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Abstract  

Determining residue level protein properties, such as the sites for post-translational modifications 
(PTMs) are vital to understanding proteins at all levels of function. Experimental methods are costly 
and time-consuming, thus high confidence predictions become essential for functional knowledge at a 
genomic scale.  Traditional computational methods based on strict rules (e.g. regular expressions) fail 
to annotate sites that lack substantial similarity. Thus, Machine Learning (ML) methods become 
fundamental in annotating proteins with unknown function. We present ASAP (Amino-acid Sequence 
Annotation Prediction), a universal ML framework for residue-level predictions. ASAP extracts 
efficiently and fast large set of window-based features from raw sequences. The platform also 
supports easy integration of external features such as secondary structure or PSSM profiles. The 
features are then combined to train underlying ML classifiers. We present a detailed case study for 
ASAP that was used to train CleavePred, a state-of-the-art protein precursor cleavage sites predictor. 
Protein cleavage is a fundamental PTM shared by a wide variety of protein groups with minimal 
sequence similarity. Current computational methods have high false positive rates, making them 
suboptimal for this task. CleavePred has a simple Python API, and is freely accessible via a web-
based application. The high performance of ASAP toward the task of precursor cleavage is suited for 
analyzing new proteomes at a genomic scale. The tool is attractive to protein design, mass 
spectrometry search engines and the discovery of new peptide hormones. In summary, we illustrate 
ASAP as an entry point for predicting PTMs. The approach and flexibility of the platform can easily 
be extended for additional residue specific tasks. ASAP and CleavePred source code available at 
https://github.com/ddofer/asap. 
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1. Background  

Advances in protein functional prediction is an 
essential component for the interpretation of 
genomics data. Many protein properties that 
are of interest to the community can be 
localized to the level of individual amino acid 
(AA) residues in the primary sequence. These 
include post-translational modifications (PTM) 
sites such as proteolytic cleavage, as well as 
various local 1D structural states such as 
disorder and secondary structures. 

The classic approach for functional annotation 
relies on sequence-similarity, augmented by 
multiple sequence alignments (e.g., HMM in 
Pfam (1)). Others resources such as PROSITE 
(2) and ELM (3) provide simple rules for 
proteins’ “signatures” (4). These methods 
suffer from high rates of false negatives and to 
a lesser extend false positives, making them 
suboptimal for genomic scale retrieval task. 
Proteins' properties that cannot be represented 
in the form of a simple motif rely on sequence-
based free models. Machine learning (ML) is a 
suitable approach for non-classical functional 
prediction challenges. Importantly, while ML 
methods benefit from the growth of sequences, 
the rule-based methods often fail to cope with 
sequence variability.  
Several successful applications of residue level 
predictions using ML include secondary 
structure, disorder regions, functional families 
(5), PPI (6) and more. Despite the many ML 
classifiers, no generic framework (with easy to 
use API) is available for the task of predicting 
general residue-level properties. Initial effort 
in this direction includes ProFET project (7) 
that showed a success towards a broad range 
of biological classification challenges. In a 
similar line of thinking, we developed ASAP 
(Amino-acid Sequence Annotation Prediction) 
and demonstrate its usability toward predicting 
post-translationally cleavage sites from larger 
precursors. The ML classifier that is presented 
is CleavePred. It aims in correctly classify the 
cleavage sites for proproteins such as 
prohormones and neuropeptides. The 
processing proteases of proproteins in 
mammals belong to a diverse family of 
proteases called prohormone convertases 
(PCs). The unified rule for PCs is the presence 
of an arginine (R) or a lysine (K) at the first 
position N-terminal to the proteolytic sites. 
The predicting proteolytic cleavage sites occur 

throughout metazoan. The end products are 
active peptides and hormones that act in 
modulation in the endocrinic and neuronal 
systems.   
In this short report we focus on the use of 
ASAP as a starting point for developing a high 
performing classifier that discriminate between 
any basic residue and the proteolytic sites. We 
discuss the results in view of the risk of model 
overfitting. The high precision obtained from 
ASAP and CleavPred suggest its usefulness in 
identifying likely candidates for experimental 
validation from unstudied sequenced genome. 

