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Abstract

In finite populations, mutation limitation and genetic drift can hinder evolutionary diversification. We consider the evolution
of a quantitative trait in an asexual population whose size can vary and depends explicitly on the trait. Previous work showed
that evolutionary branching is certain (“deterministic branching”) above a threshold population size, but uncertain (“stochastic
branching”) below it. Using the stationary distribution of the population’s trait variance, we identify three qualitatively different sub-
domains of “stochastic branching” and illustrate our results using a model of social evolution. We find that in very small populations,
branching will almost never be observed; in intermediate populations, branching is intermittent, arising and disappearing over time;
in larger populations, finally, branching is expected to occur and persist for substantial periods of time. Our study provides a
clearer picture of the ecological conditions that facilitate the appearance and persistence of novel evolutionary lineages in the face
of genetic drift.
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1. Introduction

Speciation is said to be “ecological” when reproductive iso-
lation has resulted from divergent natural selection driving sub-
populations into different ecological niches (Schluter and Conte,
2009). When this divergence occurs in sympatry, the initial dif-
ferentiation of phenotypic traits requires multiple fitness peaks
in the adaptive landscape (Calsbeek et al., 2012), with selec-
tion favoring different phenotypes given the current composi-
tion of the population. Divergent natural selection, however,
does not always lead to phenotypic divergence – i.e., evolution-
ary branching – if there is not enough variation for selection to
act upon or when genetic drift is too strong relative to selection,
even when the populations are asexual.

Historically, most quantitative genetic models were devel-
oped under the assumption that selection is frequency–independent
with a single optimum, i.e., that fitness landscapes are con-
stant and single-peaked. That said, the potential importance of
frequency-dependent selection as a source of quantitative ge-
netic variation was recognized early on (Clarke and O’Donald,
1964; Cockerham et al., 1972), and some quantitative genetic
models have included frequency-dependent selection (e.g., Bul-
mer, 1980; Lande, 1976; Slatkin, 1979; Bürger and Gimelfarb,
2004). Social interactions between individuals of the same species,
whether competitive, spiteful or altruistic, as well as interspe-
cific interactions, such as interactions between predators and
their preys or hosts and parasites, often result in frequency-
dependent selection (Doebeli and Dieckmann, 2000). It is there-
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fore crucial to understand how frequency–dependent selection
affects the evolution of quantitative traits, under both stabilizing
or diversifying selection, since the former seems to be neither
more prevalent nor stronger than the latter in nature (Kingsolver
et al., 2001). Particularly needed are models that incorporate
both frequency-dependent selection and drift.

After the pioneering works of I. Eshel (Eshel and Feldman,
1984; Eshel, 1996), the desire to understand the long-term im-
plications of frequency–dependence led to the development of
the adaptive dynamics framework (Geritz et al., 1998; Doebeli,
2011). The method requires the assumption that mutations are
rare, so that evolution proceeds as a series of competitive dis-
placements of resident genotypes by mutant genotypes; muta-
tions are also assumed to be of small phenotypic effect and pop-
ulation sizes are typically assumed to be large. Central to the
framework is the concept of invasion fitness (Metz et al., 1992),
which corresponds to the initial growth rate of a rare mutant in
a population of very large size.

The assumption that the population size is large is a central
one in the adaptive dynamics framework, but computer simula-
tions have helped investigate the consequences of stochasticity
in populations of smaller size (e.g., Dieckmann and Doebeli,
1999; van Doorn and Weissing, 2002). Because population
size affects the fate of mutations, the outcome of an adaptive
dynamics process can change in small populations. Claessen
et al. (2007) for instance observed that evolutionary branching
was much harder to obtain in individual-based simulations with
small population sizes. Claessen et al. proposed two explana-
tions for this phenomenon: first, because of random drift, the
trait mean in the population changes over time and may wander
away from the area where branching can happen. Second, even
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if branching is initiated, the incipient branches may go extinct
by chance.

In populations of small size, Proulx and Day (2002) showed
that the probability of fixation is a better predictor of the course
of evolution in stochastic environments than invasion fitness.
Similarly, the “canonical diffusion of adaptive dynamics” (Cham-
pagnat et al., 2006; Champagnat and Lambert, 2007), which
describes the evolution of a quantitative trait in a finite asexual
population, involved gradients of fixation probability (instead
of invasion fitness). Although they allow the consideration of
the effect of genetic drift, these two approaches dealt with di-
rectional selection only and did not account for the creation and
maintenance of quantitative genetic diversity due to frequency-
dependent selection. Obviously, as a probability of fixation
refers to the fixation of one genotype and the loss of another,
this measure of evolutionary success does not naturally describe
the maintenance of diversity (Rousset, 2004; Allen et al., 2013).
In other words, a method based on a trait substitution sequence,
which assumes that the fate of a mutation is either loss or fix-
ation, is not suited to account for evolutionary diversification,
where different types coexist.

In this article, we study the evolution of a quantitative trait
under frequency–dependent selection, in an asexual population
of finite, but not fixed, size. We use a moment-based approach,
because it bridges the gap between quantitative genetic and adap-
tive dynamic frameworks (Abrams et al., 1993; Abrams, 2001;
Débarre et al., 2013; Débarre et al., 2014). We illustrate our
results with a model of social evolution in a well-mixed pop-
ulation (i.e., in the absence of any spatial or social structure),
where the quantitative trait Z under selection corresponds to
investment in social behavior (Doebeli et al., 2004; Lehmann,
2012; Wakano and Lehmann, 2012; Wakano and Iwasa, 2013).

Our study builds upon the work of Wakano and Iwasa (2013).
In their model, Wakano and Iwasa (2013) assume asexual re-
production, discrete, non-overlapping generations and a poten-
tially small but constant population size (using a Wright-Fisher
model). The authors explore models where branching is ex-
pected in infinite populations but may fail to occur within fi-
nite populations. They identify two major parameter regimes
involving diversifying selection: where branching is expected
deterministically and continues to be observed in finite popu-
lations even if mutations have small effects (termed “determin-
istic branching”) and where branching is expected determin-
istically but will only occur in finite populations occasionally,
when mutations are of large enough size to overwhelm drift
(termed “stochastic branching”).

Here, we extend the framework of Wakano and Iwasa (2013)
to populations whose size is finite but not fixed and to a life-
cycle with overlapping generations (a birth-death process). We
derive expressions for the stationary distribution of the total
population size, trait mean, and trait variance under stabiliz-
ing selection, and we show how these distributions can help us
refine the conditions for evolutionary diversification when se-
lection is diversifying. In particular, we show that the “stochas-
tic branching” regime identified by Wakano and Iwasa can be
sub-divided further into (i) a “no branching” regime in which
branching will either never occur or be so seldom and collapse

so rapidly that the population is very unlikely to be observed
in a diversified state; (ii) an “intermittent branching” regime in
which branching arises and collapses over biologically reason-
able time frames; and finally (iii) a regime akin to the “deter-
ministic branching” regime, in which branching is so likely and
collapses so rarely that the system maintains multiple species
almost always, with populations likely to remain branched for
long enough to accumulate further speciation barriers.

2. Model and methods

2.1. Model

We describe the evolution of a trait Z in a population of
asexual individuals. Each individual in the population is char-
acterized by its genotype zi, which we also refer to as pheno-
type in the absence of environmental effects; in the remainder
of the article, we refer to zi as “type” or simply “trait”. At a
given time t, we denote the current size of the population by
N(t), while a vector z(t) summarizes all the types present in the
population. The trait mean (first moment of the distribution) is
z(t) =

∑N(t)
i=1 zi/N(t) and the variance (second central moment

of the distribution) is v(t) = (z − z(t))2. For each of these vari-
ables, we may drop the time dependency for simplicity. Each
time step, either one individual reproduces (producing exactly
one offspring) or one individual dies.

We use the term “fecundity” to refer to the reproductive po-
tential of an individual, which is proportional to the chance that
this individual will reproduce in a time step. We assume that
individual fecundity Fi depends on both the type of each indi-
vidual and the distribution of types in the population; we denote
by F the mean fecundity in the population. When it does repro-
duce, a parent of type zi produces an offspring with phenotype
zi + δ, where δ follows a distribution u (called a mutation ker-
nel) with mean mu = 0 and variance σ2

u assumed to be small.
Mutation is therefore a source of variation in the population,
and multiple types can coexist at any time point even though
the population is finite and potentially small.

Individual survival, on the other hand, is type– and frequency–
independent, but it is density–dependent: individual survival
decreases as the size of the population increases. The per capita
death rate per time step, Di, is defined as Di = d N. We denote
by D the mean death rate in the population.

