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Abstract 

Tardigrades are meiofaunal ecdysozoans that are key to understanding the origins of Arthropoda. 
Many species of Tardigrada can survive extreme conditions through cryptobiosis. In a recent paper 
(Boothby TC et al (2015) Evidence for extensive horizontal gene transfer from the draft genome of a 
tardigrade. Proc Natl Acad Sci USA 112:15976-15981) the authors concluded that the tardigrade 
Hypsibius dujardini had an unprecedented proportion (17%) of genes originating through functional 
horizontal gene transfer (fHGT), and speculated that fHGT was likely formative in the evolution of 
cryptobiosis. We independently sequenced the genome of H. dujardini. As expected from whole-
organism DNA sampling, our raw data contained reads from non-target genomes. Filtering using 
metagenomics approaches generated a draft H. dujardini genome assembly of 135 Mb with superior 
assembly metrics to the previously published assembly. Additional microbial contamination likely 
remains. We found no support for extensive fHGT. Among 23,021 gene predictions we identified 
0.2% strong candidates for fHGT from bacteria, and 0.2% strong candidates for fHGT from non-
metazoan eukaryotes. Cross-comparison of assemblies showed that the overwhelming majority of 
HGT candidates in the Boothby et al. genome derived from contaminants. We conclude that fHGT 
into H. dujardini accounts for at most 1-2% of genes and that the proposal that one sixth of 
tardigrade genes originate from functional HGT events is an artefact of undetected contamination. 
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Significance statement 

Tardigrades, also known as moss piglets or water bears, are renowned for their ability to withstand 
extreme environmental challenges. A recently published analysis of the genome of the tardigrade 
Hypsibius dujardini (Boothby TC, et al. (2015) Evidence for extensive horizontal gene transfer from 
the draft genome of a tardigrade. Proc Natl Acad Sci USA 112:15976-15981), concluded that 
horizontal acquisition of genes from bacterial and other sources might be key to cryptobiosis in 
tardigrades. We independently sequenced the genome of H. dujardini and detected a low level of 
horizontal gene transfer. We show that the extensive horizontal transfer proposed by Boothby et al. 
was an artefact of a failure to eliminate contaminants from sequence data before assembly. 
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Tardigrades are a neglected phylum of endearing animals, also known as water bears or moss piglets 
(1). They are members of the superphylum Ecdysozoa (2), sisters to Onychophora and Arthropoda 
(3, 4). There are about 800 described species (1), though many more are likely to be as yet 
undescribed (5). All are small (tardigrades are usually classified in the meiofauna) and are found in 
sediments and on vegetation from the Antarctic to the Arctic, from mountain ranges to the deep 
sea, and in marine and fresh water environments. Their dispersal may be associated with the ability 
of many (but not all) species to enter cryptobiosis, losing almost all body water, and resisting 
extremes of temperature, pressure, and desiccation (6-9), deep space vacuum (10) and irradiation 
(11). Interest in tardigrades focuses on their utility as environmental and biogeographic markers, the 
insight their cryptobiotic mechanisms may yield for biotechnology and medicine, and exploration of 
their development compared to other Ecdysozoa, especially Nematoda and Arthropoda. 

Hypsibius dujardini (Doyère, 1840) is a limnetic tardigrade that is an emerging model for evolutionary 
developmental biology (4, 12-21). It is easily cultured in the laboratory, is largely see-through (aiding 
analyses of development and anatomy; SI Appendix, Fig. S1), and has a rapid life cycle. H. dujardini is a 
parthenogen, with first division restitution of ploidy (22), and so is intractable for traditional genetic 
analysis, though reverse-genetic approaches are being developed (17). H. dujardini has become a 
genomic model system, revealing the pattern of ecdysozoan phylogeny (3, 4) and the evolution of 
small RNA pathways (23). H. dujardini is poorly cryptobiotic (24), but serves as a useful comparator 
for good cryptobiotic species (9). 

