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   1	
  

ABSTRACT 19	
  

Gene duplication was proposed by S.Ohno (Ohno, 1970) as a key mechanism of a gene 20	
  

function evolution. A pair of gene paralogs, NTNG1 and NTNG2, sharing identical gene 21	
  

and protein structures and encoding similar proteins, forms a functional complement 22	
  

subfunctionalising (SF) within cognitive domains and forming cognitive 23	
  

endophenotypes, as detected by Intellectual Quotient (IQ) tests (Prosselkov et al., 2015). 24	
  

NTNG paralogs are associated with autism spectrum disorder (ASD), bipolar disorder 25	
  

(BD) and schizophrenia (SCZ), with unique non-overlapping segregation among the 26	
  

other 15 cognitive disorders (CD), emphasizing an evolutionary gain-dependent link 27	
  

between advanced cognitive functions and concomitant neurocognitive pathologies. 28	
  

Complementary expression and human brain transcriptome composition of the 29	
  

paralogs explains the observed phenomena of their functional complementarity. The 30	
  

lowest identity among NTNGs is found in a middle of encoded by them proteins 31	
  

designated as uknown (Ukd) domain. NTNG1 contains anthropoid-specific constrained 32	
  

regions and both genes contain non-coding conserved sequences underwent accelerated 33	
  

evolution in human. NTNG paralogs SF perturbates “structure drives function” concept 34	
  

at protein and gene levels. Their functions diversification result in a so-called 35	
  

“Cognitive Complement (CC)” formation, a product of gene duplication and 36	
  

subsequent cognitive subfunction bifurcation among NTNG gene duplicates. 37	
  

38	
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   2	
  

INTRODUCTION 38	
  

Gene duplication was proposed by S.Ohno (Ohno, 1970) as a key mechanism of a gene 39	
  

function evolution. Complex behaviors arise from a combination of simpler genetic modules 40	
  

that either have evolved separately or co-evolved. Many genes and the proteins they encode 41	
  

have been found to be involved in the cognitive information processing with a single variant 42	
  

or a single gene generally accounting for only a partial phenotypic variation in a complex 43	
  

trait. Cognitive processing as a quintessence of brain functioning can be viewed as a product 44	
  

of intricately interlinked networks generated by deeply embedded into it players with specific 45	
  

or partially overlapping functions. The robustness of the cognitive processing towards its 46	
  

single elements genetic eliminations (to study their function) and its simultaneous fragility 47	
  

expressed in the multiple forms of neurological disorders manifest the existence of cognitive 48	
  

domains interlocked but SF within a unit of cognition formed upon these domains interaction. 49	
  

Previously, we have described a function of a pair of gene paralogs (NTNG1 and NTNG2) 50	
  

involved in human IQ tests performance which underwent hominin-specific evolutionary 51	
  

changes (Prosselkov et al., 2015). Hereby, we continue looking at these genes paralogs 52	
  

features focusing on underlying mechanisms of their function segregation and 53	
  

complementation within the cognitive domains. 54	
  

55	
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RESULTS 55	
  

 The previously observed phenomena of functional complementation among the 56	
  

NTNG paralogs within cognitive domains (Prosselkov et al., 2015) is also manifested in 57	
  

NTNG-associated human pathologies diagnosed in most cases (if only not in all) by a 58	
  

cognitive decline (Figure 1A-1 and A-2). Both genes are associated with BD and SCZ – 59	
  

devastating disorders sharing similar etiology (Lee et al., 2013) with genetic correlation by 60	
  

multivariate analysis of 0.590 (Maier et al., 2015), linked to human creativity (Power et al., 61	
  

2015), and characterized by impulsiveness as a common diagnostic feature (Reddy et al., 62	
  

2014). Recently found associations of both paralogs with ASD (Sanders et al., 2015) 63	
  

supports the reported genetic correlation of 0.194 ASD/SCZ pair (Maier et al., 2015) and 64	
  

shared module eigengenes detected by PC1 among these two disorders (Parikshak et al., 65	
  

2015). 12 NTNG1-linked CDs, ranging from AD to TS, span a broad spectrum of clinical 66	
  

features frequently involving reduced processing speed (PS) and verbal comprehension (VC, 67	
  

Figure 1A-1). As for NTNG2, working memory (WM) deficit and inability “to bind” events 68	
  

(perceptual organization, PO) are the most prominent diagnostic traits for the SLE and TLE 69	
  

patients (Figure 1A-2), with PN characterised by indolent behavior in 90% of the cases 70	
  

(Cavard et al., 2009). Thus, both NTNG paralogs are associated with a variety of CDs and 71	
  

mostly in a non-overlapping manner, except for ASD, BD and SCZ characterized by shared 72	
  

and wide spectrum of cognitive abnormalities. The clinical etiology of the aforementioned 73	
  

diseases supports the IQ-deduced functional complementation among the NTNG paralogs 74	
  

(Prosselkov et al., 2015) with (VC/PS) and (WM/PO) deficits being also uniquely 75	
  

segregated among the associated cognitive pathologies. 76	
  

 Since both genes are expected to have identical gene exon/intron compositions but 77	
  

different in their intron lengths (Yin et al., 2002) we have reconstructed the paralogs 78	
  

transcriptomes by re-processing the publicly available RNA-seq dataset (Wu et al., 2012) 79	
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from healthy and SCZ human subjects superior temporal gyrus (STG) post-mortem brain 80	
  

tissue (Supplementary Table 1a=ST1a). A difference is noted instantly at the total expression 81	
  

levels (genes, exons, individual RNA transcripts) when two gene paralogs are compared 82	
  

(Figure 1B-1 and B-2). NTNG2 amount (as a whole gene) is 5 times larger comparing to 83	
  