In the next time step, both the size of the population and the
distribution of types have changed; our aim is to find expres-
sions for their stationary distributions. Key to our derivation is
the assumption that populations that have not diversified have
a trait distribution that is Gaussian (at any time), with a small
variance v. Hence, we only need to follow the mean z and vari-
ance v of the distribution of types. By contrast, populations
undergoing evolutionary branching are characterized by a sub-
stantial increase of trait variance. Thus, we determine whether
or not evolutionary branching is likely to be observed by deter-
mining when the steady state distribution for the trait variance
does not or does have substantial density at small values of v.
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Illustration: social evolution
We illustrate our results using the specific example where Z

is a social trait that represents individual investment into social
behavior; the trait can take any value between 0 (no investment)
and 1 (maximum investment). Initially analyzed by Doebeli
et al. (2004) under the assumption that population size was infi-
nite, this model has also been used by related studies (Wakano
and Lehmann, 2012; Wakano and Iwasa, 2013), in which pop-
ulation size, now finite, was fixed. Although widely used in
population genetics, a fixed population size is a restrictive as-
sumption; in particular, it requires that all the deaths that may
occur within a time step are exactly compensated by the same
number of births (e.g., N deaths and N births in a Wright-Fisher
model; one death and one birth in a Moran process). In our
model, we do not impose a fixed population size. Because ei-
ther a death or a birth happens within one time step, population
size does change with time. We will see, however, that the dy-
namics of the population size occur on a much faster time scale
than the dynamics of the mean and variance of the distribu-
tion of traits; population size hence reaches a quasi-equilibrium
Ñ(z, v), and can therefore be approximated as being stabilized
when changes in z and v are considered. For the sake of com-
parison, we use in our study the same payoff values as in the
previous studies that our work complements.

The population is well-mixed: each individual interacts so-
cially with every individual in the population (i.e., “playing
against the field”), which includes the influence that a focal
player itself has on that field; these social interactions affect
their fecundities. Using payoff functions similar to the ones in
Doebeli et al. (2004), we can rewrite the fecundity of an indi-
vidual with trait z as follows:

F(z, z, v) = B0

(
1 + B1 (z + z) + B2

[
(z + z)2 + v

]
−C1 z −C2 z2

)
,

(1)
where z is the current mean type and v is the current variance.
The parameters B1 and B2 (resp. C1 and C2) refer to benefits
(resp. costs) of social interactions, while B0 is the baseline fe-
cundity. The steady state population size can thus be altered by
varying B0, while keeping the relative strength of frequency-
dependent interactions constant.

2.2. Method
2.2.1. Diffusion approximations

We want to find the stationary distributions of three quanti-
ties: the size of the population (N), the trait mean (z) and vari-
ance (v). To do so, we use diffusion approximations. Diffusion
approximations rarely yield results for multiple variable mod-
els, but it turns out that changes in the three variables occur at
different time scales, so that we can decouple them and derive
diffusion approximations for each variable separately.

To derive the diffusion approximation for a variable, we
need expressions for the expected change in that variable be-
tween two time steps (which we denote by the letter µ) and also
the expected squared change (which we denote by σ2). Once
we have derived these terms, the stationary distribution of the
variable of interest is given by

p̃(y) =
C

σ2(y)
exp

(
2
∫ y µ(x)

σ2(x)
dx

)
, (2)

the constant C being chosen such that
∫

p̃(y)dy = 1 (since p̃i is
a probability density) (Rice, 2004; Otto and Day, 2007).

Key to the derivation is the assumption that the variance in
trait values, v, is small, implying that the distance between the
trait of any individual and the trait mean is small. As a result,
we can expand individual fecundity F as follows:

F(z, z, v) = F(z, z, v)+(z−z)
∂F
∂z•

∣∣∣∣∣
z•=z

+
(z − z)2

2
∂2F
∂z2
•

∣∣∣∣∣∣
z•=z

+O((z−z)3),

(3)
where z• refers to the first argument of F. Similar expressions
are commonly used in the inclusive fitness framework; many of
these studies focus solely on the first order term and hence can-
not be used to determine whether evolutionary branching will
occur (as noted by Lehmann and Keller, 2006, see references
therein for extensions within the inclusive fitness framework
that investigate branching and do include second order terms).
For notational shorthand, we define:

F(0) = F(z, z, v), F(1) =
∂F
∂z•

∣∣∣∣∣
z•=z

, and F(2) =
∂2F
∂z2
•

∣∣∣∣∣∣
z•=z

. (4)

We note that in the example of social evolution, individual fe-
cundity F is already a quadratic function of z (see equation (1)),
so that neglecting O((z − z)3) in equation (3) will not constitute
an approximation.

2.2.2. Stochastic simulations
The stationary distributions are then compared with the re-

sults of individual-based stochastic simulations of the model.
The simulations are written in C and analyzed in R (R Devel-
opment Core Team, 2011). The trait space is divided into 51
discrete values between 0 and 1, so that the phenotypic distance
between two adjacent trait values is dz = 0.02. Mutation occurs
with probability µ0 = 0.01 and changes the trait value into the
value of one of the two adjacent phenotypes (z′ = z±dz ). With
this mutation kernel, the mutational variance is σ2

u = µ0 dz2

(except at the edges of the trait space), and we use the same
parameter values as in Wakano and Iwasa (2013).

The simulation codes have been uploaded on the data repos-
itory Dryad (Provisional DOI: doi:10.5061/dryad.b3604).

3. Results

3.1. Deriving the terms of the diffusion approximations: Ex-
pected changes and squared changes

In the following, we calculate the moments (µ andσ) needed
to determine the stationary distribution for the population size
N, the trait mean z, and the trait variance v. Because we are
primarily interested in the stationary distribution and not the
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temporal dynamics, we consider the process only at time points
at which an event occurs (either a birth or a death): a “time
step” corresponds to the occurrence of one such event, and we
are now focusing on changes in population size, trait mean, and
trait variance occurring during a time step. More detailed cal-
culations of all of these terms are presented in Appendix A.

3.1.1. Changes in the population size
The change in population size is +1 if one individual repro-

duces and −1 otherwise; the expected change in population size
is

µN(N) =
F(0) + v

2 F(2) − d N

F(0) + v
2 F(2) + d N

, (5)

and the expected squared change in population size is

σ2
N(N) = 1. (6)

(See Appendix A for details of the derivation.) Given appropri-
ate values for z and v, equations (5) and (6) can be used in (2)
to describe the stationary distribution for the population size.

While the changes in population size are of order O(1), we
shall see in the next two sub-sections that changes in the dis-
tribution of traits are of order O(v) or higher (equations (8) and
(11)). We can therefore consider that population size reaches
and hovers around a mean quasi-equilibrium value Ñ before
further changes in z and v occur; Ñ is defined such that µN(Ñ) =

0:

Ñ(z, v) =
F(0) + v

2 F(2)

d
. (7)

In the remainder, we will hence assume that the population is at
this demographic equilibrium. This implies, in particular, that
the chance that the next event is a death is equal to the chance
that the next event is a birth; or, in mathematical terms, that
F = D.

3.1.2. Changes in trait mean
The expected change in the trait mean is

µz(z) =
1

2 (Ñ + 1)
v F(1)

F(0) + v
2 F(2) . (8)

(See Appendix A for details of the derivation.) Because mor-
tality is type–independent, death events do not change the trait
mean, on average. Birth events do and happen one-half of the
time at demographic equilibrium, but only the newly born in-
dividual affects the trait mean when birth occurs, hence the
1/2×1/(Ñ +1) factor in (8). This expected change in trait mean
is of order v, the current variance in the population, which is as-
sumed to be small; this justifies the separation of time scales be-
tween changes in the trait mean and changes in population size
(equation (5)). The remaining factor in (8), is a selection gradi-
ent, the denominator representing the current average fecundity
in the population. A Price equation (Price, 1970) version of (8)
is presented in the Appendix, equation (A.16b).

The expected squared change in the trait mean is given by

σ2
z (z) ≈

2 v + σ2
u

2 (Ñ)2
. (9)

(Details of the calculations are presented in Appendix A.) Given
appropriate values for Ñ and v, equations (8) and (9) can be
used in (2) to describe the stationary distribution for the trait
mean.

The expected change in the trait mean (equation (8)) is zero
when v F(1) = 0, that is, either when there is no variance in the
population—which we ignore because mutation always regen-
erates variance—or when the selection gradient F(1) vanishes
(see (4)). In our example, with the fecundity function defined
as in (3), this occurs when the trait mean is at z∗,

z∗ =
C1 − B1

2 (2B2 −C2)
. (10)

3.1.3. Changes in variance
We now consider changes in the variance of the distribution

of traits in the population at demographic equilibrium. Using
the fact that the distribution is Gaussian, we eventually obtain
the following expected change in the trait variance:

µv(v) =
− (2 Ñ2 + 1) v

2 (Ñ2 − 1)2︸           ︷︷           ︸
Drift

+
Ñ σ2

u

2 (Ñ + 1)2︸       ︷︷       ︸
Mutation

+
Ñ

2 (Ñ + 1)2

(
F(2) v2

F(0) + v
2 F(2)

)
︸                           ︷︷                           ︸

Selection

.

