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Abstract

Codon models are widely used to identify the signature of selection at the molecular
level and to test for changes in selective pressure during the evolution of genes encoding
proteins. The large dimensionality of the Markov processes used to model codon
evolution makes it difficult to use these models with large biological datasets. We
propose here to use state aggregation to reduce the dimensionality of codon models and,
thus, improve the computational performance of likelihood estimation on these models.
We show that this heuristic speeds up the computations of the M0 and branch-site
models up to 6.8 times. We also show through simulations that state aggregation does
not introduce a detectable bias. We analysed a real dataset and show that aggregation
provides highly correlated predictions compared to the full likelihood computations.
Finally, state aggregation is a very general approach and can be applied to any continuous-
time Markov process-based model with large dimensionality, such as amino acid and
coevolution models. We therefore discuss different ways to apply state aggregation to
Markov models used in phylogenetics.
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Introduction

Evolutionary models are necessary to study
the processes governing the evolution of genes,
genomes and organisms. While relatively sim-
ple models are often sufficient to provide a
good estimation of species or gene trees, in-
ferring the specific processes that govern the
evolution of molecular data (e.g. selection or co-
evolution) requires more complex models. The
ability to apply these complex models to large
datasets involving many genes and/or species
offers the promise to better understand evolu-
tion in a more general context. This approach
has, however, an important computational cost
because of the large numbers of parameters
and/or the high dimensionality of the state
space involved in these complex models.

The computational performance of phyloge-
netic methods has always been an important
issue in molecular evolution. Likelihood-based
methods in phylogenetics would not be possi-
ble without the use of Felsenstein’s tree prun-
ing algorithm (Felsenstein, 1981) coupled with
the growth of computer performance. How-
ever, these methods only became commonly
used with the heuristics implemented in soft-
ware such as PhyML and RaXML (Guindon
et al., 2010; Stamatakis, 2014). Recent years
have thus seen tremendous decreases in com-
puting times, to the extent that data sets with
thousands of sequences can now be analysed.
However, most progress has been made on sim-
ple models of DNA or amino-acid evolution.
More complex models, such as codon models
used to detect selection, are still computation-
ally too costly to be applied on large genomic
datasets (e.g. all Ensemble Compara; Vilella
et al., 2009).

The complexity of codon models comes from
the large state-space that is necessary to rep-
resent the 61 codons (excluding the three stop
codons). The simplest codon model, which
is called M0 (Goldman and Yang, 1994), as-
sumes a single parameter ω to model a con-
stant selective pressure occurring on all sites
and branches of a phylogenetic tree. The M0
model is probably not realistic enough and

more complex models that involve multiple
transition matrices have been developed to de-
tect episodic positive selection on a subset of
sites and of phylogenetic branches (Zhang et al.,
2005; Smith et al., 2015; Murrell et al., 2012). The
most commonly used complex model is proba-
bly the branch-site model (Zhang et al., 2005),
which assumes three classes of selection (pa-
rameters ω0, ω1, ω2 with ω2 allowing positive
selection) on sites along specific branches of
the tree (called foreground branches) and two
classes (parameters ω0 and ω1) on the other
branches.

Since an accurate phylogenetic tree is criti-
cal to evolutionary and comparative studies,
most developments to speedup the estimation
of evolutionary models have focused first on
the optimization of tree topology and branch
length search strategies. Examples include the
choice of the starting tree topology (Guindon
and Gascuel, 2003; Huelsenbeck et al., 2001;
Stamatakis, 2014; Stamatakis et al., 2004), im-
proved tree rearrangements strategies (Guin-
don and Gascuel, 2003; Hordijk and Gascuel,
2005; Stamatakis et al., 2005; Swofford and
Olsen, 1990), computation economy (Gladstein,
1997; Goloboff, 1993; Ronquist, 1998), and in-
dependent branch-length estimation (Guindon
and Gascuel, 2003).