2. Methods 

2.1 ASAP pipeline: 

We are looking to solve the general problem of 
residue-level binary prediction (RLBP). 
Namely, predicting functional annotations for 
individual residues of a sequence. For 
example, we predict for each residue on a 
protein the score (0 or 1) for being a defined 
PTM sites (e.g., phosphorylation). To this end, 
we developed ASAP (Amino-acid Sequence 
Annotation Prediction), a universal Python 
framework for feature engineering and ML 
prediction. ASAP is completely generic, and 
can be easily applied to any task that involves 
binary predicting “local” properties of 
sequences, given a training dataset comprised 
of annotated sequences.  

Applying ASAP to the case study of predicting 
cleavage sites in neuropeptide precursors, we 
created CleavePred, an ASAP-based model 
trained to solve the following RLBP task: for 
each residue along the precursor, predicting 
whether it is a cleavage site or not. ASAP 
providing the entire pipeline for feature 
extraction, transformation and model training. 
Both ASAP and CleavePred are free, open 
sourced (https://github.com/ddofer/asap), and 
come with a simple, flexible, and well-
documented Python API. CleavePred is also 
accessible as a web-based application 
(http://protonet.cs.huji.ac.il/cleavepred). ASAP 
has a friendly tutorial 
(https://github.com/ddofer/asap/wiki/Getting-
Started:-A-Basic-Tutorial).  
 

 The input of ASAP is a dataset comprised of 
annotated sequences in the “lf” (labeled file) 
format. Each annotation is a sequence of 0s 
and 1s for each position in the sequence. The 
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input to ASAP is processed by the following 
step (Fig. 1): (i) Extraction of fixed-length 
windows. Each window is a sample in the 
training dataset. (ii) Windows may be filtered 
by various rules such as extraction only of 
sites centered on a K or R (in the case of 
CleavePred application). They may also be 
filtered by additional criteria, such as 
similarity to other windows. (iii) Sequence-
based features are extracted for each window, 
creating feature vectors. (iv) The set of 
features are fed to a ML model for (v) training 
or prediction.  

2.2 Feature extraction: 

Protein sequences are scanned, and fixed 
length windows are extracted, for each 
position or just for candidate sites (e.g. 
positions containing K or R in the case of 
CleavePred). Windows extending beyond the 
end of the sequence are padded with a dummy 
variable. A fixed length vector of features is 
extracted for each window. Additional features 
may be added from external predictors, 
notably 2D structure, solvent accessibility and 
disorder, via the SCRATCH (8) and 
DISOPRED3 toolkits (9), respectively.  

2.3 ASAP supported features: 

ASAP supports multiple categories of features 
that are easily extendable. ASAP creates 
internally all features with the exception of 
secondary structure, solvent accessibility, 
disorder, PSSM, and PSSM entropy. We refer 
the readers to the API for in-depth details. 
ASAP includes freely available code to parse 
these features. Positions that exceeded the 
protein’s sequence were marked with a 
dummy variable, using one-hot-encoding 

(OHE). The features are groups according to 
their source and methodologies for feature 
engineering. 

2.3.1 Externally generated features 

ASAP supports (optional) externally created 
features, including predictions made according 
to primary sequences. We currently support 
PSSM profiles, and predictions doe secondary 
structure, solvent accessibility and disorder. 
Our PSSM profiles were generated using 
SCRATCH’s ProfilPRO (V1.0) (8). Secondary 
structure (3 state resolution) and discretized 
solvent accessibility (buried or exposed) were 
predicted using SSpro and ACCpro. 
Discretized disorder predictions are obtained 
using DISOPRED3 (9)).  