NTNG1; exons (2-5) are 3 times, exons (8-9) are 18 times and exon 10 is 4 times higher 84	
  

expressed for NTNG2 than for NTNG1. The only two exons outlaying the prevailing amount 85	
  

rule for the NTNG2 mRNAs are exons 6 and 7, expressed nearly at the same absolute level as 86	
  

for the NTNG1 exon paralogs, making them highly underrepresented within the whole 87	
  

NTNG2 transcriptome. Next, distinct non-alternating splicing modules are formed by exons 88	
  

(2-5) for NTNG1 (Figure 1B-1), while exons (4-5) and exons (8-9) for NTNG2 (Figure 1B-89	
  

2). Two structurally identical RNA transcript paralogs (NTNG1a = G1a and NTNG2a = G2a) 90	
  

have been found to exist in both NTNG transcriptomes with G2a being expressed at 8-9 times 91	
  

higher level than G1a. NTNG1 is uniformly presented across the all analysed 16 human 92	
  

samples by 2 more protein coding RNAs (G1c and G1d, detected previously in mice brain, 93	
  

Nakashiba et al., 2000) and by 2 non-coding intron (9-10) derived transcripts (Figure 1B-1).  94	
  

At the same time, NTNG2 transcriptome is comprised of one extra potentially coding RNA 95	
  

(G2a-like with exon 2 spliced out but in-frame coding preserved) and 2 assumed to be non-96	
  

coding RNAs with exons 6 and 7 retained along with preceding and following them introns. 97	
  

Quite interesting that these two latter transcripts are the only RNA species with NTNG2 exon 98	
  

6 and 7 retained (Figure 1B-2). Two more coding (G1f and G1n) and 4 more non-coding for 99	
  

NTNG1 and 9 extra non-coding for NTNG2 RNA species have been also assembled from the 100	
  

available reads but due to inconsistency in their appearance across all 16 STG samples they 101	
  

are not presented on the figure but summarized in the table (Figure 1C, for details refer to 102	
  

ST1d). Summarising this, quantitative and qualitative complementary differences is a 103	
  

prominent feature characterising the brain RNA transcriptome of human NTNG paralogs.  104	
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However, no significant changes at the transcription level of neither whole genes, nor 105	
  

individual exons, nor reconstructed RNA transcripts have been found for SCZ and healthy 106	
  

subjects. 107	
  

 Upon calling the presence of IQ-affecting SNPs (Prosselkov et al., 2015) across all 108	
  

STG samples (ST1c) it has been revealed that 15 out of 16 subjects were positive for the T-109	
  

allele of rs2149171 (exon 4-nested), shown above to attenuate the WM score in SCZ patients, 110	
  

making a comparison among the allele carrier vs non-carrier impossible. Four healthy and 111	
  

three SCZ samples carry a T-allele of rs3824574 (exon 3-nested, non-affecting IQ), and 1 112	
  

healthy and 1 SCZ sample each contains a C-allele of rs4915045 (exon10, non-coding part-113	
  

nested, and non-affecting IQ). Thus, among the eleven cognitive endophenotype-associated 114	
  

SNPs  only 3 were possible to call out of the available NTNG transcriptome. 115	
  

 Distinctly complementary nature of the NTNG paralogs segregation within 116	
  

neurological disorders and RNA transcriptome usage in STG (Figure 1) has prompted us to 117	
  

analyse both genes expression across the entire human brain. We have reconstructed both 118	
  

genes expression profiles in the human brain areas over the life span from conception (pcw = 119	
  

post-conception week) to mature age (30-40 yrs old) using the RNA-seq data from BrainSpan 120	
  

(www.brainspan.org). Similarities and differences are easily noted when the age-dependent 121	
  

phases of NTNG1 and NTNG2 expression profiles are matched (Figure 2). Based on the 122	
  

visual inputs three distinct classifiers have been elaborated: 1. predominantly synchronous 123	
  

(Figure 2A(1-4)), characteristic mostly for the cortical areas; 2. predominantly mixed and 124	
  

asynchronous (Figure 2B), characteristic for the cerebellar cortex and subcortical formations; 125	
  

and 3. anti-phasic (complementary, Figure 2C), characteristic for the MD of thalamus and 126	
  

hippocampus. All analysed brain areas demonstrated an elevated level of NTNG2 expression 127	
  

in comparison to NTNG1 except for thalamus (Figure 2C) with the largest difference 128	
  

observed is at the time of birth (35-37 pcw) or soon after (4 mo) for the synchronous 129	
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classifiers (Figure 2A), oscillating increment values across the life span for the mixed 130	
  

(Figure 2B) and anti-phasic (Figure 2C) classifiers. It is quite intriguing to note that 131	
  

essentially all brain areas show a trend towards the expression difference being negated 132	
  

between the paralogs by reaching the mature age of 30-40 yrs old (nearly or above the mean 133	
  

age used for the IQ testing), except MD where the expression discrepancy is increased. Thus, 134	
  

the observed functional complementation among the NTNG paralogs is supported by the 135	
  

anatomical distribution of the genes in human brain and their expression pattern modality 136	
  

over the human subjects lifetime. 137	
  

 A direct comparison of the NTNG paralogs shows not only identical intron-exon gene 138	
  

structure (Figure 1B-1, 2B-2) but also closely matched exon sizes (Figure 3A). There are 139	
  

three exons of identical sizes (exons 4, 8 and 9), another three exons differed by one encoded 140	
  

aa (exons 3, 5 and 6) and there are exons of different sizes (exons 2, 7 and 10). In terms of 141	
  

size the largest difference among the genes is visually presented by the introns: intron (9-10) 142	
  

of NTNG1 is 52.7 times larger its NTNG2 paralogous intron with intron (6-7) of NTNG1 143	
  

being only 1.43-times larger pointing towards non-equilibria process of non-coding elements 144	
  

elaborations as the process of gene paralogs SF proceeded. Nevertheless, it can be 145	
  

generalised that in average all NTNG1 introns are several times larger their NTNG2 analogs 146	
  