(11)
(See Appendix A for details of the calculations.) At demo-
graphic equilibrium, birth and death each occurs with a chance
1/2, hence the overall 1/2 factor in equation (11). The first
term in equation (11) corresponds to the effect of random drift,
which reduces the variance, and is stronger in smaller popula-
tions. In a large enough population, the effect of drift on the
trait variance is of order v/Ñ2, which is negligible compared to
the effect of selection on the trait mean (equation (8)), justifying
a separation of time scales. This may however not be the case
in very small populations. The second term in equation (11)
corresponds to the effect of mutation, via the variance of the
mutation kernel, σ2

u. The effect of mutation on the trait vari-
ance is of order 1/Ñ because there is at most one new mutant
between the time steps. Finally, the third and last term in equa-
tion (11) corresponds to the effect of selection. Its sign is the
sign of F(2), the curvature of the function F. Selection is stabi-
lizing when F(2) < 0 and tends to reduce the trait variance in the
population. Selection is diversifying, i.e., tends to increase the
trait variance, when F(2) > 0. A Price equation (Price, 1970)
version of (11) is presented in the Appendix, equation (A.23).

For the expected squared change in the trait variance, still
assuming a Gaussian distribution of traits with a small variance
and a relatively large population size, we obtain

σ2
v(v) ≈

2v2

Ñ2
+

4vσ2
u + 3σ4

u

2Ñ2
. (12a)

(Details of the calculations are presented in Appendix A.) Nu-
merical comparisons (in the Mathematica file provided as sup-
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plementary material on Dryad1) show that the shape of the sta-
tionary distribution of v is little affected if we neglect the effects
of mutation on the squared change in trait variance and use the
simpler equation

σ2
v(v) ≈

2 v2

Ñ2
. (12b)

Again, given appropriate values for Ñ and z, equations (11) and
(12b) can be used in (2) to describe the stationary distribution
for the trait variance.

In the absence of selection, the last term of equation (11)
disappears. We denote by v∗MD the variance at the mutation-
drift equilibrium, i.e., the variance such that µv(vMD) = 0 when
F(2) = 0.

3.2. Stationary distributions under stabilizing selection

The final equilibrium values of the population size, trait
mean, and trait variance, (N∗, z∗, v∗), are obtained by solving
the system (µN = 0, µz = 0, µv = 0).

3.2.1. Population size
The stationary distribution of the population size is obtained

by integrating equation (2) with the diffusion terms µN and
σ2

N , setting z = z∗ and v = v∗. Under stabilizing selection,
the equilibrium variance is very small, and similar distribu-
tions of N are obtained if we set v = 0 instead of v∗; we will
therefore hereafter approximate the equilibrium population size
by N∗0 = Ñ(z∗, 0). The solution is compared to the output of
individual-based simulations in figure 1(a) and (d).

3.2.2. Trait mean
The stationary distribution of the trait mean is obtained by

integrating equation (2) with the diffusion terms µz and σ2
z , set-

ting Ñ = N∗0 and v = v∗. The solution, together with the output
of individual-based simulations, is presented in figure 1(b) and
(e). In each case, the expected distribution of the trait mean es-
timated from the simulations (solid dots) and the analytical pre-
diction (solid curve) match well. Also shown in these figures is
the distribution of trait values (open dots), which is wider than
the distribution of trait means, especially in larger populations
(panel (e)), because of the variance maintained within popula-
tions.

In smaller populations, the steady state distribution for the
trait mean is more broadly distributed and makes more excur-
sions away from the optimum at z∗ (as in Claessen et al., 2007).
This can be seen by comparing figure 1(b), which has a lower
population size due to a lower baseline fecundity B0, to fig-
ure 1(e), which has a higher baseline fecundity (in both cases
z∗ = 0.6).

3.2.3. Trait variance
The stationary distribution of the trait variance is obtained

by integrating equation (2) with the diffusion terms µv and σ2
v ,

1Provisional DOI: doi:10.5061/dryad.b3604

setting Ñ = N∗0 and z = z∗. This solution is compared to the
output of individual-based simulations in figure 1(c) and (f).
More variance is maintained in larger populations (panel 1(f)
with a higher baseline fecundity B0). By contrast, drift depletes
the trait variance in smaller populations (panel 1(c)).

3.3. Does diversification occur, if selection is diversifying?

The results that we have derived so far rely on the assump-
tion that the distribution of traits is approximately Gaussian
with small variance. These assumptions may not hold when
selection is diversifying (i.e., when F(2) evaluated at z = z∗

is positive), in which case evolutionary branching may occur,
causing the distribution of traits to become bimodal. Whether
this branching actually occurs, however, depends on the extent
of random drift. In the remainder, we will use our results on the
expected change in the variance and the stationary distribution
of the trait variance, both derived assuming a Gaussian distri-
bution of traits with small variance, to identify conditions that
violate the assumption that variance remains small and hence
imply that evolutionary branching does occur, despite drift.

The rationale is that until evolutionary branching—if it ever
happens—the equations that we derived previously are still valid.
We assume that at the time at which branching happens (if
ever), the population size is N∗ and the trait mean is z∗. We
then evaluate the steady state variance, relative to that expected
at mutation-drift equilibrium, v∗MD (i.e., the equilibrium value of
the variance in the absence of selection (see equation (A.26))).
We then classify branching regimes in two steps. We first iden-
tify when the mean of the variance approaches a small value
(branching not possible) and when it can increase to high val-
ues (branching possible). In the latter case, we then approx-
imate the steady state distribution for the variance to deter-
mine the proportion of time that the population spends in the
low variance (unbranched) state and in the high variance state
(branched).

Note also that we are considering the variance of the dis-
tribution of traits in the population, but not the actual shape of
this distribution. That is, we only determine the conditions un-
der which the variance becomes large, but we cannot prove that
the resulting distribution is bimodal. The deterministic version
of the model of social evolution does show, however, that di-
versifying selection leads to branching, i.e., to the evolution of
distinct clusters of traits (see Appendix D). We will therefore
still write about branching when the variance grows substan-
tially.

3.3.1. Using the expected change in the variance µv

We next determine the conditions under which the trait vari-
ance will increase when selection is diversifying; the answer is
given by the sign of µv, which depends on the total popula-
tion size and hence on the baseline fecundity B0. As (11) is
quadratic in v, µv(v) = 0 admits from zero to two admissible so-
lutions depending on the value of B0; numerical examples are
given below using the parameters of figure 2.

For low values of B0 (B0 < Bµ,L; Bµ,L ≈ 19 for the param-
eters used in figure 2), µv(v) admits only one root, v−0 , in the
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Figure 1: Stationary distributions of the three variables of interest when selection is stabilizing. In the first row, B0 = 75, in the second row, B0 = 300. Other
parameters in all figures: B2 = −1.5, B1 = 7, C2 = −1, C1 = 4.6, d = 1; µ0 = 0.01 and dz = 0.02, so that σu = 0.002. The curves are the analytic predictions; solid
colored dots are simulation results for comparison, while black open dots in panels (b) and (e) show the entire trait distribution itself (i.e., not the distribution of trait
means)—both are averaged across time for one simulation.

interval of possible values of v for a trait bounded between 0
and 1 (0 ≤ v ≤ 0.25), and this equilibrium is stable (see figure
2(a)). The variance v−0 is slightly greater than v∗MD, the variance
at mutation-drift equilibrium. This means that the equilibrium
trait variance will remain very low: the small population size
leads to strong random drift, which counteracts the effects of
diversifying selection. In this case, branching will not be ob-
served despite being selectively favored.

For intermediate values of B0 (Bµ,L ≤ B0 ≤ Bµ,H; for the
parameters considered, Bµ,H ≈ 394), µv admits two roots, v−0
and v+

0 , and µv is positive for v > v+
0 ; hence, v−0 is locally sta-

ble, and v+
0 is unstable. If the current trait variance within the

population is very low, then the variance will equilibrate at the
low value v−0 . If, however, the trait variance makes an excursion
and reaches a high value (above v+

0 ), e.g., due to the appearance
of mutations with larger than average effects or simply due to
drift, then the variance will keep increasing (see figure 2(b))
and branching will result.