Animal genomes can accrete horizontally transferred DNA, especially from germline-transmitted 
symbionts (25), but the majority of transfers are non-functional and subsequently evolve neutrally 
(dead-on-arrival, or doaHGT) (25-27). Functional horizontal gene transfer (fHGT) can bring to a 
recipient genome new biochemical capacities, and contrasts with gradualist evolution of endogenous 
genes to new function. The bdelloid rotifers Adineta vaga (28) and Adineta ricciae (29) have high levels 
of fHGT (~8%), and this has been associated with both their survival as phylogenetically ancient 
asexuals and their ability to undergo cryptobiosis (28-32). Different kinds of evidence are required 
to support claims of doaHGT compared to fHGT. Both are supported by phylogenetic proof of 
foreignness, linkage to known host-genome-resident genes, in situ proof of presence on nuclear 
chromosomes (33), Mendelian inheritance (34), and phylogenetic perdurance (presence in all, or 
many individuals of a species, and presence in related taxa). Functional integration of a foreign gene 
into an animal genome requires adaptation to the new transcriptional environment including 
acquisition of spliceosomal introns, acclimatisation to host base composition and codon usage bias, 
and evidence of active transcription (for example in mRNA sequencing data) (35, 36). 

Another source of foreign sequence in genome assemblies is contamination, which is easy to 
generate and difficult to separate. Genomic sequencing of small target organisms requires the 
pooling of many individuals, and thus also of their associated microbiota, including gut, adherent and 
infectious organisms. Contaminants negatively affect assembly in a number of ways (37), and 
generate scaffolds that compromise downstream analyses. Cleaned datasets result in better 
assemblies (38, 39), but care must be taken not to accidentally eliminate true HGT fragments. 

A recent study based on de novo genome sequencing of H. dujardini came to the startling conclusion 
that 17% of this species’ genes arose by fHGT from non-metazoan taxa (13). Surveys of published 
genomes have revealed many cases of HGT (40), but the degree of fHGT claimed for H. dujardini 
would challenge accepted notions of the phylogenetic independence of animal genomes, and general 
assumptions that animal evolution is a tree-like process. The reported H. dujardini fHGT gene set 
included functions associated with stress resistance and a link to cryptobiosis was proposed (13). 
Given the potential challenge to accepted notions of the integrity and phylogenetic independence of 
animal genomes, this claim (13) requires strong experimental support. Here we present analyses of 
the evidence presented, including comparison to an independently generated assembly from the 
same H. dujardini strain, using approaches designed for low-complexity metagenomic and meiofaunal 
genome projects (38, 39). We found no evidence for extensive functional horizontal gene transfer 
into the genome of H. dujardini. 
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Results and Discussion 

Assembly of the genome of H. dujardini. Using propidium iodide flow cytometry, we 
estimated the genome of H. dujardini to be ~110 Mb, similar to a previous estimate (20). We 
sequenced and assembled the genome of H. dujardini using Illumina short-read technology. Detailed 
methods are given in Supporting Information. Despite careful cleaning before extraction, genomic 
DNA samples of H. dujardini were contaminated with other taxa. Adult H. dujardini have only ~103 
cells, and thus a very small mass of bacteria would yield equivalent representation in raw sequence 
data. A preliminary assembly (called nHd.1.0) generated for the purpose of contamination estimation 
spanned 185.8 Mb. We expected assembly components deriving from the H. dujardini genome to 
have similar GC%, and to have the same coverage in the raw data (because each segment is 
represented equally in every cell of the organism). Contaminants may have different average GC%, 
and need not have the same coverage as true nuclear genome components. Taxon-annotated GC-
coverage plots (TAGC plots or blobplots (38, 39)) were used to visualise the genome assembly and 
permitted identification of at least five distinct blobs of likely contaminant data with GC% and 
coverage distinct from the majority tardigrade sequence (Fig. 1 A). Read pairs contributing to contigs 
with bacterial identification, and no mitigating evidence of tardigrade-like properties (GC%, read 
coverage and association with eukaryote-like sequences) were conservatively removed. There was 
minimal contamination with C. reinhardtii, the food source (41). Further rounds of assembly and 
blobplot analyses identified additional contaminant data (39) which was also removed. An optimised 
assembly, nHd.2.3, was made from the cleaned read set. Contigs and scaffolds below 500 bp were 
removed. Mapping of H. dujardini poly(A)+ mRNA-Seq (42) and transcriptome (12) data was 
equivalent between nHd.1.0 and nHd.2.3 (SI Appendix, Table S1), therefore we conclude that we 
had not over-cleaned the assembly. 