(Figure 3A). We have shown previously that exons 6 and 7 are differentially used within the 147	
  

brain NTNG transcriptome (Figure 1B-1 and B-2) and to explore their potential contribution 148	
  

into the paralogs SF we have built identity matrices with these exons excluded and included 149	
  

(but still producing in-frame existing transcripts, Figure 3B-1 left and right panels, 150	
  

respectively). Exclusion of both exons from the full-lengths transcripts (thus converting 151	
  

NTNG1m to NTNG1a and NTNG2b to NTNG2a, respectively) increases the identity of DNA 152	
  

on 2% (a relatively large effect since both exons together represent only 7.22 and 9.69% of 153	
  

the total coding part of the full-length RNA transcripts, NTNG1m and NTNG2b, respectively). 154	
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This effect becomes even stronger when the encoded by these transcripts proteins are also 155	
  

compared (Figure 3B-2). The spliced out Ukd protein domains (encoded by the exons 6 and 156	
  

7) increases the proteins identity on 3.8% thus making the middle of both genes (and encoded 157	
  

proteins) substantially more different among the both gene paralogs. To corroborate this 158	
  

observation and to explore the importance of other protein parts we have directly compared 159	
  

the sequences encoded by the full-length transcripts and producing Netrin-G1m and Netrin-160	
  

G2b (Figure 3C). Similarly to what has been shown on Figure 3B-1 and 3B-2, the lowest 161	
  

identity (17.5%) is represented by the Ukd domain (encoded by the exons 6 and 7) and by the 162	
  

preceding it exon 5 (a 3’-part of the LE1 domain). Two other areas also show a substantially 163	
  

low identity, namely the N-terminus (it includes the protein secretory signal indicated by an 164	
  

arrow) and the outmost C-terminus responsible for the unique feature of Netrin-Gs – the GPI 165	
  

attachment. Thus, based on the percent identity comparisons among the Netrin-G paralogs it 166	
  

can be predicted that there are several potential protein parts contributing to the paralogs SF. 167	
  

As it has been reported by Seiradake et al. (2011), identical gene and protein domain 168	
  

compositions result in the identical structural motif with differences only in the spatial 169	
  

arrangement of the loops facing the post-synaptic Netrin-G’s interacting partners, NGL-1 and 170	
  

NGL-2, respectively (Figure 3D). Loop I binding surfaces alignment (Figure 3C, blue color) 171	
  

shows a high level of conservation (with at least 5 amino acids 100% conserved) among the 172	
  

Netrin-G paralogs, indicating that it is unlikely to be responsible for the cognate ligand 173	
  

binding specificity. Neither Loop II (Figure 5C, yellow color) nor Loop III (Figure 5C, 174	
  

orange color) display a single conserved amino acid shared among the paralogous binding 175	
  

interfaces (as it originally has been described in Seiradake et al., 2011). Thus the 176	
  

complementary pattern of the pre-postsynaptic interactions mediated via specific Netrin-177	
  

G/NGL pairs is reflected in the reciprocally different sizes of the loops binding interfaces 178	
  

representing another element of the NTNG-encoded protein paralogs SF. 179	
  

180	
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DISCUSSION 180	
  

Complementary contribution of NTNG paralogs into human cognitive pathologies.  181	
  

Involvement of the pre-synaptically expressed axon-localised NTNGs in SCZ diagnosis 182	
  

supports the established view of SCZ as a result of distorted trans-synaptic signaling (Lips et 183	
  

al., 2012), with a recent study proving that axonal connectivity-associated genes form a 184	
  

functional network visualisable by fMRI (Richiardi et al., 2015), and that brain connectivity 185	
  

predicts the level of fluid intelligence (Finn et al., 2015; Pamplona et al., 2015). Both 186	
  

NTNGs have been found to participate in the brain functional connectivity by the parcellated 187	
  

connectome reconstruction (Hawrylycs et al., 2015). Most of the reported disease 188	
  

associations link NTNG1 to SCZ with a variety of other neurologic pathologies (15 in total, 189	
  

Figure 1A-1), while NTNG2 pathologic associations (6 in total, Figure 1A-2) are quite 190	
  

limited to those affecting WM or PO. Among them is SLE frequently characterized by WM 191	
  

deficit (Shucard et al., 2011) and also known to represent schizoid-type abnormalities 192	
  

characteristic for autoimmune pathologies (Guilloux et al., 2010; Eaton et al., 2006). 193	
  

Immune activation is known to lead to altered pre-pulse inhibition (a key diagnostic trait for 194	
  

SCZ) reversed by antipsychotics (Romero et al., 2007). The three diseases associated with 195	
  

both paralogs (ASD, BD and SCZ) are also a primary focus of the recently initiated 196	
  

PsychENCODE project (PsychENCODE et al., 2015). It is also worth to mention the 197	
  

resemblance of the reported disease associations with the behavioral phenotypes of Ntng1 198	
  

and Ntng2 gene knockout mice (Zhang et al., 2016). 199	
  

 A gene content associated with IQ score often relates to numerous diseases, such as 200	
  

SCZ, ASD, depression, and others (see Zhao et al., 2014 for ref.; Johnson et al., 2015). 201	
  