For higher values of B0 (B0 > Bµ,H), µv is always positive.
Consequently, the variance is always expected to increase re-
gardless of its current value, and diversification is certain (see
figure 2(c)).

This latter regime was called “deterministic branching” by
Wakano and Iwasa (2013), while the regime they called “stochas-
tic branching” corresponds, in our model, to both of our first
two regimes (with B0 < Bµ,L and Bµ,L ≤ B0 ≤ Bµ,H). Here we
have shown that if there are limits to the maximum amount of
variation that can be introduced by mutations (e.g., because the
trait is bounded), then populations that are too small (B0 < Bµ,L)
are never expected to branch even though selection is diversify-
ing (F(2) > 0).

We are now going to refine the description of what happens
for the intermediate values of the baseline fecundity B0, that is,
for intermediate population sizes.

3.3.2. Using the stationary distribution of the variance
While the inspection of µv allowed us to determine when

stochastic branching is plausible, how often the branches arise
and how quickly they collapse remain unclear. In this section,
we use, as an approximation, the stationary distribution of the
variance (see figure 2(d)–(f)), to ask how often the variance is
likely to be small (near v−0 ) and how often large (near 0.25),
corresponding to unbranched and branched states of the pop-
ulation, respectively. We must, however, keep in mind that
the stationary distribution is derived under the assumption of
a Gaussian distribution of traits with small variance, which will
not hold after branching occurs because the population becomes
bimodal. Nevertheless, the Gaussian approximation primarily
causes errors in estimating the amount of variance when in the
branched state (see e.g., figure 2(f)), while it works well to de-
termine how often the system is likely to be in the state with
small variance (see figure 2(d)).

For extremely low values of B0 (B0 < Bµ,L), inspection of µv

showed that branching cannot occur; when B0 remains low but
is above Bµ,L, we saw previously that the variance could grow if
it ever made an excursion to a high enough value (once v > v+

0
so that µv > 0), but the stationary distribution of v indicates
that these transitions remain extremely rare and short-lived (see
figure 2(d)).

For intermediate values of B0, the stationary distribution of
the trait variance is itself bimodal (see figure 2(e)): the vari-
ance may reach (or oscillate between) different values: a low
value corresponding to a unimodal distribution of the trait (no
branching) and a high value corresponding to a bimodal trait
distribution (after branching).

For higher values of B0, the stationary distribution indi-
cates that the trait variance is mostly, or even exclusively, high:
branching will happen and tend to persist (see figure 2(f)). This
occurs when B0 is high enough, even if B0 < Bµ,H , so that the
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Figure 2: The effect of baseline fecundity B0 on branching when selection is diversifying. (a)–(c): Expected change in the trait variance, µv, as a function of the
current variance within the population, v (on a log scale). (d)–(f): Stationary distribution of the trait variance, p̃v (curve: analytical predictions derived under the
assumption of a Gaussian distribution of traits of small variance; dots: output of individual-based simulations).

variance could decline (µv < 0) if ever the variance made an
excursion to a low value (v < v+

0 ). We see from the station-
ary distribution of v that these transitions remain extremely rare
when B0 is large enough: the variance will almost always be
high.

To better characterize the transitions between these three
regimes as a function of the population size (altered by adjust-
ing the baseline fecundity B0), we plot the probability that the
variance is greater than v+

0 , the unstable equilibrium variance
identified in the previous section using the expected change in
the variance µv. This probability is determined using the sta-
tionary distribution of the variance: denoting by pv the station-

ary distribution of the variance, we compute

∫ 0.25
v+
0

pv(v) dv∫ 0.25
0 pv(v) dv

for dif-

ferent values of B0. The result is plotted in figure 3 (curve),
and compared to the outcome of stochastic simulations (dots).
Here again, the exact values of the boundaries between these
regimes depend on the model and parameter values. From Fig-
ure 3, we can clearly identify the three regimes: for low values
of the baseline fecundity (B0 < Bp,L; BL

p ≈ 143 with the param-
eters of figure 2), the variance in the population remains mostly
around its low value v−0 (it is only 1% of the time above v+

0 ),
and drift nearly always overwhelms diversifying selection. For
intermediate values of B0 (Bp,L ≤ B0 ≤ Bp,H; with these param-
eters, Bp,H ≈ 319), populations will transition back-and-forth
between unbranched and branched states, which we refer to as
“intermittent branching”. Finally, for sufficiently high values of
B0 (B0 > Bp,H), selection nearly always drives diversification,
with the variance above v+

0 more than 99% of the time. While
the precise transition points are slightly shifted in the simula-
tions relative to the analytical predictions, the correspondence is
good given the pretty restrictive assumptions (Gaussian, small
variance) used to calculate the steady state distributions.

In our simulations, we used parameter values that have been
used in previous studies (Doebeli et al., 2004; Wakano and Lehmann,
2012; Wakano and Iwasa, 2013), which correspond to weakly
diversifying selection (low F(2)) and a small variance of the
mutation kernel (low σµ). The boundaries between the three
regimes identified above also depend on the choices made for
these parameters; in figure S1 we show that both stronger di-
versifying selection (figure S1(b)) and higher mutational vari-
ance (figure S1(a)) shift the boundaries towards lower popula-
tion sizes (lower B0 values), increasing the parameter range in
which diversifying selection overwhelms drift.

4. Discussion

Using a moment-based approach and diffusion approxima-
tions, we have derived expressions for the stationary distribu-
tions of population size, trait mean, and trait variance for a
quantitative trait in a well-mixed population, illustrating our re-
sults with a model of social evolution. The population was up-
dated following a birth and death process: during a time step,
either exactly one individual dies or one individual reproduces,
producing one offspring. The stationary distributions were de-
rived under the assumption that the trait distribution is Gaus-
sian, with little trait variance, and a finite but not too small
population. Assuming a Gaussian distribution allowed us to
focus on the mean and variance of the distributions, all other
moments being then known. The other assumptions allowed for
a decomposition of time scales: population size first reaches a
quasi-equilibrium, then the trait mean equilibrates, finally the
trait variance reaches a steady state. We were therefore able
to derive diffusion approximations for the three variables and
checked them against the output of individual-based simula-
tions, under stabilizing selection. We then used these results
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Figure 3: Probability that the variance is greater than v+
0 , calculated using the stationary distribution of the variance p̃v (curve) and in the stochastic simulations (dots).

In mathematical terms, the curve represents
(∫ 0.25

v+
0

pv(v)dv
)
/
(∫ 0.25

0 pv(v)dv
)
. The insets above the graph represent the distribution of traits over time (horizontal

axis: trait value [0 ≤ z ≤ 1], vertical axis: time); the horizontal location of each inset refers to the corresponding value of B0. We also explored the impact of binning
the traits into different numbers of bins through simulation: 51 bins as in the remainder of the paper (circles); 11 bins (upward triangles); 26 bins (diamonds); 101
bins (downward triangles). Parameters: same as in figure 2.

to derive conditions for evolutionary branching, when selection
is diversifying—a regime under which the assumption of Gaus-
sian distributions should eventually break down. Nevertheless,
we find good agreement for the conditions under which branch-
ing is likely to occur, assuming that the initial unbranched pop-
ulation is nearly Gaussian.

A few studies (Lehmann, 2012; Wakano and Lehmann, 2012;
Wakano and Iwasa, 2013) have previously investigated a similar
question, using either different approaches or different assump-
tions.

Lehmann (2012) incorporated genetic drift into a similar
model of quantitative trait evolution. The focus of this study
was to determine the stationary distribution for the trait value
in a single population, using a separation of time scales ap-
proach that described successive allele replacements, from one
monomorphic state to another. This approach describes how
often a species would be found near an evolutionary attractor
and how strong convergence to this attractor would be in a fi-
nite population. The study, however, did not attempt to look at
evolutionary branching.

Wakano and Lehmann (2012) extended this work, exploring
the dynamics of the system assuming that a maximum of two al-
leles would be present at any one point in time (requiring a very
small mutation rate). To assess whether invasion of a mutant al-
lele was successful or not, the authors considered the average
allele frequency across the stationary distribution, ρA, compar-
ing it to 1/2, its value when the mutation is neutral. Wakano
and Lehmann found that, in their two-allele model and con-

sidering only very small step mutations in a finite population,
the conditions for evolutionary stability were the same as the
conditions for convergence stability, suggesting that branching
would not occur. As shown in Appendix C, the conditions for
evolutionary stability are always the same as the conditions for
convergence stability using ρA, regardless of population size or
the exact life cycle. Furthermore, the authors showed through
simulations that their two-allele criterion succeeded only in pre-
dicting a lack of branching at very small population sizes; it did
not identify the branching that occurred at moderate population
sizes (N = 1000), where many more than two alleles tended
to segregate. Thus, this work left open the question of how to
predict branching in finite populations.