The nHd.2.3 assembly had a span of 135 Mb, with an N50 length of 50.5 kb (Table 1). The assembly 
was judged relatively complete. It had good representation of a set of highly conserved, single-copy 
eukaryotic genes from the Core Eukaryotic Genes Mapping Approach (CEGMA) set (43), and these 
had a low duplication rate (1.3–1.5). A high proportion of H. dujardini mRNA-Seq (Fig. 1 C) (42), 
transcriptome assembly (12), expressed sequence tags (ESTs), and genome survey sequences (GSSs) 
mapped to the assembly. We predicted a high-confidence set of 23,021 protein-coding genes using 
AUGUSTUS (44). The number of genes may be inflated because of fragmentation of the assembly, as 
2,651 proteins lacked an initiation methionine, likely because they were at the ends of scaffolds, and 
were themselves short. 

Assembly of the H. dujardini genome was not a simple task, and the nHd.2.3 assembly is likely to still 
contain contamination. We identified 327 scaffolds (5.0 Mb) that had read coverage similar to bona 
fide tardigrade scaffolds but similarity matches to bacterial genomes (SI Appendix, File 2). Some of 
these scaffolds also encoded eukaryote-like genes, and may represent HGT or misassemblies. Some 
scaffolds (195 spanning 1.4 Mb) had only bacterial or no genes and were very likely to be 
contamination. We identified no scaffolds with matches to bacterial ribosomal RNAs (rRNAs) but 
did find an 11 kb scaffold with best matches to rRNAs from bodonid kinetoplastid protozoa. Two 
additional small scaffolds (6 kb and 1 kb) encoded kinetoplastid genes (a retrotransposon and 
histone H2A, respectively). No other genes were found on these scaffolds, and their high coverage 
likely resulted from the loci being multicopy in the source genome. The genome was made openly 
available to browse and download on a BADGER (45) server at http://www.tardigrades.org in April 
2014 (SI Appendix, Fig. S3). 
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Fig 1: Hypsibius dujardini genome 
assembly A Blobplot of the initial 
nHd.1.0 assembly, identifying 
significant contamination with a 
variety of bacterial genomes. Each 
scaffold is plotted based on its GC 
content (X-axis) and coverage (Y-
axis), with a diameter proportional 
to its length and coloured by its 
assignment to phylum. The 
histograms above and to the right 
of the main plot sum contig spans 
for GC proportion bins and 
coverage bins respectively. B 
Blobplot of the nHd.2.3 assembly 
(as in A). C Blobplot of the nHd.2.3 
assembly, with scaffold points 
plotted as in B but coloured by 
average base coverage from 
mapping of RNA-Seq data (42). A 
high-resolution version of this 
figure is available as SI Appendix, 
File 7. 
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Table 1. Hypsibius dujardini assembly comparison 

Genome assembly nHd.2.3 UNC (14) 
Scaffold metrics 
No. scaffolds  13,202 22,497 
Span (Mb) 134.96 252.54 * 
Min length (bp) 500 2,000 
N50 length (bp) 50,531 15,907 
Scaffolds in N50 701 4,078 
GC proportion 0.452 0.469 
Quality assessment  
CEGMA completeness 97.2% 94.8% 
CEGMA average copies  1.55 3.52 
RNA-Seq mapping  92.8% 89.5% 
Genome content 
Protein-coding genes 23,021 39,532 * 
Contaminant span (Mb) 1.5 (1.1%) 68.9 (27.3%) 
Initial bacterial HGT loci 554 6,663 
Bacterial contaminants 355 9,872 † 
HGT with expression 196 n/a 
* The UNC genome was reported (14) to have a span of 212 Mb and contain 38,145 genes, but the 
correct values are as given here (T. Boothby pers. com.). CEGMA: core eukaryotic genes mapping 
approach. An extended version of this Table is available as Table S1. 