Several genes associated with SCZ have undergone positive selection following the human 202	
  

brain evolution (Xu et al., 2015). Despite the global network properties of the brain 203	
  

transcriptome are highly conserved among the species there are robust human-specific 204	
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disease-associated modules (Miller et al., 2010) and human accelerated regions (HARs) - 205	
  

highly conserved parts of genome that underwent accelerated evolution in humans (Pollard 206	
  

et al., 2006). HARs can serve as genomic markers for human-specific traits underlying a 207	
  

recent acquisition of modern human cognitive abilities by brain (Boyd et al., 2015) but that 208	
  

also “might have led to an increase in structural instability… resulted in a higher risk for 209	
  

neurodegeneration in the aging brain” (Zhou et al., 2015), rendering our intellectual abilities 210	
  

genetically fragile (Crabtree, 2013) and resulting in a variety of CDs. The role genomic 211	
  

context, epistasis (Hemani et al., 2014), plays in the evolution and pathology is manifested 212	
  

by frequently found disease-causing alleles present in animals without obvious pathological 213	
  

symptoms for the host (Jordan et al., 2015). Any CD is characterized by general intellectual 214	
  

disability (GID) plus psychiatric symptoms. A genetic perturbation-exerted behavioral 215	
  

cognitive deficit (BCD) in an animal model organism is a poor match to a human CD per se 216	
  

due to very poor contextual resemblance between the human GID and animal BCD together 217	
  

with the absence of interpretable psychiatric symptoms. Usefulness of animals as psychiatric 218	
  

models is also compromised by the fact that transcriptome differences within species tissues 219	
  

is smaller than among the homologous tissues of different species (Barbosa-Morais et al., 220	
  

2012; Lin et al., 2014). No wonder that the compounds that “cure” mice models consistently 221	
  

fail in human trials (discussed in Hyman, 2014). 222	
  

NTNG paralogs brain transcriptome intrinsic complementarity and possible mechanism 223	
  

for the IQ-affecting mutation alleles effect. There is no global change at the mRNA level 224	
  

between healthy subjects and SCZ patients (Figure 1B). This conclusion is supported by 225	
  

previously published works stating that globally altered mRNA expression of NTNG1 or 226	
  

NTNG2 is unlikely to confer disease susceptibility, at least in the temporal lobe (Eastwood 227	
  

and Harrison, 2008), and Brodmann’s area (Aoki-Suzuki et al., 2005). However, the 228	
  

original paper-source of the STG samples RNA-seq along with many other genes (>1,000) 229	
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found that NTNG1 (but not NTNG2) falls under the group of genes with significant 230	
  

alternative promoter usage (Wu et al., 2012: ST6, p<9.05E-10 at FDR <0.5) and NTNG2 231	
  

(but not NTNG1) clusters with genes (>700) with significant alternative splicing change (Wu 232	
  

et al., 2012: ST7, p<6.15E-12 at FDR<0.5) when SCZ and controls are compared. Such 233	
  

GWAS observation adds an extra layer of complementary regulation to both NTNG paralogs 234	
  

on a top of the described in the results section complementary usage rule for the exons, 235	
  

formed unspliced splicing modules, resulting transcripts and their comprising exons (Figure 236	
  

1B). Based on the available RNA-seq dataset it was almost impossible to detect RNA with 237	
  

the matched position of NTNG SNPs used for the IQ testing (ST2c) except for two coding 238	
  

exons located (rs2149171 and rs3824574) and exon 10 non-coding area located but 239	
  

transcribed rs4915045 (in 2 out of 16 samples). This fact points towards indirect effect of the 240	
  

IQ-affecting mutation alleles potentially associated with shorter (secretable) isoforms 241	
  

generation (Prosselkov et al., unpublished) lacking two of the most prominent NTNG 242	
  

features: GPI-link and the Ukd domain through an aberrant splicing factor binding. The GPI-243	
  

link is a hallmark of Netrin-G family members (Nakashiba et al., 2000, 2002) and without it 244	
  

the aberrant Netrin-G isoforms are likely to mimic the action of their releasable ancestry 245	
  

molecules - netrins, still being able to bind to their cognate postsynaptic ligand – NGL but 246	
  

without forming an axonal-postsynaptic contact. The Ukd domain of Netrin-G1, despite its 247	
  

so-far unknown function, is involved in lateral binding to the pre-synaptically localised LAR 248	
  

modulating the binding strength between NGL-1 and Netrin-G1 (Song et al., 2013). Work is 249	
  

currently underway in search for a similar lateral interaction partner for the Netrin-G2 Ukd 250	
  

domain (Kim E, personal communications). The inclusion of Ukd encoding exons 6 and 7 251	
  

is regulated by the Nova splicing factor (Ule et al., 2005) affecting the cortex Netrin-G1 exon 252	
  

7 but not exon 6, and, simultaneously, Netrin-G2 paralog exons exhibiting an opposite 253	
  

pattern. In general, it is tempting to speculate that deregulation of NTNG transcripts 254	
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processing may have a role in the brain-controlled cognitive abilities and associated CDs. 255	
  

Supporting such notion, a decreased level of Netrin-G1c mRNA (exons 6-9 excluded, Figure 256	
  

1B-1) has been reported for BD and SCZ (Eastwood and Harrison, 2008) with Netrin-G1d 257	
  

(exons 6 and 7 included but 8-9 excluded, Figure 1B-1) and Netrin-G1f (a secretable short 258	
  

isoform consisted of domain VI only and lacking the Ukd and GPI-link) being increased in 259	
  

BD, but not in SCZ, in anterior cingulated cortex (Eastwood and Harrison, 2010). Higher 260	
  

Netrin-G1d mRNA expression in fetal brain but low for the Netrin-G1c isoform in the human 261	
  

adult (Eastwood and Harrison, 2008) indicates different functionality of these two splice 262	
  

variants joggling with the Ukd domain inclusion. And, according to our other data, if Netrin-263	
  

G1 Ukd-containing isoforms are the dominant isoforms in adult mouse brain, Netrin-G2 Ukd-264	
  

containing isoforms are present only at the trace level (Prosselkov et al., forthcoming), 265	
  

resembling a similar transcriptome pattern for the human STG samples (Figure 1B-1 and B-266	
  