However, an important part of the computa-
tional cost is spent calculating the likelihood
function itself. Although this part is not the
most limiting step for tree searching methods
using simple models, it becomes a major bot-
tleneck for the evaluation of more complex
evolutionary scenarios such as codon models.
In this case the reuse of the eigenvectors and
eigenvalues for a set of branches can improve
computational performance (Schabauer et al.,
2012; Valle et al., 2014). Other optimization tech-
niques that involve, for example, transforming
the problem of exponentiating an asymmetric
matrix into a symmetric problem, or perform-
ing matrix-matrix multiplication rather than
matrix-vectors for the estimation of conditional
vectors, have also been shown to speedup the
calculations of the likelihood (Schabauer et al.,
2012). There has also been some progress on
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Figure 1: Example of state aggregation for one position
(highlighted in purple) in a codon alignment.

Bayesian computation, e.g. using data aug-
mentation (Lartillot, 2006; Rodrigue et al., 2008;
de Koning et al., 2012). Despite these improve-
ments, likelihood calculations still remain com-
putationally intensive.

The size of the state-space of the continuous-
time Markov chain directly impacts the most
computationally intensive steps of this likeli-
hood computation, since it affects the size of
the rate and probability matrices (Q and P, see
below), as well as of the conditional probabil-
ity vector. A method allowing a reduction of
the number of states while affecting minimally
the precision of the likelihood estimation is
therefore a potentially interesting avenue to
further reduce the computational burden of
these methods.

We propose here a heuristic method to
speedup matrix exponentiation and partial like-
lihood calculations by reducing the number of
states in a continuous-time Markov chain with-
out losing the dimensionality of the model. We
use state aggregation techniques to selectively
combine states of the instantaneous rate matrix.
We illustrate this technique with a simple and
a complex codon model, since their state-space
is relatively large (61 states). We show using
simulations and the analysis of an empirical
dataset that aggregation can provide signifi-
cant speedup for codon models, with a very
low cost in terms of accuracy. We further dis-
cuss the potential biological applications that
could benefit from this approach to illustrate
the wide applicability of state aggregation.

Key steps of likelihood computation
in phylogenetics

The performance of the likelihood calculations
are governed by two computationally intensive
steps: matrix exponentiation and matrix-vector
multiplication.

Matrix exponentiation is at the heart of mod-
els based on continuous-time Markov chains.
The rate of change from one state to any other
in an infinitesimally small time interval is given
by the instantaneous rate matrix Q. The prob-
ability of changing between the states of the
process in a time interval t is then given by the
probability matrix P: P(t) = eQt. For computa-
tional purposes, the rate matrix is first diago-
nalized such that Q = UΛU−1, where U is the
matrix of eigenvectors and Λ is a matrix whose
diagonal elements correspond to the eigenval-
ues of the instantaneous matrix Q. This matrix
decomposition allows the probability matrix P
to be quickly computed for any time interval t
as P(t) = eQt = UeΛtU−1.

Branches of a phylogenetic tree represent
the evolutionary path between an ancestral se-
quence and its descendants. We therefore need
to compute the matrix P for every branch of
a tree. The instantaneous rate matrix Q needs
thus to be exponentiated for every branch
length. The probabilities of observing the states
in the ancestral sequence are then calculated by
multiplying the conditional probability vectors
for each descendant branch. These probabil-
ity vectors are obtained by multiplying the P
matrix for branch i with the conditional vector
of the corresponding descendant. This proce-
dure, known as FelsensteinâĂŹs tree pruning
algorithm, is repeated for every node of the
phylogenetic tree until we reach the root of the
tree (Felsenstein, 1973).

New Approaches

State Aggregation

The computational cost of the two steps de-
scribed above highly depends on the state-
space of the continuous-time Markov chain
used. Any reduction in the state-space can
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therefore increase the efficiency of the like-
lihood calculations. We investigate here the
use of state aggregation to combine states of a
Markov chain into several groups and therefore
reduce the complexity of matrix exponentiation
and matrix-vector multiplication.

Let us consider a Markov chain taking val-
ues in a finite set S = {A1, A2, . . . , An} with
transition matrix P and stationary frequencies
π1, π2, . . . , πn. Let Sc = {A1, A2, . . . , Am} be a
set of states to be aggregated, where m < n.