† 9,872 were loci predicted on the 68.9 Mb of contaminant scaffolds, but not all were flagged as 
fHGT by Boothby et al (14). 
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Claims of extensive functional horizontal gene transfer into H. dujardini. Boothby 
et al. (13) published an estimate of the genome of H. dujardini, referred to as the UNC [University of 
North Carolina] assembly hereafter, based on a subculture of the same culture sampled for nHd.2.3. 
They suggested that the H. dujardini genome was 252 Mb in span, that the tardigrade had 39,532 
protein coding genes, and that over 17% of these genes (6,663) had been derived from extensive 
functional horizontal gene transfer (fHGT) from a range of prokaryotic and microbial eukaryotic 
sources. Given this claim, and the striking difference between the UNC assembly and our assembly, 
we set out to test the hypothesis that these "HGTs" were in fact unrecognised contamination in the 
UNC assembly. 

Surprisingly, the UNC assembly had poorer metrics than nHd.2.3 (31) (Table 1), despite the 
application of two independent long read technologies (Pacific Biosciences [PacBio] and Moleculo) 
and equivalent short read data. Scaffold N50 length was one third that of nHd.2.3, despite UNC 
having discarded all scaffolds shorter than 2 kb. The UNC assembly span was 1.9 times that of 
nHd.2.3, in conflict with the UNC authors’ own (20) and our genome size estimates. The UNC 
protein prediction set was 1.7 times as large as that from nHd.2.3. UNC had good representation of 
CEGMA genes (Table 1), but contained over 3 copies on average of each single-copy locus. Such 
multiplicity of representation of CEGMA single-copy genes can arise (as the CEGMA gene set is not 
explicitly designed to exclude loci with bacterial homologues; see SI Appendix). 

About one third of the span of UNC does not appear to be derived from the tardigrade. Many 
scaffolds had low coverage compared to bona fide tardigrade scaffolds (Fig. 2 A), had different 
relative coverages in different libraries (SI Appendix, Fig. S4 B-D), were not represented in our raw 
data (Fig. 2 B), and had overwhelmingly non-eukaryote taxonomic assignments (SI Appendix, File 3). 
The absence of all but marginal similarity to metazoan sequence also suggests that these contigs are 
not chimaeric co-assemblies. All the longest scaffolds in UNC were bacterial (Fig. 3 A), and few 
bacterial scaffolds had read coverage support in both UNC and Edinburgh raw data (Fig. 3 B). We 
identified 15 scaffolds in UNC with high-identity matches to rRNA genes from Armatimonadetes, 
Bacteroidetes, Chloroflexi, Planctomycetes, Proteobacteria and Verrucomicrobia (SI Appendix, 
Table S2). We also identified contamination that is likely to derive from other genomes. Two very 
similar UNC scaffolds (scaffold2445 and scaffold2691) both contained two, tandemly repeated copies 
of the rRNAs of a bdelloid rotifer related to Adineta vaga. We found a large number of additional 
matches to the A. vaga genome (28) in UNC, but these may be bacterial contaminants matching A. 
vaga bacterially-derived fHGT genes (28, 30). A total of 0.5 Mb of scaffolds had best sum matches to 
Rotifera rather than to any bacterial source (SI Appendix, File 3). Six mimiviral-like proteins were 
identified, five of which involved homologues of the same protein family (with domain of unknown 
function DUF2828). Mimiviruses are well known for their acquisition of foreign genes (46), and these 
scaffolds may derive from a mimivirus rather than the tardigrade genome. Overall, very few of the 
total fHGT candidates proposed by Boothby et al. (13) were in scaffolds that were not obviously 
contaminant (SI Appendix, File 4). 