2). A similar “dynamic microexon regulation” associated with the protein interactome 267	
  

misregulation has been reported to be linked to ASD (Irimia et al., 2014). 268	
  

Synchronous and complementary expression of NTNG paralogs in the human brain 269	
  

supports the IQ-associated cognitive endophenotypes. Influential parieto-frontal 270	
  

integration theory (P-FIT, Jung and Haier, 2007) states that general intelligence (“g”) is 271	
  

dependent on multiple brain cortical areas such as dlPFC, Broca's and Wernicke's areas, 272	
  

somatosensory and visual cortices (Colom et al., 2009). Despite “g” is widely accepted as the 273	
  

only correlate of the intelligence, its unitary nature was challenged by (Hampshire et al., 274	
  

2012) claiming had indentified two independent brain networks (for memory and for 275	
  

reasoning) responsible for the task performance, the idea later criticised for the employed 276	
  

data processing approach (Haier et al., 2014). Higher IQ scores (a composite surrogate of 277	
  

“g”) have been reportedly associated with the fronto-parietal network (FPN) connectivity 278	
  

(Song et al., 2008; Glascher et al., 2009). High level of NTNG paralogs expression within 279	
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the cognition intensively loaded areas of the brain and the distinct patterns of expression 280	
  

profiles (synchronous, asynchronous/mixed, and complementary, Figure 2A) support 281	
  

associations of NTNG1 and NTNG2 with the recorded cognitive endophenotypes (Prosselkov 282	
  

et al., 2015). Based on the expression patterning over the human life-span, among the total 16 283	
  

analysed brain areas we found two falling under the same “anti-phasic (complementary)” 284	
  

classifier (Figure 2C): HIP and MD.  Adding more to that, MD is the only brain area (out of 285	
  

the 16 presented) where NTNG1 expression level exceeds that of NTNG2 making it a 286	
  

promising candidate for the phenomena of NTNGs SF explanation. Two other brain areas 287	
  

classified by a synchronous paralogs expression deserve a special attention, dlPFC and mPFC 288	
  

(Figure 2A-4). PFC circuitry has been known as a “hub of the brain’s WM system” (Kim et 289	
  

al., 2013; Markowitz et al., 2015), which acts through direct HIP afferents (Spellman et al., 290	
  

2015) and has many connections with other cortical and subcortical areas (Riga et al., 2014). 291	
  

mPFC may function as an intelligence-control switchboard and lPFC, part of the FPN global 292	
  

connectivity, predicts the WM performance and fluid intelligence (Cole et al., 2012). 293	
  

Interactions of the auditory recognition information fed by the vPFC stream with the 294	
  

sequence processing by the dorsal stream are crucial for the human language articulation 295	
  

(Skeide and Friederici, 2015; Thothathiri and Rattinger, 2015). The fact that both NTNG 296	
  

paralogs are extensively expressed across PFC (Figure 2A-2 and A-4) pinpoints this area as 297	
  

a key for future molecular studies of the human-unique symbolic communications. And PFC 298	
  

is not only implicated in many psychiatric disorders, including SCZ (Gulsuner and 299	
  

McClellan, 2014; see also Riga et al., 2014 for ref.), but is also the only brain structure 300	
  

unique to primates without known homologs in the animal kingdom (Wise, 2008). 301	
  

Evolution of the protein paralogs encoded by the NTNGs. Forkhead box P2 (FOXP2) – a 302	
  

ubiquitously expressed transcription factor that has been reported to be linked to the 303	
  

evolution of human language through T303N, N325S substitutions when compared to a 304	
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primate ortholog (Enard et al., 2002) and is 100% identical to Nea protein (Krause et al., 305	
  

2007). FOXP2 regulates expression of multiple genes in human and chimpanzee (Konopka 306	
  

et al., 2009), and among them is an M3 gene brain module representative responsible for 307	
  

general fluid cognitive abilities (Johnson et al., 2015), LRRC4C, a gene encoding NGL-1 – a 308	
  

post-synaptic target of Netrin-G1. Similarly to FOXP2, Netrin-G1 is a 100% conserved 309	
  

protein among the hominins with only 1 mutation found in chimpanzee which is absent in 310	
  

marmoset (and other primates) and mice proteins (Prosselkov et al., 2015). On the other 311	
  

hand, extinct hominins’ Netrin-G2 relatively to modern human contains T346A point 312	
  

mutation (as per current version of hg19), also found in primates and mouse and known as 313	
  

rs4962173 (dbSNP missense mutation) representing an ancient substitution from Neandethal 314	
  

genomes found in modern humans and reflecting a recent acquisition of the novel allele 315	
  

around 5,300 yrs BC. Nothing is known regarding the functional significance of this mutation 316	
  

but biochemically a substitution of alanine (A) on a polar threonine (T) could bring an extra 317	
  

point of regulation, e.g. a phosphorylation or glycosylation (NetPhos2.0 (Blom et al., 1999) 318	
  

assigns a low score for the T346 to be phosphorylated but NetOGlyc4.0 (Steentoft et al., 319	
  

2013) robustly predicts it to be glycosylated, SM). Another mutation S371A/V reflects a 320	
  

selective sweep in Netrin-G2 protein from primates to hominins within a similar to T346A 321	
  

functional context when a hydrophobic alanine (in chimpanzee, A)/valine (in marmoset, V) is 322	
  

replaced by a polar serine (S) and a strong positive predictions for glycosylation but not 323	
  

phosphorylation (SM). This poses a question whether these two human-specific protein 324	
  

substitutions associate with advanced cognitive traits as they may represent a hidden layer of 325	
  

poorly studied so far protein glycosylation-associated regulatome known to affect the brain 326	
  

function and diseases (Baenziger, 2012; Baenziger, 2013). Adding more to this, T346 is 327	
  

nested on exon 5 just 20 nu away from the affecting WM score rs2274855 (Prosselkov et al., 328	
  