The aggregated chain will have a space of
S̃ =

{
AC, Am+1, Am+2, . . . , An

}
where AC is

the aggregated state. The new aggregated state
AC changes the entries of the probability ma-
trix P in the following way:

p̃Ai ,Aj = pAi ,Aj ,
p̃Ai ,AC = ∑

Ak∈SC
pAi ,Ak ,

p̃AC ,Aj
= 1

π̃AC
· ∑

k∈SC
πk pk,j,

p̃AC ,AC = 1
π̃AC

∑
k∈SC

∑
l∈SC

πk pk,l ,

where Ai, Aj /∈ SC.
The stationary frequencies are estimated as

π̃i = πi for Ai /∈ SC. These stationary fre-
quencies are consistent with frequencies of the
original Markov chain. The frequencies of the
aggregated state is estimated as π̃AC = ∑

k∈SC
πk.

The same method can be applied at the level
of the instantaneous rate matrix Q. The diag-
onal elements of the matrix must however be
set to − ∑

j 6=i
qi,j to ensure that the sum of every

row is equal to zero (Fig. S1 B,C) (Aldous and
Fill, 2002, chapter 2).

Aggregation for Codon Models

An obvious question in performing aggrega-
tion is the definition of “similar states” to ag-
gregate. We define all non observed states for
a position of the alignment to be “similar” in
the context of that position. The rationale is
that the codons that are not observed at this
site in any of the sequences at the tips of the
tree have low probability to occur as ancestral
states. The lack of some possible codons could

be due to chance, but in many cases we expect
a subset of codons to occur at a site because
of natural selection or mutational bias. For
example, a protein site which is constrained
to be negatively charged will only use codons
encoding such amino acids. It is thus justified
to call all other codons “similar” relative to this
site. We therefore aggregated all states unob-
served at a position (i.e. triplet of columns of
the DNA alignment) into a single state (Fig. 1).
We performed here only aggregation on the
probability matrix P. We discuss the advan-
tages of aggregation on the P or Q matrices in
the Discussion section.

The intensity of state aggregation can be
modified and we tested two different ap-
proaches by implementing them for the codon
model M0 (Goldman and Yang, 1994). The first
and least aggressive approach aggregates only
the positions that were absolutely conserved in
any sites of the alignment. The state-space for
these sites is thus reduced to two states: the ob-
served (conserved) codon, and the “meta-state”
of the 60 other non stop codons. In the sec-
ond approach, all positions were aggregated
and the “meta-state” included all codons not
present in the position subjected to aggrega-
tion. These two approaches represent extreme
cases of the application of aggregation.

Given the small speedup of the first ap-
proach on M0 (see Results), only the second
approach was employed for the more complex
branch-site model.

Results

M0 Model

For the simple M0 model, we compare the per-
formance of likelihood maximization in three
different modes: full likelihood (no aggrega-
tion), aggregation for conserved positions, and
full aggregation.

The likelihood values obtained for all
datasets using both aggregation modes are
highly correlated with values estimated by the
full likelihood (Fig. S2, S3, S4, S5, S6, S7). The
error in estimation of the likelihood is small
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Figure 2: Estimated ω (A) and κ (B) values depending
on the alignment length (alen dataset, M0
model). Lines correspond to the simulation
parameter values.

and is not dependent on the simulation param-
eters (Fig. 2, S8, S9), with the exception of tree
length (Fig. 3).

The mean computational speedup is approx-
imately 1.7 for aggregation on all positions (Fig.
4), but only 1.02 (Fig. S10) for aggregation lim-
ited to fixed positions. We thus only analyzed
in details the behavior of the full aggregation
mode.

First, we see a strong effect of the align-
ment length on the speedups obtained (Fig.
5). Matrix eigendecomposition is performed
only once per likelihood evaluation and the
decrease in the state-space between the full
likelihood and the aggregation does not have
any impact on the eigendecomposition perfor-
mance. However, a longer alignment will in-
crease the number of times the tree pruning
step is performed (i.e. once per site), which be-
comes more important in the overall computa-
tional cost. For instance, the speedup obtained
with an alignment of 500 codons is 1.8 with
full aggregation. The maximum speedup of
6.8 fold was achieved on extremely long align-
ments (above 10,000 codons) and short trees
(total length < 0.05).

