 

rates (kdeg) increase. E. Non-linear dependence σB pulse amplitudes on phosphatase ramp 

duration for various values of kdeg. The half-maximal constant of this dependence, Kramp 

increases as kdeg decreases. Circles and solid curves represent simulation results and Hill-

equation fits respectively. Colors represent different kdeg values as in (D). F. Kramp, the half-

maximal constant of the non-linear dependence of amplitudes on ramp durations, as a function 

of kdeg. 

 

We hypothesized that this ramp rate encoding is the result of the timescale separation 

between the fast post-translational and the slow transcriptional responses of the σB 

network. During the pulsed σB activation, post-translational response is rate-limited by 

the phosphatase ramp. In contrast, the transcriptional response is slow and its rate is 

set by the degradation rate of σB operon proteins. For a step-increase in phosphatase 

the fast post-translational response ensures that σB reaches its post-translational steady 

state before the slow increase in RsbW sequesters σB and turn off the pulse (Fig. 3AB). 

However, for a ramped increase in phosphatase the post-translational increase in σB is 

limited by the ramp rate of phosphatase increase which allows RsbW to catch up earlier 

and terminate the σB pulse thereby decreasing the pulse amplitude. To test this, we 
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varied the degradation rate and proportionally changed the rate of transcription of the σB 

operon to ensure that the total concentrations of σB, RsbW and RsbV are kept fixed 

(Fig. 3CD). Our simulations showed that the dependence of pulse amplitudes on ramp 

duration was indeed sensitive to the degradation rate (Fig. 3EF). This suggests that the 

timescale separation between the post-translational and transcriptional responses is in 

fact the basis of ramp rate encoding into pulse amplitudes.  

 

The design of the σB network enables it to compete with σA for RNA polymerase 

 

The results thus far indicate that σB network functions in the negative feedback regime 

where increase in the operon expression decreases σB activity. Negative feedback 

loops have been shown to increase the robustness of the system to perturbations. We 

therefore decided to investigate how the σB network design affects its performance 

when there is competition for RNA polymerase from other sigma factors like the 

housekeeping sigma factor σA. Since σA has a much higher affinity for RNA polymerase 

(18), a small increase in σA can dramatically increase the amount of σB necessary to 

activate the transcription of the σB regulon. Thus, changes in σA can alter the input-

output relationship of a stress-response sigma factor like σB (Fig. S4AB) and thereby 

adversely affect the survival of cells under stress. 

 

To understand how the σB network handles competition for RNA polymerase, we 

expanded our model to explicitly include σA, RNA polymerase (RNApol) and σ–RNApol 

complexes (Fig. 4A). Since post-translational reactions only depend on the 

concentrations of σB operon components and phosphatase, inclusion of σA did not 

change the post-translational function relating free σB to BT and PT. In contrast, looking 

at the transcription function, our model showed that an increase in σA decreased the 

‘effective affinity’ of σB for RNApol and as a result, i.e. higher levels of free σB are 

necessary to achieve the same production rate of BT or σB target genes.  
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Figure 4. Negative feedback insulates the σB response from competition with 

houskeeping sigma factor σA. A. Simplified network diagrams of stress sigma factor σB 

competing with housekeeping sigma factor σA for RNA polymerase. In all cases, a σB 

phosphatase controls the stress-signal driven activation of σB. B. Trajectories of free σB 

response to stochastic phosphatase input for both networks at two different levels of σA (σA = 

9µM-low competition for RNA polymerase; σA = 12µM-high competition for RNA polymerase). C. 

Output trajectories of σB target promoter activity in response to stochastic phosphatase input for 

all three networks at two different levels of σA. D, E. Mean free σB concentration (D) and mean 

σB target promoter activity (E) as a function of σA for both networks at fixed mean phosphatase 

(mean PT =  0.5 µM). Gray vertical line shows the total RNA polymerase level which was fixed at 

10 µM.  

 

 

Next we examined the full model response, including both the transcriptional and post-

translational components to changes in σA in the presence of energy stress signal, i.e. 

stochastically fluctuating RsbQP phosphatase levels. Our simulations showed that 

phosphatase bursts lead to pulses of free σB and σB target promoter activity (Fig. 4BC) 

similar to the results in Fig. 2. The pulsatile σB response is present since the full system 

still includes a negative interaction between σB and BT (Fig. 4A). Notably our results also 
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showed that the pulse amplitudes of σB target promoter activity are not affected by 

~30% increase in σA (Fig. 4C).  

 

The surprising insensitivity of the phosphatase-σB target dose-response to RNApol 

competition is the result of the ultrasensitive negative feedback between σB and BT. Due 

to the ultrasensitivity of this feedback, a small decrease in BT resulting from the increase 

in σA causes a large increase in σB pulse amplitude (Fig. 4B, D). This increased 

amplitude compensates for the increased competition for RNApol and insulates the 

network from perturbations (Fig. 4DE).  