2015), and, together with S371A/V, they are both located within the lowest percent identity 329	
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area (exons (5-7)) of Netrin-Gs (Figure 3C) and, proposedly, contributing to the NTNG 330	
  

duplicates SF. There are at least three more protein parts potentially contributing to the gene 331	
  

paralogs specialised function subdivision (based on the low identity scores, Figure 3C): the 332	
  

secretory peptide, the GPI-link, and the outmost structurally elaborated unstructured loops (I-333	
  

III) responsible for the reciprocal binding of Netrin-Gs to their post-synaptic cognate partners, 334	
  

NGL-1 or NGL-2, both containing a C-terminal PDZ-binding domain (Kim et al., 2006). An 335	
  

interesting finding was reported in (Arbuckle et al., 2010) found a presence of SH3(PSD95) 336	
  

domain binding site (required for the phosphatidylinositol-3-kinase recruitment) in mice 337	
  

Netrin-G2 (100% identical to human) but not in Netrin-G1. The detected SH3 binding site 338	
  

overlaps with the Netrin-G2-loop III responsible for the binding specificity to NGL-2 339	
  

(Seiradake et al., 2011; Soto et al., 2013; DeNardo et al., 2012). A plausible working 340	
  

hypothesis would be that while internalised (and being GPI-link naïve/immature) the pre-341	
  

synaptic Netrin-G2 is bound to SH3-PSD95 via loop III but as soon as being secreted 342	
  

extracellularly (and being attached to the membrane) it is bound to post-synaptic NGL-2. 343	
  

Corroborating this, in the absence of Netrin-G2 in the KO mice NGL-2 is unstable on the 344	
  

post-synaptic surface and gets quickly internalised (Zhang et al., 2016). We can only 345	
  

speculate regarding the potential importance of PSD-95(SH3)-Netrin-G2-NGL-2 scaffolding 346	
  

loop interaction/competition but the ability for Netrin-G1 to bind to SH3 has not been 347	
  

reported. Following this logic, Netrin-G1 should have a similar binding partner via loop II. 348	
  

 The overall identical structural scaffold among the Netrin-G paralogs (Figure 3D) is 349	
  

likely to represent an anciently preserved one of the primordial protein (encoded by a single 350	
  

gene in the primitive urochordate C.intestinalis) and its contribution to the process of SF 351	
  

among the NTNG paralogs goes against the “structure drives function” concept. It looks like 352	
  

that it is not the “structure” but rather the “evolution” itself that drives a selection for the best 353	
  

structural (or unstructural in our case) fit out of the available frameworks provided by the 354	
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gene duplicates to fulfill the emerged functional demand in a new ecological niche. The 355	
  

intricate variability of phenotype is grounded by the conserved nature of genotype and 356	
  

constrained by the “structure-function” limitations of the coding DNA and is only possible 357	
  

due to permissive evolutionary continuing elaborations of non-coding areas able to absorb the 358	
  

most recently acquired elements (having a potential to become regulatory at some point, e.g. 359	
  

like HAR5 (Boyd et al., 2015)) and carried over by neutral drift as proposed by Kimura but 360	
  

for proteins (Kimura, 1983). At the same time, the multiple protein substitutions coinciding 361	
  

with the SF labor segregation phenomena among the Netrin-G paralogs question their neutral 362	
  

nature. Both of them undergo a purifying selection from mice to human through the reduction 363	
  

in size of non-coding DNA (introns) and encoded proteins (the mice Netrin-G2 is 2 aa longer 364	
  

its human ortholog) further contributing to the host-specific SF. Thus while the non-coding 365	
  

sequences are used to explore the evolutionary space in time, the restrictive boundaries of the 366	
  

paralogs SF are determined by the protein (unstructured) elements. 367	
  

Molecular evolution of the Cognitive Complement (CC). Appearance of the neural crest 368	
  

(Abitua et al., 2012), an event that “affected the chordate evolution in the unprecedented 369	
  

manner” (Green et al., 2015), multipotent progenitor cells (Stolfi et al., 2015), and 370	
  

neurogenic placodes (suggesting a chemosensory and neurosecretory activities, Abitua et al., 371	
  

2015) in first primitive urochordates/tunicates coincides with the presence of Ntng precursor 372	
  

gene (ENSCING00000024925) later undergoing two rounds of duplication events in lamprey 373	
  

and found to affect human cognitive abilities (Prosselkov et al., 2015). NTNG paralogs are 374	
  

expressed in the human neural crest-forming cells with NTNG2 10 times stronger than 375	
  

NTNG1 (Rada-Iglesias et al., 2012), both are differentially expressed in human comparing to 376	
  

chimpanzee and rhesus monkey with NTNG2 expression model showing stronger probability 377	
  

than NTNG1 (Iskow et al., 2012), and both are stronger expressed in human telencephalon 378	
  

comparing to chimpanzee and macaque (Konopka et al., 2012). NTNG1 has been classified 379	
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as a brain module hub gene “whose pattern fundamentally shifted between species” 380	
  

(Hawrylycs et al., 2015). Belonging to distinct modules of brain expression regulation (Liu 381	
  

et al., 2012, Konopka et al., 2012), NTNGs are classified as “genes with human-specific 382	
  

expression profiles” (Liu et al., 2012). The nearby gene ~260 kbp upstream of NTNG2 is 383	
  