The most recent of these studies, by Wakano and Iwasa
(2013), used a different, moment-based approach. The authors
investigated a Wright-Fisher model, with discrete, non-overlapping
generations and a fixed population size (although we did not
impose a fixed population size, our results indicate that popu-
lation size rapidly reaches a quasi-equilibrium). Defining evo-
lutionary branching as a situation in which the trait variance
“explodes”, they were able to distinguish between regimes of
diversifying selection under which branching is certain (“de-
terministic branching”) or not (“stochastic branching”). Using
the stationary distribution of the variance, we were able to re-
fine the conditions under which diversification can occur. In
particular, we show that that “stochastic branching” regime of
Wakano and Iwasa (2013) actually includes three regimes: a
“no branching”, an “intermittent branching”, and a “branched”
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regime. In the first and last of these regimes, the population
is nearly always unimodal (“no branching”) or nearly always
nearly always contains more than one mode (“branched”), re-
spectively. Only within a narrower range of intermediate fe-
cundities does branching undergo gains and losses over short
enough time scales to be biologically relevant (Figure 3).

Our framework allows us to confirm that the trait mean
in the population can spend time away from its equilibrium
value—the potential branching point due to drift, even when se-
lection is stabilizing (see figure 1(c);(f)). Claessen et al. (2007)
mentioned this phenomenon as one of the reasons for the de-
lay or even prevention of branching in small populations. This
fact, however, does not enter in our analysis of the potential
for branching: we only use the equilibrium value of the trait
mean, z∗, when calculating the expected change in the variance
µv and the stationary distribution of the variance pv. Further-
more, for the parameters investigated in figure 3, we overesti-
mate the minimal population size at which branching reliably
occurs relative to simulations, which suggests that the wander-
ing of the trait mean z near z∗ may not strongly prevent branch-
ing. It may, however, affect the timing of branching, as sug-
gested by Claessen et al. (2007), a point that we do not investi-
gate.

Assuming that both population size N and the trait mean z
are at equilibrium is not the only approximation made to deter-
mine whether evolutionary diversification can occur or not. We
also assume that the distribution of traits is Gaussian—which is
clearly not the case after branching, if it happens. In addition,
while we use the fact that the trait is bounded between 0 and 1,
these boundaries are actually not reflected in the mutation ker-
nel, which assumes that mutational effects have the same mean
and variance regardless of the trait of the parent. Despite these
limitations, our approximation of the stationary distribution of
the variance allows us to identify the three branching regimes
observed in the simulations: when drift prevents branching,
when branching occurs intermittently, and when branching is
virtually certain.

To conclude, our study confirms that evolutionary diversifi-
cation can occur in asexual populations of finite size (although
not in a randomly mating sexual population, see Appendix E).
Even though random drift, which is stronger in smaller popu-
lations, may hinder diversification, evolutionary branching may
nevertheless occur provided that selection is diversifying and
strong enough to counter drift or if enough variation is intro-
duced by mutation. Even if branching can occur, however, our
results indicate that populations of intermediate size will tend
to be branched only for transient periods of time, undergoing
repeated cycles of branching and collapse. Thus, diversifying
selection must be strong enough relative to drift, not only to
allow evolutionary branching but also to allow branched popu-
lations to persist long enough to contribute substantially to the
speciation process.
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Appendices

A. Derivation of the diffusion terms

In this section, we detail the calculations of the expected changes and squared changes in population size (N), trait mean (z) and
variance (v), the latter two being defined as

z =

N∑
i=1

zi

N
, (A.1a)

v = (z − z)2 =

N∑
i=1

(zi − z)2

N
. (A.1b)

A.1. Realised changes

Suppose that there are N individuals in the population at time t, and that the vector z = {z1, . . . , zN} contains the states of all
individuals at time t (their order does not matter).

A.1.1. Birth
Let us assume that during a small time interval, individual i, with trait zi, reproduced and produced an offspring with trait zi + δ.

Then at the next time step, the size of the population is N + 1, and the state of the population is represented by a vector z′ of size
N + 1, z′ = {z, zi + δ}. In this case, the changes in population size, trait mean, and trait variance are as follows:

∆N+
i (δ) = +1, (A.2a)

∆z+
i (δ) =

−z
N + 1

+
zi + δ

N + 1
, (A.2b)

∆v+
i (δ) =

−v
N + 1

+
N (z − (zi + δ))2

(N + 1)2 . (A.2c)

(Note that (A.2c) is obtained after a few lines of calculations.)

A.1.2. Death
If the event was instead a death, and individual i dies, the size of the population at the next time step is N − 1, and the

corresponding changes are

∆N−i = −1, (A.3a)

∆z−i =
z

N − 1
−

zi

N − 1
, (A.3b)

∆v−i =
v

N − 1
−

N (z − zi)2

(N − 1)2 . (A.3c)

A.2. Probability of a given change

We denote the death propensity of an individual i by Di and its propensity to reproduce (i.e., its fecundity) by Fi. D and F give
the mean values of these propensities within the population.

A.2.1. Birth
The probability that the next event is a birth is

P[birth] =
F

F + D
. (A.4)

Given that the next event is a birth, the chance that individual i reproduces is

P[i reproduces|birth] =
Fi

N F
. (A.5)
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A.2.2. Mutation
The probability that the difference between i’s trait and its offspring’s trait is δ is given by u(δ), the mutation kernel. We assume

that mutation is unbiased: the expected deviation is 0 and we denote by σ2
u the mutational variance:

E[u] =

∫
δu(δ)dδ = 0 (A.6a)

Var[u] =

∫
(δ − E[u])2u(δ)dδ = σ2

u. (A.6b)

A.2.3. Death
The probability that the next event is a death is

P[death] =
D

F + D
= 1 − P[birth]. (A.7)

We assume that survival is density-dependent, but type independent. In a population of size d, the death propensity of every
individual is a linearly increasing function of the population size with slope d:

Di = D = d N. (A.8)

Given that the next event is a death, the chance that individual i dies is

P[i dies|death] =
Di

N D
=

1
N
. (A.9)

A.3. Assumptions on the distributions of traits

In general, an individual’s fecundity will be a function of its own trait, z•, and of the distribution of traits in the population.
We will assume that this distribution is Gaussian and of small variance. This means that knowing the trait mean z and variance v
entirely characterizes the distribution of traits and that we can Taylor-expand individual fecundity as follows:

F(z, z, v) = F(z, z, v)︸   ︷︷   ︸
F(0)

+(z − z)
∂F
∂z•

∣∣∣∣∣
z•=z︸   ︷︷   ︸

F(1)

+
(z − z)2

2
∂2F
∂z2
•

∣∣∣∣∣∣
z•=z︸    ︷︷    ︸

F(2)

+O((z − z)3). (A.10)

In particular, this means that we can write

F ≈ F(0) +
v
2

F(2). (A.11)

A.4. Conditional changes

Conditioning on a state (N,z) of the population at time t, we denote by EN,z,t[∆Q] the expectation of a change in some quantity
Q, between two time steps:

EN,z,t[∆Q] =

N∑
i=1

1
N

(
Fi

F + D

∫
u(δ)∆Q+

i (δ) dδ +
Di

F + D
∆Q−i

)
. (A.12)

This formula uses the law of total probabilities. The values of ∆Q+
i and ∆Q−i are given by (A.2) and (A.3) for N, z̄, and v.

A.4.1. Population size
Substituting (A.2a) and (A.3a) into (A.12) and simplifying, we obtain

EN,z,t[∆N] =
F − D

F + D
(A.13)

for the expected change. We also find

EN,z,t[(∆N)2] = 1 (A.14)

for the expected squared change.

12

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 3, 2015. ; https://doi.org/10.1101/033597doi: bioRxiv preprint 

https://doi.org/10.1101/033597
http://creativecommons.org/licenses/by-nc/4.0/


We can further simplify equation (A.13) using the definition of Di given in (A.8) and the approximation of F for small variance
given in (A.11):

EN,z,t[∆N] =
F(0) + v

2 F(2) − dN

F(0) + v
2 F(2) + dN

. (A.15)

Equation (A.13) also implies that at demographic equilibrium, F = D. We will use this result in the following.

