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ABSTRACT

Analysis of high troughput biological data often involves the use of many software packages 

and in-house written code. For each analysis step there are multiple options of software tools 
available, each with its own capabilities, limitations and assumptions on the input and output data. The
development of bioinformatics pipelines involves a great deal of experimentation with different tools 
and parameters, considering how each would fit to the big picture and the practical implications of their
use. Organizing data analysis could prove challenging. In this work we present a set of methods and 
tools that aim to enable the user to experiment extensively, while keeping analyses reproducible and 
organized.  We present a framework based on simple principles that allow data analyses to be 
structured in a way that emphasizes reproducibility, organization and clarity, while being simple and 
intuitive so that adding and modifying analysis steps can be done naturally with little extra effort. The 
framework suppports version control of code, documentation and data, enabling collaboration between
users.

INTRODUCTION 
Computational analyses of biological data, especially those involving high-throughput 

techniques such as next-generation sequencing, often require the use of multiple software 
tools and in-house written code. For each step of an analysis, there are often multiple options 
of software tools available, each tool having its own capabilities, limitations and assumptions 
on the structure of input and output files. The development of bioinformatics pipelines involves
a great deal of experimentation with different tools and parameters, to test how each would fit 
the big picture, considering what each would add to the analysis and the practical implications
of their use. Due to the diversity of computational tools and setups it can prove challenging to 
keep data analysis organized and reproducible.

Several efforts have been made to document orgazination principles for computational 
research and develop tools to manage and automate analysis workflows [Noble et al. 2009, 
Ebert et al. 2015, Goodstadt L. 2010, Köster et al. 2010, Goecks et al. 2010]. A prominent 
example is the widely used Galaxy patform [Goecks et al. 2010], which allows the user to 
compose a workflow by linking inputs and outputs of tools in a graphical user interface. 
Galaxy addresses reproducibility by the use of well-defined wrappers for each tool and
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automatic recalculation of intermediate results. The drawbacks are the complexity of 
mantaining a local Galaxy installation, and the overhead cost of writing and modifying 
wrappers as new analysis tools are added.

We present a framework based on simple principles that allow data analyses to be 
structured in a way that emphasizes reproducibility, organization and clarity, while being 
simple and intuitive so that adding and modifying analysis steps can be done naturally with 
little extra effort. The framework suppports version control of code, documentation and data, 
enabling collaboration between users. 

PRINCIPLES

In this framework, the layout of data files, scripts and documentation in a file system is 
key to organized and reproducible data analysis. We use three principles to guide the layout 
of files: (1) separation of human-generated data from computer-generated data; (2) tree 
structure; (3) driver scripts.

A driver script [Noble et al. 2009] is a computer program that runs without arguments, 
producing an output given its input data. Running without arguments ensures the analysis 
doesn't depend on manual input.

Most data analyses are composed of multiple steps that depend on each other. In a 
hypothetical example, steps B and C take as input the output of a previous step A. A natural 
way to organize these direct dependencies is to use a tree structure in which node A has two
children nodes B and C. 

Fig. 1: Directory structure of a hypothetical analysis tree. Each analysis step is mapped to a directory 
that contains two special subdirectories:  __ (double underscore) for human-generated files, and _ 
(single underscore) for computer-generated files (program outputs). A driver script located at the 
“human” directory __ specifies how the contents of the “machine” directory _ are generated. The 
directory structure reflects data dependencies: analysis steps B and C depend on the output of step A.

 └── nodeA
     ├── _
     ├── __
     ├── nodeB
        │ ├── _
        │ └── __
     └── nodeC
         ├── _
         └── __
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The third principle is to have a clear separation between human-generated data and 
computer-generated data. Files written by humans, i.e. driver scripts, programs and 
documentation, specify how output files are generated, and are placed in a separate directory
than computer-generated files. 

Figure 1 shows a directory structure that puts these principles together, mapping the 
analysis steps to directories in a file system. Each node or directory contains two special 
subdirectories, the “human” directory “__” (double underscore), the “machine” directory “_” 
(single underscore), and one subdirectory for each of the children nodes. The human 
directory “__” contains the driver script, documentation and code. Running the driver script 
generates the contents of the machine directory “_”. Dependencies other than the parent are 
specified by putting symbolic links to other nodes in the “__/dep/” subdirectory.

With this structure, the position of a node in the tree, or equivalently the full path to a 
directory, documents the main analysis steps taken to generate the data in that node. In other
words, the full path provides a quick and intuitive view on the analysis workflow. 

Moreover, the use of a directory (“_”) for program output makes no assumption on the 
format of output data, which is particularly important in bioinformatics, where there's a wide 
variety of tools, file formats and ways to generate output. 