MED27 (mediator of RNA polymerase II) has been proposed to be associated with the 384	
  

evolution of human-specific traits (McLean et al., 2011). NTNG1 has also been reported 385	
  

among the “adaptive plasticity genes” (Ghalambor et al., 2015) potentiating rapid adaptive 386	
  

evolution in guppies (NTNG2 was not found among the input RNA for analysis). 387	
  

 Complementarity among the NTNG paralogs and encoded by them proteins has been 388	
  

reported previously: brain expression complementary pattern (in almost self-exclusive 389	
  

manner) defined by the 5’-UTR-localised cis-regulatory elements (Yaguchi et al., 2014); 390	
  

complementary distribution within the hippocampal laminar structures (Nishimura-Akiyoshi 391	
  

et al., 2007); axon-dendrite synaptic ending resulting in differential control over the neuronal 392	
  

circuit plasticity (Matsukawa et al., 2014); mutually-exclusive binding pattern to post-393	
  

synaptic partners, NGL-1 and NGL-2, dictated by the protein unstructural elements 394	
  

(Seiradake et al., 2011); alternative promoter usage vs alternative mRNA splicing (Wu et al., 395	
  

2012) and increased coefficient of variation (CV, ST1d) for NTNG1 expression but not 396	
  

NTNG2 in SCZ patients (similar to Zhang et al., 2015); KO mice behavioral phenotypes and 397	
  

subcellular signaling partners complementarity (Zhang et al., 2016); “differential stability” 398	
  

brain modules expression (NTNG1 is expressed in the dorsal thalamus (M11) as a hub gene 399	
  

(Pearson’s 0.92) while NTNG2 is in neocortex and claustrum module (M6, Pearson’s 0.65)) 400	
  

(Hawrylycs et al., 2015); hypocretin neurons-specific expression of NTNG1 (but not 401	
  

NTNG2) as a sleep modulator (Yelin-Bekerman et al., 2015); top-down vs bottom-up 402	
  

information flows gating in mice and differential responsiveness to neuronal stimuli 403	
  

(Prosselkov et al., forthcoming); and human IQ-compiling cognitive domains 404	
  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 26, 2016. ; https://doi.org/10.1101/034645doi: bioRxiv preprint 

https://doi.org/10.1101/034645
http://creativecommons.org/licenses/by/4.0/


	
   17	
  

complementation (Prosselkov et al., 2015). The current study reports the NTNGs 405	
  

complementarity association with the CDs (Figure 1A); mRNA splicing pattern 406	
  

complementary at the quantitative and qualitative levels via differential use of the middle-407	
  

located exons (Figure 1B); brain complementary oscillatory expression over the human life 408	
  

span observed in the intensive cognitively loaded brain areas (Figure 2); AE of the paralogs-409	
  

segregated unique non-coding elements (Figure 3A); complementary pattern of the protein 410	
  

orthologs (mice-to-human) protein sequence evolution. Such multi-level complementation is 411	
  

likely to reflect a shared evolutionary origin from a single gene in a primitive vertebrate 412	
  

organism 700 mln yrs ago and its subsequent functional segregation among the evolution-413	
  

generated gene duplicates in jawless fish, such as lamprey. 414	
  

 Occupying independent but intercalating functional niches, NTNG1 and NTNG2 do 415	
  

not compensate but complement each other’s function forming a “functional complement” of 416	
  

genes. Half a billion yrs ago the doubled gene dosage led to the gradual SF and manifested in 417	
  

a function complementation within the cognitive domains, at least in human. We would like 418	
  

to coin such gene pair as a Cognitive Complement (CC). 419	
  

 420	
  

CONCLUSION 421	
  

The emerged functional redundancy, as an outcome of gene duplication, leads to function 422	
  

subdivision and its bifurcation among the gene paralogs resulting in the paralogs SF. A 423	
  

functional compensation is known to exist among the evolutionary unrelated genes but has 424	
  

not been reported among the gene paralogs, more frequently characterized by the function 425	
  

complementation. Gene paralogs structural identity (at both, gene and protein levels) does not 426	
  

provide a substrate for functional compensation but rather for complementation, perturbating 427	
  

“structure drives function” rule. A gene duplication event of a tunicate NTNG primordial 428	
  

gene and the subsequent process of its function specialisation (driven by the new ecological 429	
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niches appearance and evolution) among the gene duplicates made them to SF into distinct 430	
  

cognitive domains in a complementary manner forming a CC. In our forthcoming work we 431	
  

are to describe how Ntng mice genes function resembles that of human orthologs (Prosselkov 432	
  

et al., forthcoming). 433	
  

434	
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MATERIALS AND METHODS 434	
  

Human brain NTNG transcriptome reconstruction. Relates to Figure 1B and 1-C. The 435	
  

original source of the dataset was produced by (Wu et al., 2012: E-MATB-1030) and the 436	
  

downloaded .bam files used for the re-processing are listed in ST1a. All reconstructed 437	
  

transcripts are presented in ST1d standalone Excel file. Two samples were excluded from the 438	
  

analysis due to failed “per base sequence quality” measure, and zero expression level for 439	
  

NTNG1a and NTNG1int(9-10) otherwise consistently expressed throughout other samples 440	
  

(ST1b). SAMtools software was used for the SNPs calling from the available RNA-seq 441	
  

datasets (ST1c). For details refer to SM. 442	
  

Human brain expression profiling for NTNGs across the life span. The original source of 443	
  

data was www.brainspan.org. All available samples were initially included into the analysis 444	
  

but two of them excluded at a later stage (MD for 12-13 pcw and mPFC for 16-19 pcw) due 445	
  

to high deviation (6-7 times) from the mean for other replicas. The mean expression values 446	
  

per each brain area as RPKM were plotted against the sampling age. Profiles classification 447	
  

was done visually considering the trend over the all plotted points as an average. 448	
  