Presence of fHGT candidate transcripts in poly(A)-selected RNA is strong evidence for eukaryotic-
like expression and integration into a host genome. We mapped H. dujardini mRNA-Seq data (42) to 
UNC (Fig. 2 C). Only nine of the UNC scaffolds that had low or no read coverage in our raw 
genome data had appreciable levels of mRNA-Seq reads mapped (between 0.19 and 31 transcripts 
per million [tpm]). One of these (scaffold1161) contained two genes for which expression was >0.1 
tpm, but all genes on this scaffold had best matches to Bacteria. The mRNA-Seq data thus gave no 
support for eukaryote-like gene expression from the low coverage, bacterial contigs in UNC. 
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Fig 2: Contaminants in the UNC 
assembly. A Blobplot of the UNC 
assembly with coverage derived 
from pooled UNC raw genomic 
data. B Blobplot showing the UNC 
assembly with coverage derived 
from the Edinburgh short insert 
genomic data. C Blobplot (as in A) 
with the scaffold points coloured by 
average RNA-Seq base coverage. A 
high-resolution version of this figure 
is available as SI Appendix, File 7. 

  

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 2, 2016. ; https://doi.org/10.1101/033464doi: bioRxiv preprint 

https://doi.org/10.1101/033464
http://creativecommons.org/licenses/by/4.0/


The genome of Hypsibius dujardini PNAS revision March 1, 2016 

Page 10 of 17 

Boothby et al. (13) assessed foreignness using an HGT index (47), and by analysing phylogenies of 
candidate genes. However these tests are only valid when there is independent evidence of 
incorporation into a host genome. Boothby et al. (13) assessed genomic integration of 107 candidate 
loci directly, using PCR amplification of predicted junction fragments. Most were adjudged 
confirmed, but no sequencing to confirm the expected amplicon sequence was reported. The 107 
candidates were reported (13) to include 38 bacterial-bacterial and 8 archaeal-bacterial junctions (SI 
Appendix, Table S3). Our analyses identified 49 bacterial-bacterial junctions in their set, but these do 
not confirm HGT, as similar linkage would also be found in bacterial genomes. We found no 
expression of the 49 bacterial-bacterial junction loci, supporting assignment as contaminants rather 
than examples of fHGT. 

Of the remaining 58 loci, only 51 were likely to be informative for HGT (SI Appendix, Table S3), as 7 
were themselves or were paired with loci of unassigned taxonomic affinity. The informative loci 
included 24 prokaryotic to eukaryotic, 21 non-metazoan eukaryotic-metazoan and 6 viral-eukaryotic 
junction pairs. The UNC PacBio data confirmed only 25 of these junctions. All 58 loci had read 
coverage in Edinburgh raw data, and the same genomic environment was observed in nHd.2.3 for 51 
loci (43 of which were HGT-informative). We found evidence of expression from 49 of these loci. 

The UNC H. dujardini genome is thus poorly assembled and highly contaminated. Scaffolds identified 
as likely bacterial contaminants in UNC included 9,872 protein predictions (Table 1). Evidence for 
extensive fHGT is absent, and most candidates were not confirmed by PacBio data, our read data, or 
gene expression. We present a more detailed examination of each of Boothby et al's claims for 
fHGT, including apparent congruence of codon usage and presence of introns, in SI Appendix. 