This structure also allows automated execution of driver scripts in the whole tree, in an 
order defined by topologically sorting the dependency graph. In the current implementation 
this is done by generating a 'makefile' and passing it to the unix tool 'make'. It is not the 
purpose of this framework to define how to run jobs in parallel or how to farm out jobs in a 
distributed computer environment. This is done in conjunction with other tools, such as 
snakemake [Köster et al. 2012], called from the driver scripts.

VERSION CONTROL AND COLLABORATION

Version control is an essential component in software development, as it enables 
experimentation with code while keeping track of the full development history. The same 
applies to data analysis, although version control for data is not yet as widely adopted as it is 
for code. In this framework we use the git [http://git-scm.com/] version control system for the 
“human” directories __/ a git-annex to for the machine directories _/. Git-annex [https://git-
annex.branchable.com/] is an extension written for git to support version control of large files. 
This way we get the full functionality of git, i.e., rollback to a previous version, branching, etc., 
to analysis trees. One of the main features of git is to enable collaboration between users, 
allowing them to work each on a local copy of the code repository, and merging their changes.
In this framework, users can have full local copies of the analysis tree structure and 
development history, i.e., the “human” directories plus the git repository, and download the 
contents of “machine” directories  on demand, avoiding wasting storage or bandwidth. Figure 
2 illustrates these ideas with a hypothetical use case.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 9, 2015. ; https://doi.org/10.1101/033654doi: bioRxiv preprint 

https://doi.org/10.1101/033654
http://creativecommons.org/licenses/by-nc-nd/4.0/


 fastq
  ├── _
  ├── __
  └── tophat
      ├── _
      ├── __
     └  ── cuffquant
          ├── _
          ├── __
          ├── cuffdiff
             │ ├── _
             │ └── __
          └── cuffnorm
              ├── _
              ├── __
              └── myipython
                  ├── _
                  └── __     
  
           

alice@arch$ cd ~/projects/demo/fastq/tophat
alice@arch$ rf drop --recursive .  # removes “computer” directories _/    
alice@arch$ emacs __/driver
alice@arch$ rf run --recursive .   # runs driver scripts to generate
                                   # contents of “computer” directories _/

alice@arch$ rf commit -m 'reverted to default tophat parameters' -r .
alice@arch$ git tag 'submitted_paper'

bob@arch$ rf clone ~alice/projects/demo demo
bob@arch$ cd demo/fastq/tophat/cuffquant/cuffnorm/
bob@arch$ rf get .                # transfers “computer” directory _/
bob@arch$ mkdir -p mypca/__; cd mypca
bob@arch$ vim  __/driver
bob@arch$ rf run --recursive .    # runs driver script 
bob@arch$ rf commit -m 'added PCA analysis' -r .

Figure 2:  (A) Directory structure of an RNA-Seq analysis based on tophat, cuffquant and cuffnorm 
[Trapnell et al. 2012 and http://cole-trapnell-lab.github.io/cufflinks/manual/]. Input fastq files are located in 
the fastq/_ directory. After execution of the driver script fastq/tophat/__/driver, the directory fastq/tophat/_ 
contains bam files that are the output of tophat program. (B) and (C) hypothetical use cases of this 
framework by collaborating users Alice and Bob. The rf command is used to run driver scripts and as a 
front end to git and git-annex. (B) Alice edits a driver script, recomputes an analysis subtree and commits 
changes to version control. (C) Bob clones Alice's analysis tree structure to a local directory, transfers 
data from the “cuffnorm” node, adds a new analysis node “mypca”, runs its driver script and commits 
changes to version control.

A

B

C
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PRESERVING THE EXECUTION ENVIRONMENT

In addition to the principles presented above and version control, to achive a higher 
degree of reproducibility, it is desirable to faithfully preserve the computational environment 
used in the analyses. To enable that, a feature currently in development in this framework is 
integration with Docker [https://www.docker.com/]. Docker provides a lightweight alternative to
virtual machines to have a defined computational environment (operating system and 
installed software) in a software container. Docker allows mounting directories from the host 
system. This way, an analysis tree can be mounted and the driver scripts can be run from a 
Docker container. Preserving the Docker image along an analysis tree enables the user to 
reproduce the analyses using the same software environmnent used to generate it in the first 
place.

DISCUSSION

The framework presented here provides a simple and intuitive way to organize 
computational analyses. The user doesn't need to learn new syntax to define workflows. This 
is done instead by laying out data files and scripts in a directory structure, according to simple
principles. Maintaining the whole analysis tree under version control makes it easier to 
experiment with analysis steps and collaborate with other researchers. This framework is in 
development on github (https://github.com/apuapaquola/rf.git).  
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