 

To test the importance of the negative feedback in insulating the network we compared 

the response of the wildtype network to a mutant network wherein the σB operon is 

constitutive rather than σB dependent (Fig. 4A). Consequently this network lacks any 

feedback between σB and BT. As shown in Fig. 4BD, the free σB response of the no 

feedback network response does not pulse and an increase in σA did not affect this 

response. This is expected since BT and thus free σB are independent of σA which only 

affects the expression of σB targets in this network (Fig. 4A). Without an increase in free 

σB, the increased competition for RNApol at higher σA results in reduced σB target 

promoter activity in this network (Fig. 4CE). Notably a positive feedback network design 

is similarly incapable of increasing free σB in response to an increase in σA (Fig. 

S4CDE). Thus fluctuations in σA can lead to unwanted variability in the σB stress-

response of these alternative network designs. In contrast, the wildtype σB network with 

its ultrasensitive negative feedback design is ideally designed to compensate for 

competition effects (Fig. 4DE). 

 

Negative feedback designs of stress-response sigma factor networks minimizes 

interference 

 

The negative feedback design of the network discussed here is not unique to σB. 

Several stress sigma factors in B. subtilis as well as other bacteria are regulated in 

similar fashion (3, 13, 27-30). For example σW, a sigma factor in B. subtilis that controls 

the response to alkaline shock (31) is co-transcribed with its anti-sigma factor RsiW. In 

the absence of stress, RsiW sequesters σW in an inactive complex. σW is activated by 

stress signals which trigger the cleavage and degradation of RsiW thereby releasing 

and activating σW target expression (32). Although it is unknown whether the σW 

network functions in a negative feedback regime similar to σB or if it pulses, it is possible 

for this network to exhibit these design properties. If RsiW is expressed in stoichiometric 

excess of its binding partner σW from the σW-regulated operon which they share (33), 

then similar to the σB network, σW would operate in a negative feedback regime. 
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To determine if negative feedback control offers any advantages when multiple stress 

sigma factors are active, we built a new model that includes three sigma factors: σB
, σ

W 

and σA. Anti-sigma factors RsbW (RsiW) and other details of post-translational 

regulation were excluded for simplicity. Instead the regulation of free σB and σW was 

modeled with simplified identical versions of the negative feedback design of the σB 

network (Fig. S5A). Under this simplification, free σB and free σW are non-monotonically 

functions of BT (total σB) and WT (total σW) respectively. These non-monotonic functions 

are qualitatively similar to the post-translational response function shown in Fig. 1C and 

depend on a signaling proteins PB (for σB) and PW (for σW). Following the previous 

section, this model explicitly includes σA, RNA polymerase (RNApol) and σ–RNApol 

complexes such that the transcriptional responses for both σB and σW depend on σA and 

RNApol concentrations (see Supplementary Text). Concentrations of RNApol and σA 

were chosen to ensure that amount of RNApol is insufficient to bind to all sigma-factors 

at the same time. All other parameters of the simplified model were chosen to 

approximately match the full σB network model and ensure that both σB and σW operate 

in the negative feedback regime. Consequently for the chosen parameters this 

simplified model acts like our detailed model and responds to step increases in the 

signaling protein PB (or PW) by producing a pulse of σB (or σW) activity (Fig. S5CD). 

 

We used this simple model to study the response when cells are simultaneously 

exposed to multiple stresses creating competition for RNApol. Our results showed that 

similar to effect of increasing σA (Fig. S4AB), increased availability of one stress sigma 

factor leads to competition for RNA polymerase and as a result reduces activity of the 

other stress sigma factor (Fig. S5EF). However, our results also showed that when 

negative feedbacks are present, surprisingly, increasing the stress signal for one sigma 

factor also led to the activation of the other sigma factor. For example, increasing PB 

while keeping PW fixed leads to an increase in free σB but also results in a smaller 

increase in free σW (Fig. 5C). This response can be explained by the ultrasensitive 

negative feedback loops controlling the stress sigma factors. Increase in free σB by PB 

leads to increased competition for RNApol resulting in a decrease in production of WT. 

But since σW is regulated by a negative feedback, a decrease in WT actually frees up 

more σW thereby insulating σW target activity from the effects of RNApol competition 

(Fig. 5E). Similarly the dynamic response of the stress sigma factors is also insulated 

from competition and an increase in fixed PW levels increases the pulse amplitude of σB 

in response to step changes in PB (Fig. S5A-D).  