While there is a larger error on the estimation
of model parameters (κ and ω) with shorter
alignments, this effect is identical with or with-
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Figure 3: Estimated ω (A) and κ (B) values depending
on the tree length (tlen dataset, M0 model).
Lines correspond to the simulation parame-
ter values. Tree length limited to the range
[0.01; 300], see text).

out aggregation (Fig. 2). The heuristic that we
propose does therefore not increase error on a
simple model even with short alignments. In-
terplay between eigendecomposition and prun-
ing times explains the direct effect of the re-
lationship between the number of sequences
and the speedup (Fig. 6). A large number
of sequences decreases the proportion of time
spent in the eigendecomposition phase and
subsequently increases the speedup.

Changes in the other parameters impact the
speedup of the aggregation mode insofar as
they change the number of codon states per
alignment site. The latter has then a direct ef-
fect on the number of non aggregated states.
Indeed, we aggregate into one state all codons
which are not observed in a given position.
Thus any processes that reduces the number of
different codons per position also increases the
efficiency of aggregation. Hence, the speedup
is slightly higher for smaller ω values because,
as ω approaches 0, more and more codons at a
particular site are only part of a synonymous
codon set. The number of possible codons
is thus greatly reduced and there is a higher
chance that the aggregation will lead to very
few states. In contrast, increasing ω values
will lead to an increasing number of states ob-
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Figure 4: Speedup of aggregation on all alignment posi-
tions with M0 model. A) wvar dataset with
variable ω value, B) kvar dataset with vari-
able κ.
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Figure 5: Speedup depending on a number of the codons
(alen dataset, M0 model).

served. Similarly, extremely short branches
limit state variety at each site, which in turn
increase the level of aggregation possible and
thus increase speedup (Fig. 7). Biased codon
frequencies can also reduce diversity of states
and thus increase aggregation speedup. In our
simulations, codon frequencies were drawn
from a Dirichlet distribution and we varied
the concentration parameter α to estimate the
effect of codon frequencies on codon aggrega-
tion. We see a better speedup associated with
smaller values of the α parameter, which leads
to a higher variance between codon frequencies
(Fig. S11).

Total tree length is the only parameter in our
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Figure 6: Speedup versus number of sequences (nseq
dataset, M0 model).
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Figure 7: Speedup versus tree length (tlen dataset, M0
model).

simulations that also affects the accuracy of the
estimation of model parameters (Fig. 3, S12).
Longer trees tend to improve the accuracy of
the estimation of the parameters ω and κ. How-
ever, extremely long trees lead to an increase
in error both in aggregated and in full likeli-
hood mode, probably because of saturation. It
appears that under reasonable conditions of
applicability of the M0 model (i.e. total tree
length < 20 substitutions per codon), aggre-
gation does not lead to any detectable bias,
while for extremely long trees aggregation can
introduce a slight bias.

Thus, overall speedup on the simple M0
model can be explained by average observed
codons count and by alignment length (Fig.
8). The relationship between speedup and ω,
κ, tree length and codon frequencies is effec-
tively explained by a reduced size of the state
space of the continuous-time Markov chain.
Aggregation is thus all the more effective when
sequence data are biased or when analyses con-
tain closely related species, which is probably
the case for many real multiple sequence align-
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Figure 8: Speedup versus average codon count for M0
model. Each point represents one simulated
alignment, dataset indicated by color. For
the dataset with changing alignment length
(alen), variation in speedup does not depend
on the observed codon count (which does not
vary significantly), but longer alignments lead
to higher speedup, see Fig. 5.

Mode
True

positives
True

negatives
False

positives
False

negatives
normal 551 973 27 449
aggregated 562 970 30 438

Table 1: Statistical performance of FastCodeML in nor-
mal and aggregated modes on simulated data.

ments.

Branch-Site Model

Given the small speedup that we obtained for
the aggregation on fixed positions, we imple-
mented only the full aggregation mode for the
branch-site model in FastCodeML. We then
compared this new implementation with the
standard FastCodeML. We see a slight increase
in both false positives and true positives with
aggregation (Tables 1,2). Overall, ROC curves
show that the performance of FastCodeML in
aggregation mode is similar to the full likeli-
hood mode (Fig. 9). Thus any errors in estima-
tion under aggregation seem to have very little
impact on the Likelihood ratio test (LRT) used
to test for the presence of positive selection
with the branch-site model.