NTNG1 (NTNG1m) and NTNG2 (NTNG2b) full-length mRNA transcripts assembly. 449	
  

Relates to Figure 3B. Human NTNG1m brain transcript has been reported previously 450	
  

(Meerabux et al., 2005) and we have also confirmed its ortholog presence in the mice brain 451	
  

via full-length cloning (Prosselkov et al., unpublished). Since NCBI contains only its partial 452	
  

CDS (AY764265), we used the RNA-seq-generated exons (Figure 1B) to reconstruct its full-453	
  

length and to generate an ORF of the encoded Netrin-G1m. Similarly, human NTNG2b was 454	
  

reconstructed from the RNA-seq dataset and from Ensemble as follows. Exon 5 sequence 455	
  

was deduced from ENST00000372179, other exons were from ENST00000467453 (no 456	
  

longer available on the current version of Ensemble) except for exon 6 deduced by running 457	
  

three independent alignments against the human genomic DNA with the mice 3’-intron (5-6), 458	
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exon 6, and 5’-intron (6-7) concomitantly confirmed by the generated full-length ORF for 459	
  

Netrin-G2b. The reconstructed protein was predicted to encode 587 amino acids, which is in 460	
  

a close proximity to the mice netrin-G2b ortholog of 589 residues (Prosselkov et al., forth.). 461	
  

Full-lengths gene structures of NTNG paralogs reconstruction. Relates to Figure 3A. 462	
  

Both, the obtained above from the STG brain samples RNA-seq and the reconstructed full-463	
  

lengths transcripts carrying all stably expressed exons were used to confirm the intron-exon 464	
  

junctions positioning for NTNG1 and NTNG2. Due to observed variability in the intron (1-2) 465	
  

and exon 10 sizes their boundaries were left unmarked. 466	
  

 467	
  

SUPPLEMENTARY MATERIALS (SM) 468	
  

Contain Supplementary Methods (RNA-seq of STG re-processing and SNPs detection) and 469	
  

Supplementary Tables (ST1a-d, ST2) as a single compiled pdf file. Reconstructed RNA-seq 470	
  

(.gtf) of the STG is presented as a standalone Excel file (ST1d). Also included: Netrin-G2b 471	
  

predicted phosphorylation and O-glycosylation, Netrin-G1 vs Netrin-G2 Ukd alignment 472	
  

(McWilliam et al., 2013), predicted secretory peptide cleavage and GPI attachments. 473	
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Figure 1. NTNG paralogs complementation within neurological disorders and brain transcriptome. (A-1, 
A-2)  Reported cognitive  disorders  associations  for  NTNG1  and NTNG2.  *denotes  rather  an  indirect 
association via a direct interaction with the research target. (B-1, B-2) RNA-seq of the STG of healthy 
(circle) and SCZ (cross) human subjects.  The original  dataset was produced by (Wu et al.,  2012), 
accession number  E-MTAB-1030 on ArrayExpress  (ST1a)  and reprocessed as  described in  SM.  Five 
NTNG1 and four NTNG2 transcripts, consistently expressed across all 16 human samples are shown. 
Two samples (one healthy and one SCZ) have been omitted due to unsatisfactory quality of reads and 
expression profiling (ST1b). For the SNPs calling by SAMtools see ST1c. Data are presented as a mean 
RPKM+SEM. (C) Total number of the assembled transcripts across all samples for both paralogs (see 
ST1d for the completely reconstructed transcriptome). Dash-outlined are co-spliced exon clusters.!
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(www.brainspan.org)  presented as a  mean+SEM.  TCx = temporary 
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Figure 3. Human NTNG paralogs DNA and protein sequence comparisons and “structure-function” rule incongruency. (A) Identical gene structures with 
different sizes of introns. RNA-seq data from Figure 1B were used to precisely deduce the exon/intron junction boundaries. The sizes of exons 1, 10 and 
introns (1-2) are not indicated due to observed among the splice transcripts lengths variability (see ST1a for details). Arrows indicate location of CNS = 
conserved non-coding sequences underwent accelerated evolution in human compare to mice (mCNS) and chimpanzee (chCNS), as per Prabhakar et al., 
2006; and ASC = anthropoid-specific constrained regions in human compare to marmoset (maASC), as per del Rosario et al., 2014. (B) Identical exonal 
composition of the longest NTNG encoded RNA paralog transcripts and corresponding proteins with relatively high percent of identity among them 
dependent on the included/excluded Ukd domain (B-2) encoded by the exons 6 and 7 (B-1). Notably, the protein sequence represents higher percent of 
the paralogs difference than encoded it DNA. The matrices were obtained by GeneJockey II (Biosoft). (C) Protein alignments for the longest human 
NTNG encoded proteins, Netrin-G1m and Netrin-G2b, with Loops I-III highlighting binding sites for their cognate post-synaptic binding partners NGL-1 
(Lrrc4c) and NGL-2 (Lrrc4), respectively, as determined by Seiradake et al. (2011). Arrow indicates a putative secretory cleavage site location, as 
calculated by SignalIP (Petersen et al., 2011), the blue rectangle delineates the area of the lowest identity (3’-domain LE1+Ukd domain); ω – denotes a 
point of putative GPI-attachment, as predicted by Big-PI (Eisenhaber et al., 2000). PSD-95 interaction site via the SH3-binding domain (Arbuckle et al., 
2010, as determined for mice Netrin-G2) overlaps with the Loop III NGL-2 binding surface. Two stars indicate a modern human (T346A) and a hominin-
specific (S371A/V) amino acid  substitutions (Prosselkov et  al.,  2015).  (D)  Identical  structural  motif  of  the Netrin-G1/NGL1 and Netrin-G2/NGL2 
complexes as per Seiradake et al. (2011). The figure’s reproduction is covered by the Creative Commons license.!
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