 

Thus the two stress sigma factors are able to function simultaneously despite the 

scarcity of RNApol. This cross-talk between stress sigma factors becomes clearer when 

we track the changes in σ–RNApol complexes as a function of stress signal PB. As PB 

increases, more free σB becomes available and binds to RNApol (Fig. 5G). However 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 20, 2015. ; https://doi.org/10.1101/032359doi: bioRxiv preprint 

https://doi.org/10.1101/032359


17 

 

this RNApol must be accounted for by the RNApol lost by the other operating sigma 

factors σW and σA. Comparing the contributions of each sigma factor shows that despite 

the fact that σA has a much higher affinity for RNApol, most of the RNApol in the σB-

RNApol complex is drawn from the σA-RNApol pool rather than σW-RNApol pool (Fig. 

5G). Thus the negative feedback design allows stress sigma factors to cooperate and 

avoid competing with each other at the expense of the housekeeping sigma factor σA.  

 

 
Figure 5. Negative feedback minimizes competition between stress σ factors for RNA 

polymerase. A,B. Simplified network diagrams of stress sigma factors σB and σW and 

housekeeping sigma factor σA competing with each other for RNA polymerase. σB and σW 

activities are regulated by negative and positive feedbacks in (A) and (B) respectively. In both 

cases, signaling proteins PB and PW control the stress-signal driven activation of σB and σW 

respectively. C, D. Dependence of free σB and σW levels on PB at fixed PW (= 2µM). In the 

wildtype negative feedback system (C), increase in σB phosphatase leads to an increase in both 

free σB (green curve) and free σW (red curve). In the positive feedback system (D), increase in 

σB phosphatase leads to an increase in free σB (green curve) and a decrease in free σW (red 

curve). E, F. σB and σW target promoter activities as a function of PB at fixed PW in the wildtype 

negative feedback system (E), and the positive feedback system (F). G, H. RNA polymerase 

bound σB (Rpol-σB) as a function of PB at fixed PW in the wildtype negative feedback system (G) 

and the positive feedback system (H). Increase in σB phosphatase (PB) leads to an increase in 

Rpol-σB (green curve) and corresponding decreases ΔRpol-σW in Rpol-σW (red area) and 

ΔRpol-σA in Rpol-σA (blue area).  

 

The role of the negative feedback in producing this cross-talk response becomes clear 

when we compare the response of a mutant network that has positive feedback loops 

between σB and BT and σW and WT. As shown in Fig. 5D, unlike the wildtype response, 

increase in PB and the resulting increase in free σB decreases the free σW in the positive 
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feedback network. As a result of the increased competition for RNApol and the 

decreased free σW, σW target promoter activity in this network decreases as a function 

of PB (Fig. 5F). Moreover comparing changes in σ–RNApol complexes as a function of 

stress signal PB we find that most of the RNApol in the σB-RNApol complex is drawn 

from the σW-RNApol pool rather than σA-RNApol pool (Fig. 5H). Thus the negative 

feedback designs are not only essential for stress sigma factors to tolerate competition 

from σA, but also necessary for them to cooperate and avoid competing with each other 

when the cell is simultaneously exposed to multiple types of stresses. 

 

Discussion 

 

Taken together, our results show how the design of the σB network includes an implicit 

ultrasensitive negative feedback that plays multiple functional roles. This design enables 

pulsatile activation of σB in response to energy stress and rate-sensitivity to increases in 

environmental stress. Moreover, we show that the same design feature allows the 

network to effectively compete with house-keeping and other alternative sigma factors 

for RNA polymerase core.  

 

Prompted by recent observations of the highly dynamic pulsatile response of the σB 

network (ref), we have developed a new mathematical model that reproduces all 

reported features of the response including pulsatile activation in response to stress. 

Our model avoids making ad hoc simplifications and instead captures all the known 

molecular details of the network. By decoupling the post-translational and transcriptional 

responses in our model we were able to derive a simplified view of the network that 

illustrates how the pulsatile response is mechanistically based on the ultrasensitive 

negative feedback in the network. Using this method we identified the relative 

stoichiometry of σB, RsbW and RsbV synthesis rates as the most critical design 

property, which by controlling the post-translational response determines the sign of the 

feedback in the network as well as all qualitative features of the network response. This 

highlights how ignoring non-transcriptional interactions and focusing on transcriptional 

regulatory interactions alone can be misleading when trying to identify or characterize 

network motifs. Notably, recent analyses of networks like bacterial two-component 

systems (34) and the sporulation phosphorelay (35) have similarly shown how the sign 

of feedback in these networks depends critically on their post-translational design.  