Low levels of functional horizontal gene transfer in H. dujardini. We screened 
nHd.2.3 for loci potentially arising through HGT. As mapping of transcriptome data to nHd.2.3 was 
equivalent to the pre-cleaning nHd.1.0 assembly and better than the UNC assembly (SI Appendix, 
Table S1), the assembly has not been over-cleaned. Forty-eight nHd.2.3 scaffolds (spanning 0.23 Mb 
and including 41 protein-coding genes), had minimal coverage in UNC data (Fig. 3 C), suggesting that 
these were contaminants. The remaining 13,154 scaffolds spanned 134.7 Mb. Of the 23,021 protein 
coding genes predicted, only 13,500 had sequence similarity matches to other organisms, and of 
these 10,161 had unequivocal signatures of being metazoan, with best matches to phyla including 
Arthropoda, Nematoda, Mollusca, Annelida, Chordata and Cnidaria. A priori these might be 
considered candidates for metazoan–metazoan fHGT. However, as H. dujardini is the first tardigrade 
sequenced, this pattern may just reflect the lack of sequence from close relatives. The remainder had 
best matches in a wide range of non-metazoan eukaryotes, frequently with metazoan matches with 
similar scores, and, for a few, bacterial matches. Some non-metazoan eukaryote-like proteins (e.g. 
the two bodonid-like proteins discussed above) may have derived from remaining contamination. 

We found 571 bacterial-metazoan HGT candidates in nHd.2.3, of which 355 were on 166 scaffolds 
that contained only other bacterial genes. While some of these scaffolds also contained genes that 
had equivocal similarities, we regard them as likely remaining contaminants. Expression of these 
genes was in general very low (Fig. 3 D) and we propose that these are “soft” candidates for fHGT. 
The remaining 216 HGT candidates were linked to genes with eukaryotic or metazoan classification 
on 162 scaffolds that had GC% and coverage similar to the tardigrade genome in both datasets 
(Table 2; SI Appendix, File 6). Most of these (196, 0.9% of all genes) had expression >0.1 tpm (Fig. 3 
D) and are an upper bound of “hard” candidates for fHGT. However, phylogenetic analyses 
identified only 55 (0.2% of all genes) with bacterial affinities (having only bacterial and no metazoan 
homologues, or where analysis of alignments including the closest metazoan homologues confirmed 
bacterial affinities; SI Appendix, File 6). We identified 385 loci (1.7% of all genes) most similar to 
homologues from non-metazoan eukaryotes (SI Appendix, File 6). Most (369) of these had 
expression >0.1 tpm, but phylogenetic analysis affirmed likely non-metazoan origin of only 49 of 
these (0.2% of all genes; SI Appendix, File 6). 

Within the high-coverage blob of assembly scaffolds supported by both Edinburgh and UNC raw 
data, blobtools analyses assigned 327 scaffolds as bacterial (black points in Fig. 3 C). Fifty-two of 
these scaffolds were short (spanning 60.5 kb in total) and contained no predicted protein-coding 
genes, and 77 contained only predictions that were classified as eukaryote or unassigned. They were 
initially assigned as bacterial based on marginal nucleotide similarities to bacterial sequences. Many of 
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the remaining 198 scaffolds were flagged in the gene-based analyses as containing fHGT candidates. 
Our assembly thus still contained contaminating sequences, mainly from bacteria but also including 
some from non-metazoan eukaryotes. De novo joint assembly of the Edinburgh and UNC datasets in 
the future will permit robust elimination of such “difficult” contamination, as well as definition of the 
correct genome span, true gene content and the contribution of HGT in H. dujardini. 

Table 2: Putative HGT loci in H. dujardini nHd2.3 

Type Loci * Expressed 
(tpm) 

Phylogenetic 
support * 

>0.1 >10  
Bacterial 213 196 92 55 
Non-metazoan 409 392 162 49 
Viral 3 0 0 0 
* For full list of loci and phylogenetic analyses, see SI File 6. 
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Fig 3: Identifying HGT candidates. A 
Stacked histogram showing scaffolds 
assigned to different kingdoms 
(Bacteria, Eukaryota, and “no hits”) in 
different length classes for UNC and 
nHd.2.3 assemblies. The nHd.2.3 
assembly had no scaffolds >1 Mb, and 
all the longest scaffolds (>0.5 Mb) in 
the UNC assembly were bacterial. B 
Coverage-coverage plot of the UNC 
assembly using the Edinburgh short 
insert data (X-axis) and in the pooled 
UNC short insert data (Y-axis). C 
Coverage-coverage plot of the nHd.2.3 
assembly as in B. D Expression of soft 
and hard HGT candidates, and all other 
genes, in the nHd.2.3 assembly. A high-
resolution version of this figure is 
available in SI Appendix, File 7. 
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Conclusions We have generated a good draft genome for the model tardigrade H. dujardini. We 
identified areas for improvement of our assembly, particularly removal of remaining contaminant-
derived sequences. We approached the data as a low complexity metagenomic project, and this 
methodology is going to be ever more important as genomics are used on systems difficult to 
culture and isolate. The blobtools package (38, 39) and related toolkits such as Anvi’o (48) promise 
to ease the significant technical problem of separating target genomes from those of other species. 
An Anvi’o analysis of these two tardigrade genomes confirms our finding that ~70 Mb of the UNC 
assembly (including >96% of the proposed 6,663 HGT genes) derives from bacterial contamination 
(49). 