For ω0, κ, and p1, PearsonâĂŹs correlation
coefficients between aggregated and full like-
lihood estimates are 0.9986, 0.9969 and 0.9735,
respectively (Fig. 10). A lower correlation is

●●
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Figure 9: ROC curves for FastCodeML in full likelihood
and aggregated likelihood modes.

A
Selection detected

(aggregated)
− +

Selection detected − 963 12
(normal) + 7 18

B
Selection detected

(aggregated)
− +

Selection detected − 429 23
(normal) + 9 539

Table 2: Statistical performance of FastCodeML on the
simulated dataset. A) Without positive selec-
tion; B) With positive selection.

observed for p0 and ω2 (0.9578 and 0.9109, re-
spectively). Yet, these correlations are much
higher than those obtained between the full
likelihood estimate and simulated values: 0.35
for p0 and 0.20 for ω2.

As with the M0 model, speedup is mostly af-
fected by sequence length and tree length (Fig.
11) through their effects on observed codon
counts (Fig. S13). We reached a maximum
speedup of 4.4 fold per likelihood computation
for the branch-site model.

Finally, we used FastCodeML in normal and
aggregated modes on a real dataset from Pri-
mates (Table 3). After correction for multi-
ple testing, 20 branches were identified to be
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Figure 10: Correlation between aggregated and non ag-
gregated parameter estimates for the branch-
site model.

under positive selection using full likelihood
computations and 18 using aggregation, with
13 branches in common. Aggregation gives a
median speedup of 2.7 on this real dataset, con-
firming that real data can be sufficiently biased
to make aggregation quite efficient.

Discussion

We propose state aggregation as a technique
for speeding up the computation of likelihood
in a phylogenetic context. By reducing the
size of the state space of the Markov process,
aggregation accelerates the phase of tree prun-
ing during the likelihood computation and, in
some cases, the eigendecomposition of the tran-
sition rate matrix. We show that aggregation
can be applied to the likelihood calculation of
two of the most commonly used codon models.
It can also be used for other types of models
(see below), in both maximum likelihood and
Bayesian frameworks.

The speedup for codon models depends on
the alignment length and the observed codon
counts, the latter being mostly affected by the
tree length (Fig. 8, S13).
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Figure 11: Effect of A) alignment length and B) tree
length on the speedup, branch-site model.

These effects are especially strong with the
M0 model, because the likelihood optimizer
uses a fixed number of iterations. The total run-
time is therefore proportional to the likelihood
computation time. We see similar effects with
the branch-site model, but less pronounced be-
cause the optimizer is using a variable number
of iterations. We see more explicitly the de-
pendency if we normalize for the number of
likelihood function computations (Fig. S14).

The most time consuming stages of the like-
lihood computation are matrix exponentiation
and tree pruning. FastCodeML uses highly op-
timized algorithms to do matrix exponentiation
(Schabauer et al., 2012) and state aggregation
improves the time to perform the tree prun-
ing steps of the likelihood calculations (Fig.
S1 A,B).

While the dependency of the speedup on
the alignment length and the codon counts
make intuitive sense, we can understand it in
more details by considering the steps of the
likelihood computation. Let us consider the
computation time of the total likelihood (Fig.
S1 A):

Tf ull = teigen + Ktexp + NK61tprun,

where teigen is the time to decompose the in-
stantaneous rate matrix, texp is the time to ex-
ponentiate the rate matrix for each internal

8
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A
Selection detected

(aggregated)
− +

Selection detected − 77576 280
(normal) + 190 1114

B
Selection detected

(aggregated)
− +

Selection detected − 79140 5
(normal) + 7 13

C
Selection detected

(aggregated)
− +

Selection detected − 79054 24
(normal) + 27 60

Table 3: Statistical performance of FastCodeML on the
Primates dataset. A) Detected selection in nor-
mal and aggregated modes of FastCodeML; B)
After correction for multiple hypothesis testing,
FDR (false discovery rate) cutoff=0.05; C) FDR
cutoff=0.4.

node, tprun is the time to compute the partial
likelihood vector per internal node per posi-
tion, K is the number of internal nodes and
N is the number of positions in the alignment.
The number of states is 61 for Markov chains
modeling codon sequences.