2.3.2 Positional Features 

These are properties relating to each individual 
position in a sequence. Discrete properties are 
encoded using OHE. These features are: AAs, 
Secondary structure, Disorder, AA Charge (±1 
or 0), PSSM (frequency of the AA in the 
profile at a defined position) and Solvent 
accessibility. Additional engineered features 
include Reduced AA alphabets and PSSM 
entropy. The former is a lower dimensional 
representation of the AA alphabet, where 
“similar letters” are grouped together. We used 
a variant of 15 letters. The PSSM entropy can 
be seen as a measure of divergence of a 
position from a background or a uniform 
distribution. The more conserved a position is, 
the higher its entropy. The conservation score 
was calculated using the formula for relative 
entropy. The background for the CleavePred 
task is the AA frequencies in naturally 
occurring protein sequences from vertebrates. 

2.3.3 Contextual Aggregated Features 

We applied the intuition accordingly local 
protein regions surrounding a site might have 
distinct aggregate properties. For the various 
positional features, we extracted aggregated 
averages over multiple positions. e.g. the “left” 
and “right” halves of the sequence.  

For the PSSM entropy feature, we defined 
additional segments: (i) From the beginning of 
the window until position 4 residues (n-
terminal-wise) prior to a potential cleavage 
site. (ii) The 4 residues prior to the putative 
cleavage site and the site itself. (iii) The 
remaining positions after the cleavage site (c-

Fig. 1. ASAP, a feature extraction step in the 
prediction data workflow 
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terminal-wise). We anticipated that a cleavage 
site would be more conserved as a whole than 
a random occurrence of flanking K|Rs’.  

For feature defined as Disorder we used the 
naïve predictor FoldIndex that relies on 
hydrophobic potential and net charges (10) and 
TOP-IDP methods (11). 

We will only mention briefly several groups of 
features that also are extracted by ASAP. 
Several of these features were extracted by 
ProFET (7).  
2.3.4 Motif Features 
We combined the classic, “motif” based 
approach, as a regular expression when 
available. Specifically we have used a 
Cysteine spacer motifs (12) and dibasic sites 
(13).  
2.3.5 Quantitative Biophysical Features 
Basic global features relating to biophysical 
properties of the window section were also 
gathered. The importance of these properties 
to validating proteins functions has been 
previously validated (14). These include 
feature such as Molecular weight, pH(I) but 
also the relative frequency of biophysically 
related group of AAs.  
2.3.6. AA scales based features: 
AA propensity scales can be used to represent 
the protein sequence as a time series, typically 
using sliding windows of different sizes and to 
extract additional features. We used maximally 
independent derived scales (15). It includes the 
averages for sequence segments and of a 
window as a positional feature. The default is 
a window size=4. 
2.4. Datasets for CleavePred 
Two Datasets of proteolytic cleavage were 
used: (i) NeuroPred dataset (13). (ii) The 
UniprotKB/Swiss-Prot, retried are all 
sequences that are manually annotated as 
having “cleavage on a pair of dibasic residues” 
and sequences carrying the feature 
“propeptide” / “peptide”. The datasets were 
filtered internally in two sequential steps (i) 
CD-HIT at a 65% similarity threshold; (ii) 
checking that no two proteins from different 

sets had >40% similarity. Signal peptides were 
removed.  
2.5 CleavePred ML algorithms 
We tested different models supported by 
scikit-learn (16). The final model used by 
CleavePred is an ensemble majority voting 
classifier (provided by the mlxtend package), 
using an SVM with a radial basis function 
kernel (C=3.798), a Random forest classifier 
and a logistic regression classifier. For each 
independent tested fold, features were filtered 
for zero variance, and ANOVA F-value (false 
discovery rate of q<0.1). 
2.6 Models’ evaluation and testing: 
We trained “simple” and “advance” models for 
CleavePred.  The simple model uses only 
sequence-based features, the advanced models 
also takes advantage of data obtained external 
tools (see 2.3). The two models were trained 
on NeuroPred’s dataset that contained, after 
reduced redundancy (see 2.4) 238 sequences. 
Of these ASAP extracted 6002 relevant 
windows (of basic AA residues) from which 
4802 windows comprised the final training set. 
Evaluation was performed using a kfold 
procedure with 10 folds, were features were 
selected for each fold independently, based 
only on all training data. The models that were 
trained on NeuroPred’s dataset were then 
tested on the UniProt’s dataset. The latter 
contains 327 sequences after filtration with 
ASAP reports on 4325 windows and 3455 
non-redundant ones. 
The simple and advanced modes included 657 
and 1352 features, respectively. After feature 
selection step, the number of features in the 
trained models was reduced to 482 and 960, 
respectively. 
 