A.4.2. trait mean
Expected change:. Substituting (A.2b) and (A.3b) into (A.12) and simplifying, we obtain

EN,z,t[∆z] =
1

F + D

 Fz
N + 1

−
Dz

N − 1
−

 Fz
N + 1

−
Dz

N − 1

 (A.16a)

=
1

F + D
Cov

( F
N + 1

−
D

N − 1
, z

)
. (A.16b)

This is a version of the Price equation (Price, 1970; Frank, 2012). This gets clearer if we write wi, the expected proportion of the
population, at the next time step, corresponding to an individual i and its potential offspring:

wi =
1

N(F + D)

[
1

N + 1
(NF − Fi) +

2
N + 1

Fi +
1

N − 1
(ND − Di) + 0 × Di

]
=

1

N(F + D)

 NF
N + 1

+
ND

N − 1
+

Fi

N + 1
−

Di

N − 1

 . (A.17)

We note that (A.17) implies that

w =

N∑
i=1

wi

N
=

1
N
. (A.18)

Using (A.17) and (A.18), we can rewrite (A.16b) in the familiar Price equation form (Price, 1970; Frank, 2012):

EN,z,t[∆z] =
1
w

Cov (w, z) . (A.19)

At demographic equilibrium, F = D, and we can rewrite (A.16b) as follows:

EN,z,t[∆z] =
1
2

Cov
(

F

F(N + 1)
−

D

D(N − 1)
, z

)
. (A.20a)

Using (A.8) and (A.11), this reduces to

EN,z,t[∆z] =
1
2

Cov

 (z − z)F(1) +
(z−z)2

2 F(2)

F(N + 1)
, z

 . (A.20b)

Finally, using the fact that the distribution of traits is assumed to be Gaussian, so that (z − z)3 = 0, we obtain

EN,z,t[∆z] =
1
2

vF(1)

F(N + 1)
. (A.20c)

Expected squared change:. The expected squared change in the trait mean is

EN,z,t[(∆z)2] =
1

F + D

F(z − z)2 + Fσ2
u

(N + 1)2 +
D(z − z)2

(N − 1)2

 . (A.21)
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At demographic equilibrium, this simplifies to

EN,z,t[(∆z)2] =
1
2

 F(z − z)2

F(N + 1)2
+

σ2
u

(N + 1)2 +
D(z − z)2

D(N − 1)2

 . (A.22a)

Using (A.8) and (A.11) and the fact that the distribution is assumed to be Gaussian (so that (z − z)3 = 0 and (z − z)4 = 3v2), this
reduces to

EN,z,t[(∆z)2] =
1
2

[
F(0)v + 3/2v2F(2)

F(N + 1)2
+

σ2
u

(N + 1)2 +
v

(N − 1)2

]
(A.22b)

=
1
2

[
v

(N + 1)2 +
v2F(2)

F(N + 1)2
+

σ2
u

(N + 1)2 +
v

(N − 1)2

]
(A.22c)

and finally, neglecting the term in v2,

EN,z,t[(∆z)2] =
1
2

[
v

(N + 1)2 +
σ2

u

(N + 1)2 +
v

(N − 1)2

]
. (A.22d)

A.4.3. Trait variance
Expected change:. Substituting (A.2c) and (A.3c) into (A.12) and simplifying, we obtain

EN,z,t[∆v] =
1

F + D

[
Cov

( F
N + 1

−
D

N − 1
, (z − z)2

)
+

σ2
u FN

(N + 1)2 −
F(z − z)2

(N + 1)2 −
D(z − z)2

(N − 1)2

]
. (A.23)

The first line corresponds to what is describes as the effect of “selection” in the Price equation, while the second line corresponds
to “transmission”. We note that the “transmission” line also contains terms that do not correspond to mutation because the squared
distance to the mean changes even in the absence of mutation (because the mean itself changes).

At demographic equilibrium, where F = D, (A.23) reduces to

EN,z,t[∆v] =
1
2

[
Cov

(
F

F(N + 1)
−

D

D(N − 1)
, (z − z)2

)
+

σ2
u N

(N + 1)2 −
F(z − z)2

F(N + 1)2
−

D(z − z)2

D(N − 1)2

]
. (A.24a)

Using (A.8) and (A.11),

EN,z,t[∆v] =
1
2

[
Cov

(
F(1)(z − z) + F(2)(z − z)2/2

F(N + 1)
, (z − z)2

)
+

σ2
u N

(N + 1)2 −
F(z − z)2

F(N + 1)2
−

v
(N − 1)2

]
. (A.24b)

Now using the fact that the distribution is Gaussian:

EN,z,t[∆v] =
1
2

[
F(2)v2

F(N + 1)
+

σ2
u N

(N + 1)2 −
vF + v2F(2)

F(N + 1)2
−

v
(N − 1)2

]
(A.24c)

=
1
2

[
F(2)v2N

F(N + 1)2
+

σ2
u N

(N + 1)2 −
v

(N + 1)2 −
v

(N − 1)2

]
, (A.24d)
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which leads to equation (11) in the main text. When population size N is large and trait variance v is small, this can be rewritten as

EN,z,t[∆v] ≈
F(2) v2 (N − 2)

2FN2
+

(N − 2)σ2
µ

2N2 −
v

N2 . (A.24e)

In the absence of selection In the neutral case, F(2) = 0, and we are left with

EN,z,t[∆vMD] =
(N − 2)σ2

µ

2N2 −
v

N2 , (A.25)

where MD stands for mutation-drift, the two evolutionary forces left. We denote by v∗MD the variance at the mutation-drift equilib-
rium, such that the above equation is equal to zero:

v∗MD =
(N − 2)σ2

µ

2
. (A.26)

Expected squared change:. We now consider the expected squared change in the variance:

EN,z,t[(∆v)2] =
1

F + D

[ N∑
i=1

Di

N

(
N2

(N − 1)4 (zi − z)4
−

2Nv
(N − 1)3 (zi − z)2

+
v2

(N − 1)2

)

+

N∑
i=1

Fi

N

(
v2

(N + 1)2 −
2Nσ2

uv
(N + 1)3 +

N2
(
3σ4

u

)
(N + 1)4

+

(
6N2σ2

u

(N + 1)4 −
2Nv

(N + 1)3

)
(zi − z)2

+
N2

(N + 1)4 (zi − z)4
) ]

.

(A.27)

We then simplify the Fi and Di terms using (A.8) and (A.11), and we use the assumption of a Gaussian distribution of traits, not-
ing that in this case µ4 = (z − z)4 = 3 v2, µ5 = (z − z)5 = 0 and µ6 = (z − z)6 = 15v3. At demographic equilibrium, equation (A.27)
becomes

EN,z,t[(∆v)2] =
1
2

[ (F(0)v + 3F(2)v2

2

)
F

(
6N2σ2

u

(N + 1)4 −
2Nv

(N + 1)3

)

+

(
F(0) + F(2)v

2

)
F

+ v2

(N + 1)2 −
2Nσ2

uv
(N + 1)3 +

N2
(
3σ4

u

)
(N + 1)4


+

(
3F(0)v2 + 15F(2)v3

2

)
F

N2

(N + 1)4

+

(
2N2 + 1

)
v2

(N − 1)4

]
.

(A.28)

This expression can be further simplified by neglecting terms of order v3 and higher, v2σu and higher, and σ5
u and higher. Also,

we can approximate the expression for relatively large population sizes (small 1/N), and we obtain

EN,z,t[(∆v)2] ≈
2v2

N2 +
4vσ2

u + 3σ4
u

2N2 . (A.29)

It turns out that the shape of the stationary distribution of the variance will almost not be affected if we use an even simpler
expression, neglecting the effect of mutation on the expected change in the trait variance:

EN,z,t[(∆v)2] ≈
2v2

N2 . (A.30)
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B. Social evolution example

We illustrate our results with a specific example, a model of social evolution in a well-mixed population. In this example, an
individual’s fecundity depends on both its type (z) and the distribution of types in the population (through its mean z and variance
v) and is given by

F(z, z, v) = B0

(
1 + B1 (z + z) + B2

[
(z + z)2 + v

]
−C1 z −C2 z2

)
. (B.1)

The F(k) terms, defined in (A.10), are as follows:

F(0) = B0

(
1 + B1(2z) + B2(4z2

+ v) −C1 z −C2 z2
)
. (B.2a)

F(1) = B0 (B1 −C1 + (4 B2 − 2 C2) z) , (B.2b)

F(2) = 2 B0 (B2 −C2) . (B.2c)

The expressions of the stationary distributions are obtained by integrating equation (2) for each variable, as described in the main
text. These integrations are done with Mathematica. Although explicit solutions are found, their expressions are too complicated
to present here, but they are available in a Supplementary Mathematica file.
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C. Evolutionary stability and convergence stability in Wakano and Lehmann (2012)

In Wakano and Lehmann (2012), invasion conditions are calculated using the stationary average frequency of the (mutant)
allele zM that appeared in a population fixed for the allele zR, denoted by ρ(zM , zR). When the mutation is neutral, ρ(zM , zR) = 1/2;
otherwise, the allele zM is said to successfully invade when its stationary average frequency is greater than the stationary average
frequency of a neutral mutant, 1/2. The quantity ρ(zM , zR)− 1/2 is then used as if it corresponded to invasion fitness in order assess
convergence and branching properties.