Analyses of gene content and the phylogenetic position of H. dujardini and by inference Tardigrada 
are at an early stage, but are already yielding useful insights. Early, open release of the data has been 
key. The H. dujardini ESTs have been used for deep phylogeny analyses that place Tardigrada in 
Panarthropoda (3, 4), identification of a P2X receptor with an intriguing mix of electrophysiological 
properties (16), and for exploration of cryptobiosis in other tardigrade species (7, 8). The nHd.2.3 
assembly was used for identification of opsin loci in H. dujardini (12). 

Our assembly of the H. dujardini genome conflicts with the published UNC draft genome (13) 
despite being from the same original stock culture of H. dujardini. Our assembly had superior 
assembly and biological quality statistics but was ~120 Mb shorter than UNC. About 70 Mb of the 
UNC assembly most likely derived from the genomes of several bacterial contaminants. The 
disparity between the non-contaminant span of the UNC assembly (~180 Mb), our estimate of the 
genome (~130 Mb) and direct densitometry estimates (80-110 Mb) may result from the presence of 
uncollapsed haploid segments. Resolution of this issue awaits careful reassembly. 

We predicted a hugely reduced impact of predicted functional HGT: 0.2% to 0.9% of genes from 
nHd.2.3 had signatures of fHGT from bacteria, a relatively unsurprising figure. fHGT from non-
metazoan eukaryotes into H. dujardini was less easily validated, but likely comprised a maximum of 
0.2%. In Caenorhabditis elegans, Drosophila melanogaster and primates, validated bacterial fHGT loci 
comprise 0.8%, 0.3% and 0.5% of genes respectively (40). These mature estimates, from well-
assembled genomes, are reduced compared to early guesses, such as the proposal that 1% of human 
genes originated through fHGT (50, 51). mRNA-Seq mapping shows that filtering did not 
compromise the assembly by eliminating bona fide tardigrade sequence. While some UNC fHGT 
candidates were confirmed, our analyses show that the UNC assembly is heavily compromised by 
sequences that derive from bacterial and other contaminants, and that the vast majority of the 
proposed fHGT candidates are artefactual.  
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Experimental procedures 

Genome assembly and comparison to UNC assembly of H. dujardini. The H. dujardini 
nHd.2.3 genome was assembled from Illumina short-insert and mate-pair data. We compared our 
assembly and that of Boothby et al. (13) by mapping raw read data and exploring patterns of 
coverage and GC% in blobtools (https://drl.github.io/blobtools) (38, 39) and exploring sequence 
similarity with BLAST and diamond. Details can be found in Supporting Information. 

Availability of Supporting Data. Raw sequence read data have been deposited in SRA, 
dbGSS, and dbEST (SI Appendix, Table S4). Edinburgh genome assemblies have not been deposited 
in ENA, as we have no wish to contaminate the public databases with foreign genes mistakenly 
labelled as “tardigrade”. Assemblies (including GFF files, and transcript and protein predictions) are 
available at http://www.tardigrades.org and http://dx.doi.org/10.5281/zenodo.45436. Code used in 
the analyses is available from https://github.com/drl/tardigrade and 
https://github.com/sujaikumar/tardigrade. 
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