 

The decoupling of the post-translational and transcriptional response greatly facilitated 

the identification of critical design features despite the complexity of the network. This 

separation greatly reduces the dimensionality of the dynamical system by enabling an 

independent input–output analysis for the two modules. Similar methods have been 

applied to deduce core functional properties in a variety of studies and model systems 
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(36-38). Interestingly our analysis revealed that the post-translational and transcriptional 

module structures of the network and the phosphorelay controlling B. subtilis sporulation 

are remarkably similar (35). Despite the differences in molecular details, both networks 

possess a non-monotonic post-translational dependence of the active transcription 

factor on the concentration of the total transcription factor. Combining this response with 

the transcriptional feedback produces an ultrasensitive negative feedback in both 

networks. The relevance of these similarities is evidenced by the fact that both networks 

produce dynamically similar pulsatile responses even though they are activated by 

entirely different stimuli.  

 

We further showed that energy stress can control σB pulses frequency by modulating 

the size of stochastic bursts of energy stress phosphatase. This result raises a question 

about whether pulsatile σB response can achieve proportional expression of 

downstream genes, as was previously suggested (14, 39). This proportional control 

requires the distribution of pulse amplitudes to remain fixed even as stress levels 

increase. However under the burst size encoding strategy, pulse amplitude distributions 

change as stress levels increase thereby negating the efficacy of a pulsed response in 

producing proportional expression of downstream genes. The functional significance of 

pulsatile response may instead lie in its ability to encode the rate of environmental 

stress increase. Our model showed that this rate encoding follows from the timescale 

separation between the fast post-translational and the slow transcriptional responses in 

the network. As a result cells are able to encode the rate of stress increase into σB 

pulses. This rate responsiveness is only possible with adaptive pulsatile responses and 

thus may explain the need for σB pulsing to control the general stress response. 

 

We also used our model to understand the response when placed in the larger context 

of other sigma factor networks and competition for RNA polymerase. Our results show 

how the network design is uniquely suited to insulating its response from RNA 

polymerase competition from the housekeeping sigma factor. Finally we demonstrate 

how ultrasensitive negative feedback, a ubiquitous feature of stress sigma factor 

regulation enables different stress sigma factors to operate simultaneously without 

inhibiting each other. These results are relevant not only for understanding the stress 

response of bacteria but also increasingly for the design of synthetic circuits. The 

movement towards the construction of larger genetic circuits has produced numerous 

recent designs that include multiple independent modules that rely on shared resources 

or actuators to function (40-42). Our results highlight how competition between modules 

for shared resources can significantly affect the performance of these synthetic circuits. 

Further, inspired by the design of naturally occurring stress sigma factor network we 

provide new design rules, that can improve the performance and robustness of the 

synthetic networks. 
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Methods 
 
Mathematical model of the σB network 

Our mathematical model of σB network is based on a previous model proposed in (16). 

This ODE-based model explicitly includes all known molecular species, post-

translational reactions and the transcriptional regulation of the σB operon by σB. The 

stress signals were assumed to control the concentrations of stress phosphatases 

RsbTU and RsbQP. For RsbQP, energy stress was assumed to regulate the 

transcription rate of the phosphatase and the phosphatase concentration was assumed 

to be subject to stochastic fluctuations resulting from gene expression noise. In contrast, 

RsbTU concentration is regulated by environmental stress post-translationally, 

consequently RsbTU concentration was assumed to be stress-dependent but not 

subject to stochastic fluctuations. The details of all biochemical reactions in the model 

and the corresponding differential equations are described in the Supplementary Text. 

All model parameters are summarized in Table S1.  

 

To study the effects of competition for RNA polymerase, the σB network model was 

expanded to include reactions for σA, RNA polymerase (RNApol) and σ–RNApol binding 

(see Supplementary Text). To investigate the competition between σB, σW and σA, we 

used a phenomenological non-monotonic function to model the post-translational 

regulation of stress sigma factors (σB and σW; see Supplementary Text for details).  

 

Calculation of steady state post-translational and transcriptional responses 

The decoupled transcriptional and post-translational responses of the network at steady 

state were calculated using the MATLAB bifurcation package MATCONT. The post-

translational response σB = FP(BT,PT), was calculated by varying the rate of operon 

transcription while keeping the component synthesis rates (λW, λV) and the total 

phosphatase concentration (PT) fixed. Similarly, the transcriptional response BT = 

FT(σB), was calculated by varying the free σB concentration as an independent variable 

to calculate the total concentrations of σB, RsbW and RsbV. 

 
Simulations 

In the deterministic set-up, the system of differential equations was solved using 

standard ode15s solver in MATLAB. For stochastic simulations the time-varying total 

phosphatase level PT (= P + VPP) was pre-computed using a gamma distributed 

Ornstein-Uhlenbeck process as in (14). This gamma distributed Ornstein-Uhlenbeck 

process permits independent modulation of mean burst size (b) and frequency (a) (43). 

For each phosphatase level, 50 simulations were performed each lasting 10 hours. 
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Pulses were detected by examining local maxima and minima of the simulated 

trajectories, and subsequently this information was used to compute pulse statistics for 

amplitude and frequency.  
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