The selection gradient at a strategy z is defined as

D(z) =
∂ρ

∂zM

∣∣∣∣∣
zM=zR=z

= ρ̇(z). (C.1)

A singular strategy z∗ is a strategy at which the selection gradient vanishes:

D(z∗) = 0. (C.2)

The convergence stability condition in Wakano and Lehmann (2012) is QCS < 0, with:

QCS =
dD
dz

∣∣∣∣∣
z=z∗

(C.3a)

Using the formula of total derivatives, we can rewrite this as

QCS =

(
∂2ρ

∂zM∂zR
+

∂2ρ

∂2zM

)∣∣∣∣∣∣
zM=zR=z∗

. (C.3b)

The evolutionary stability condition in Wakano and Lehmann (2012) is QTS < 0, with:

QTS =
∂2ρ

∂2zM

∣∣∣∣∣∣
zM=zR=z∗

= ρ̈(z∗). (C.4)

The relationship between QTS and QTS can be simplified by using the fact that ρ is a stationary average frequency and that we
are considering two alleles:

ρ(zM , zR) + ρ(zR, zM) = 1. (C.5)

Equation (C.5) implies that (taking the derivative with respect to the first argument):

∂ρ(zM , zR)
∂zM

∣∣∣∣∣
zM=zR

= −
∂ρ(zR, zM)

∂zR

∣∣∣∣∣
zM=zR

(C.6a)

and then that (taking the derivative with respect to the second argument)

∂2ρ(zM , zR)
∂zM∂zR

∣∣∣∣∣∣
zM=zR

= −
∂2ρ(zR, zM)
∂zR∂zM

∣∣∣∣∣∣
zM=zR

. (C.6b)

Because the partial derivatives commute, and because we are evaluating the derivatives when zM = zR, then equation (C.6b)
implies that

∂2ρ(zM , zR)
∂zM∂zR

∣∣∣∣∣∣
zM=zR=z∗

= 0. (C.7)

Given the definitions of QTS (equation (C.4)) and QCS (equation (C.3b)), the result shown in (C.7) means that for any life-cycle
and any population size

QTS = QCS . (C.8)

In other words, when using the stationary average allele frequencies to describe invasion fitness, the conditions for evolutionary
stability and convergence stability must match, which indicates that this surrogate for invasion fitness is unable to identify the
conditions under which evolutionary branching occur (i.e., where QCS < 0 while QTS > 0).
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D. Oligomorphic dynamics

D.1. Model

In this section, we present an analysis of a deterministic version of the model, using oligomorphic dynamics (Sasaki and
Dieckmann, 2011; Débarre et al., 2013), which allows us to determine when a trait distribution will be multimodal. Under this
approximation, the distribution of traits in the population is decomposed into a sum of unimodal distributions, each corresponding
to a “morph” – this approximation extends the adaptive dynamics framework to incorporate standing genetic variance within each
morph.

There are M morphs in the population (technically, in our case it will be sufficient to consider M = 1 and M = 2 only). The
density at time t of individuals belonging to morph m, having trait z is denoted by φm(z, t). Its dynamics are described by the
following equation

∂φm(z, t)
∂t

=

∫
u(z − y)φm(y, t)F(y, z, v)dy − φm(z, t)D(z). (D.1)

Notation is similar to in our main model: u is the mutation function (see section A.2.2), F is the fecundity function, and D(z) = d N
represents density-dependent mortality. As previously, we drop the time dependence to simplify the notation.

Dynamics of the total population size:. Using equation (D.1), we can write the dynamics of N as follows:

dN
dt

=

M∑
m=1

∫
∂φm(z, t)

∂t
= N (F − D), (D.2)

an equation similar to equation (A.13) (the difference is a factor N(F + D), scaling the time between events).
At demographic equilibrium (dN/dt = 0), we have F = D.

Dynamics of the size of morph m:. The dynamics of total size of morph m are as follows:

dNm

dt
=

∫
∂φm(z, t)

∂t
dz = Nm(Fm − Dm), (D.3)

where Fm and Dm are the mean fecundity and mean mortality within morph m.

Dynamics of the relative size of morph m:. The proportion of the population consisting of morph m is qm = Nm/N, and its dynamics
are as follows:

dqm

dt
=

1
N

dNm

dt
−

1
N

dN
dt

qm

= qm

(
Fm − F

)
, (D.4)

because mortality is type- and frequency-independent, so that Dm = D.

Dynamics of the frequency of a trait within morph m:. We denote by pm(z, t) the frequency of individual with trait z within morph
m. Its dynamics are as follows:

dpm(z)
dt

=
dφm(z)/Nm

dt
=

1
Nm

∂φm(z)
∂t

−
1

Nm

dNm

dt
pm(z)

=

∫
u(z − y) pm(y) F(y, z, v) dy − pm(z) D(z) − (Fm − Dm) pm(z),

=

∫
u(z − y) pm(y) F(y, z, v) dy − Fm pm(z), (D.5)

again using the fact that mortality is the same for all individuals in the population at a given time.
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D.2. Dynamics of the moments

We can now use equation (D.5) to compute the changes in the trait mean and trait variance within each morph. For this, we will
use the same kind of second order expansion of the fecundity function as in equation (A.10), except that the approximation is now
done for each morph, near the morph’s trait mean:

F(z, z, v) = F(zm, z, v)︸     ︷︷     ︸
F(0)

m

+(z − zm)
∂F
∂z•

∣∣∣∣∣
z•=zm︸    ︷︷    ︸

F(1)
m

+
(z − z)2

2
∂2F
∂z2
•

∣∣∣∣∣∣
z•=zm︸     ︷︷     ︸

F(2)
m

+O((z − zm)3). (D.6)

This means that we assume that the variance vm within morph m is small – but this is not necessarily the case for the overall variance
v in the population. With this approximation, we can rewrite the mean fecundity within morph m as follows:

Fm =

∫
pm(z) F(z, z, v) dz = F(0)

m +
vm

2
F(2)

m , (D.7)

where vm is the variance within morph m.

D.2.1. Changes in the trait mean within morph m
We have

dzm

dt
=

d
dt

∫
z pm(z)dz

=

∫
z
(∫

u(z − y) pm(y) F(y, z, v)dy − Fm pm(z)
)

dz

We now use the expansion of equation (D.6), and we obtain:

dzm

dt
= vmF(1)

m +
ςm

2
F(2)

m , (D.8)

where ςm is the third central moment of the distribution of traits within morph m. We can now assume that the distribution of traits
within each morph is Gaussian, so that ςm = 0, and we end up with the within morph, deterministic, equivalent of equation (A.20c):

dzm

dt
= vmF(1)

m . (D.9)

D.2.2. Changes in the variance within morph m
We have

dvm

dt
=

d
dt

(∫
(z − zm)2 pm(z)dz

)
=

∫ (
−2

dzm

dt
(z − zm)pm(z) + (z − zm)2 dpm

dt

)
dz

=

∫
(z − y + y − zm)2

(∫
u(z − y)pm(y)F(y, z, v)dy − Fm pm(z)

)
dz

=

∫ (
σ2

u + (y − zm)2
)

pm(y)F(y, z, v)dy − Fmvm.

Now using the expansion of equation (D.6), we obtain

dvm

dt
= σ2

uFm + vmF(0) + ςmF(1) +
κm

2
F(2) − Fmvm,

where σ2
u is the mutational variance (see equation (A.6)), and κm the fourth central moment of the distribution of traits within morph

m. As previously, we assume that the distributions within each morph are Gaussian; consequently, κm = 3vm (and ςm = 0), and we
obtain.
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dvm

dt
= v2

mF(2)
m + σ2

uFm. (D.10)

The first term in equation (D.10) corresponds to selection, via the curvature of the fecundity function, and the second term corre-
sponds to the variance contributed by mutation. Because we are here considering a population of infinite size, there is no effect of
drift.

As previously, we note that the dynamics of the population size is of order 1 (equation (D.3)), the dynamics of the trait mean
within morph m is of order vm (assumed to be small), and the dynamics of the variance within morph m of order v2

m: we can hence
again decompose time scales, assuming that population size equilibrates first, followed by the trait mean, followed by the trait
variance.

D.3. Dynamics with one morph

Let us start with one morph in the population (M = 1); we can drop the m subscripts here. As population size equilibrates, F = D
(equation (D.3)). Then, the trait mean of the morph equilibrates, which occurs at a value z∗ for which F(1) = 0 (equation (D.9)).
Whether selection is then stabilizing or diversifying depends on the sign of F(2) at z∗ (equation (D.10)).