 3. Results 

 We applied ASAP to the task of predicting 
cleavage sites (CleavePred). We trained and 
estimated our models on a specialized archive 
and database for neuropeptides, calls 
NeuroPred. We used a cross-validation (CV) 
procedure of 10 folds (Table 1). The results 
show the higher performance of the advanced  
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model with respect to the simple mode. We 
then tested our trained models on UniProt’s 
dataset, and compared our performance to two 
competitor algorithms (Mammals and KM, 
Table 1). For our analysis, we insured that the 
training and test datasets are disjoint. Several 
conclusions can be drawn: (i) Our models 
(simple and advanced, test) are overall better 
and are superior in all measures. (ii) Maximal 
improvement is at the measure of precision 
(from 45-51% to 79%). (iii) The performance 
for the test set (UniProt) is lower in view of 
CV analysis (Table 1), as expected. However, 
Specificity remained extremely high (96%).  

We further extracted the set of features that 
maximally contributed to high performance of 
our models (not shown). The top features 
allowed interesting biological interpretation 
that is beyond the scope of this abstract. 
 
4. Discussion 

In this study we present ASAP, a universal 
generic yet modular workflow for function 
prediction. The ASAP is useful as a platform 
(and an simple API) allowing an extensive 
analysis of new genomes and sequences that 
had not previously seen. This generic powerful 
framework can be applied to any (binary) 
residue-level problem (RLBP).  In our tutorial, 
https://github.com/ddofer/asap/wiki/Getting-
Started:-A-Basic-Tutorial, we demonstrate the 
usability of ASAP in approaching biological 
problems and obtain non-trivial results ASAP 
(i.e., in minutes). While there is always 
important fine-tuning phase and parameter 
optimization, we suggest using ASAP naively 
for a wide range of binary prediction tasks. 

An important component is ASAP is the 
implementation of a combined approach. We 
combined naive features, basic feature 
engineering (e.g. aggregated features), and 
simple “rule based” approach (i.e., the 
canonical known motif), in a way that can 
easily be done for multiple tasks. This 

combined approach outperformed the state-of-
the-art results substantially. Our approach also 
supports integration of external properties such 
as predicted secondary structure. This provides 
superior performance to either method alone. 

Finally, we presented the power of ASAP 
towards a specific challenge of prohormones 
cleavage (CleavePred). For this task, we tested 
a more challenging training and validation set 
and reported the results on a novel, previously 
unseen test set (Table 2). We attribute the 
supreme performance and high confidence of 
our results to the engineered features that are 
the heart of ASAP, and the availability of high 
quality validated set of examples. CleavePred 
is extremely fast, making it suitable for whole-
genome scanning. Due to the high cost of 
experimentally pursuing false-positives, the 
high precision of CleavePred allows focusing 
on only few high confidence candidates for 
further validation. CleavePred is accessible at 
http://protonet.cs.huji.ac.il/cleavepred.  
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Table 2: Performance of cross validation (CV) and Test sets 

	
  

!

 Simple 
CV (%) 

Advance 
CV (%) 

Simple 
Test (%) 

Advance 
Test (%) 

KM  
Test (%) 

Mammals 
Test (%) 

AUC 88.17 89.08 80.42 76.75 75.94 81.94 

Accuracy 93.48 94.40 89.87 88.68 72.45 77.81 
Sensitivity 80.28 81.17 64.98 57.23 82.22 70.00 

Precision 79.97 84.06 79.13 78.69 45.16 51.96 
Specificity 96.07 96.99 95.87 96.26 69.46 80.20 

F1 Score 80.13 82.59 71.36 66.26 58.30 59.64 
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