D.4. Dynamics with two morphs

Let us consider the case of diversifying selection (F(2) > 0), and let us now represent the distribution of the trait as the sum
of two Gaussian distributions (indexed by m ∈ {1, 2}), currently having the same mean z∗ and the same variance vm. Densities
within each morph equilibrate fast, and for each morph, Fm = Dm. The trait means change according to equation (D.9). Variances
within a morph change much more slowly, so we can first approximate them as constant. Note that this does not assume that the
global variance v changes at the same rate, because the global variance will be driven by changes in the trait means of each morph.
(Throughout, we discuss the global distribution of traits as the sum of the distributions for each morph.)

D.5. Social evolution example

D.5.1. With one morph
The fecundity function and its derivative are the same as in Appendix B, equation (B.2). The singular strategy z∗ is found by

solving F(1) = 0, which yields the same value as in the main text (equation (10)). This value is an attractor when dF(1)

dz (z∗) < 0,
which occurs when 2B2 −C2 < 0. Selection is diversifying, i.e., the variance of the distribution can increase due to selection when
F(2)(z∗) > 0, which occurs when B2 −C2 > 0.

D.5.2. With two morphs
We can rewrite an individual’s fecundity function by decomposing the population into morphs; equation (B.1) then becomes

F(z, z, v) = B0

1 + B1(z +

M∑
m=1

qmzm) + B2

 M∑
m=1

qm

(
(z + zm)2 + vm

) −C1z −C2z2

 . (D.11)

As a reminder, qm = Nm/N: it is the relative density of morph m in the population, and z =
∑M

m=1 qmzm. We now consider the case
where there are two morphs in the population, M = 2.

Then, the first derivative of F with respect to the trait of the focal individual, evaluated at zm, reads

∂F
∂z•

∣∣∣∣∣
z=zm

= F(1)
m = B0 (B1 −C1 + 2 zm (B2 −C2) + 2 B2 z) . (D.12)

We can now rewrite equation (D.9), evaluating N (total population size) and the qm terms (proportion of morph m in the
population) at equilibrium, since densities equilibrate fast. The demographic equilibrium with the two morphs is calculated by
solving dN/dt = 0 for N (equation (D.2)) and, for m = 1 and m = 2, by solving dqm/dt = 0 (equation (D.4)) for qm. To simplify the
calculations, we also assume that the variances of the two morphs are equal: v1 = v2 = v. We find that at demographic equilibrium,
the proportion of the population belonging to morph 1 is given by

q∗1 =
−B1 + C1 + z1 (C2 − B2) + z2(C2 − 3B2)

2B2 (z1 − z2)
. (D.13)

We note that when the two morphs are equidistant from the one-morph equilibrium value z∗, equation (D.13) simplifies to q∗1 = 1
2 .

We finally obtain

dzm

dt
= 2 B0 (B2 −C2)

(
zm −

z1 + z2

2

)
v. (D.14)
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We are first considering the initial case where the means of the two morphs are both at z∗ (i.e., the population has not started
diversifying yet and is still unimodal); in this case the two means evolve away from z∗ if B2 − C2 > 0, which is precisely the
condition for selection to be diversifying at z∗ (see equation (B.2c)).

The only equilibrium of Equation (D.14) occurs when z1 = z2 = z∗, that is, when there is actually only one morph. That is, we
cannot identify the equilibrium to which the system heads when selection is diversifying. This is because we have not explicitly
taken into account the fact that the trait is bounded (0 ≤ z ≤ 1). What actually happens is that the two morph means keep evolving
away from z∗, until they reach the boundaries 0 and 1, the extremum values of the trait.
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E. Sexual reproduction

E.1. Assumptions

The model presented in the main text assumes clonal reproduction: only one parent is required for reproduction. The framework
can however be extended to accommodate sexual reproduction. For this, we need a map linking the parent’s phenotype to their
offspring’s phenotype. Here, we will assume that an offspring born to parents with phenotypes zi and z j has a phenotype zo given
by

zo =
zi + z j

2
+ δ, (E.1)

where δ is a random variable with mean 0 and variance σ2
S , which takes into account the effects of mutation, segregation and

recombination.
All individuals in the population are assumed to be hermaphoditic. As previously, an individual with trait zi is chosen to

reproduce with probability given by Fi/(NF). This individual now has to choose a mate. We assume that mating occurs at random,
and self-fertilization is possible: a mating individual i chooses individual j with probability 1/N, N being the current size of the
population. We can hence write the expected value of the offspring phenotype of a reproducing individual i, Ei[zo] (and also of its
square, Ei[z2

o]), integrating over all possible mates and all possible values of δ:

Ei,N,z,t[zo] =
zi + z

2
, (E.2a)

Ei,N,z,t[z2
o] =

(zi + z)2

4
+

v
4

+ σ2
S , (E.2b)

Ei,N,z,t[(zo − z)2] =
(zi − z)2

4
+

v
4

+ σ2
S , (E.2c)

where z and v are the mean and variance of the distribution of traits in the population.

E.2. Expected changes

E.2.1. Population size
The mode of reproduction does not change the expected changes in the size of the population: equation (A.15) remains un-

changed. As previously, we consider the case where the population has reached its demographic equilibrium, meaning that F = D.

E.2.2. Trait mean
The mode of reproduction however affects the expected changes in the moments of the distribution of traits. Using equa-

tion (E.2a), the change in the trait mean is as follows:

EN,z,t[∆z] =
1
2

N∑
i=1

[
Fi

NF

(
−z

N + 1
+

(zi + z)/2
N + 1

)
+

Di

ND

(
z − zi

N − 1

)]
. (E.3a)

Using the expansion from equation (A.10), this further simplifies into

EN,z,t[∆z] =
1
2

vF(1)

F(N + 1)
, (E.3b)

an expression that differs from its clonal equivalent (equation (A.20c)) by only a factor 1/2.

E.2.3. Trait variance
Using equation (E.2c), we can write the expected change in the trait variance as follows:

EN,z,t[∆v] =
1
2

N∑
i=1

[
Fi

NF

(
−v

N + 1
+

N
(N + 1)2

(
(zi − z)2

4
+

v
4

+ σ2
S

))
+

Di

ND

(
v

N − 1
−

N(zi − z)2

(N − 1)2

)]
. (E.4a)

Using the expansion from equation (A.10), this further simplifies into

22

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 3, 2015. ; https://doi.org/10.1101/033597doi: bioRxiv preprint 

https://doi.org/10.1101/033597
http://creativecommons.org/licenses/by-nc/4.0/


EN,z,t[∆v] =
1
2

[
−v

N + 1
+

N
(N + 1)2

( v
4

+ σ2
S

)
+

N
(N + 1)2

1

4 F

(
F(0) v + F(1) ς + F(2) κ

2

)
+

(
v

N − 1
−

N v
(N − 1)2

)]
, (E.4b)

where ς and κ are the third and fourth central moments of the distribution of traits, respectively. Assuming as previously that this
distribution is Gaussian, we have ς = 0 and κ = 3v2, and we obtain after simplification:

EN,z,t[∆v] = −

(
N(N + 1)2 + 4

)
v

8
(
N2 − 1

)2 +
N σ2

S

2 (N + 1)2 +
N

8 (N + 1)2

F(2) v2

F(0) + F(2)

2 v
. (E.4c)

Identifying the first term of equation (E.4c) as the drift term, we can now compare it to its clonal equivalent (equations (A.24d)
or (11) in the main text). In the clonal model, the drift term is of order 1/N2, while the mutation and selection terms are of order
1/N; thus, the drift term becomes relatively unimportant when the population size becomes large. The situation is different in the
sexual model (equation (E.4c)): the “drift” term (which now also includes the randomness of choosing a mate) is of order 1/N, the
same as the mutation and selection terms. Thus, diversifying selection (reflected in the last term of (E.4c)) will only have a modest
effect on the mutation-recombination-drift balance obtained by setting the first two terms to zero, and it will not be possible for v
to increase by orders of magnitude from the initially small values. As a result, the drift term does not vanish when population size
becomes large. Consequently, evolutionary diversification is precluded, as has been found previously from deterministic models of
a single population with random mating (Dieckmann and Doebeli, 1999).
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Supplementary figure

(a) High mutation
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(b) Stronger diversifying selection
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Figure S1: Equivalents of figure 3, with different parameters. In (a), the mutation probability is much higher: µ0 = 0.1 (instead of 0.01), so that σµ ≈ 0.00632.
There are no data points after B0 = 125, because value corresponds to Bµ,L (branching becomes certain). In (b), diversifying selection is stronger (B2 = −0.9,
C2 = −1.6, B1 = 4.8, C1 = 4.56).
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