Similarly for the state aggregation (Fig.
S1 B):

Taggr = teigen + Ktexp + NKtagg + NKMtprun,

where tagg is the matrix aggregation time per
internal node per position, and 61 is replaced
by M, the number of states after aggregation.

Aggregation speedup is thus:

Speedup =
Tf ull

Tagg
=

teigen + Ktexp + NK61tprun

teigen + Ktexp + NKtagg + NKMtprun
.

Generally performance is limited by eigen-
decomposition and pruning, so we can approx-
imate speedup as:

Speedup ≈
teigen + NK61tprun

teigen + NKMtprun
.

This representation gives a clear explanation
for the dependency of the speedup on the align-
ment length and the observed codon counts. In-
creasing the alignment length causes a weaker
effect on the non-accelerated eigendecomposi-
tion phase, which results in a more efficient
acceleration. In contrast, a higher codon diver-
sity in each alignment position increases the
number of states in the aggregated Markov
process (M), thus reducing the advantage of
the aggregated process relative to the full one.

Not only does aggregation provide diminish-
ing speedup with longer trees (more observed
states, larger M), it also introduces a bias in
the parameter estimation for extremely long
trees. Consequently, for trees longer than 100
expected substitutions per position it is not
practical to use state aggregation: biased re-
sults would be obtained without any signifi-
cant speedup. In practice, however, extremely
long trees are rare, for example in the Selec-
tome database 99% of the trees has total length
below 18 expected substitutions per position.

State aggregation can be applied either to the
probability matrix P or to the instantaneous
matrix Q (Fig. S1 B,C). In the case of the matrix
P (Fig. S1 B), aggregation is applied after ex-
ponentiation and must be performed for every
position independently. The performance im-
provement is therefore achieved during the tree
pruning phase. In the case of the matrix Q (Fig.
S1 C), aggregation is applied prior to the expo-
nentiation. This leads to smaller dimensions
of P matrices, but eigendecomposition and ex-
ponentiation have to be performed for every
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position independently, since those positions
will differ in the states aggregated. Moreover,
aggregation of the matrix Q is expected to in-
troduce more bias that will accumulate along
the branches. Aggregation performed on the Q
matrix will discard differences in substitution
trajectories passing through unobserved states.
There will thus be an accumulation of the er-
ror during both exponentiation and pruning
phases. Aggregation done after the exponen-
tiation phase only introduces error during the
tree pruning phase. Preliminary results do not
show an advantage of aggregating the matrix
Q for codon models (not shown). A solution
might be to perform a “softer” aggregation on
clusters of sites with similar patterns of codons.
This would be done by first clustering align-
ment positions and then producing aggregated
instantaneous rate matrices for each cluster.
This should diminish the bias and allow to
exponentiate a smaller number of Q matrices
than for the aggregation per site, while still
computing on smaller Q matrices than in non
aggregated mode. It is also possible that ag-
gregation of the Q matrix could be more use-
ful for other types of models, especially those
with large instantaneous rate matrices, such
as coevolution models (Dib et al., 2014). Fi-
nally, a second round of aggregation might be
performed after the exponentiation in order to
speedup the tree pruning stage (Fig. S1 D). The
computational and statistical performance of
such approaches has yet to be investigated.

It is also possible to implement aggregation
on a subset of the data only. In our case, we
chose an extreme situation and aggregated
only the most conserved positions. The result
was a large loss in speedup relative to aggrega-
tion on all positions without any gain in accu-
racy. But there might be other cases where ag-
gregation on a subset of data only makes most
sense in terms of the cost (accuracy) — benefit
(speedup) trade-off. Moreover, there are mul-
tiple ways to perform the aggregation itself.
Here, we collapsed all of the states (codons)
which are not observed at the position of the
alignment. It is also possible to use a less ag-
gressive approach and only aggregate codons

reachable by more than a single mutation (or a
single non-synonymous mutation). For exam-
ple, models of amino acid substitutions have
been derived from codon-based Markov mod-
els by aggregating codons separated by only
synonymous substitutions. These models were,
however, not built nor evaluated for computa-
tional efficiency (Ren et al., 2005; Kosiol and
Goldman, 2011). Less aggressive aggregation
probably will increase accuracy at the price of
reduced speedup, although, in our tests, ac-
curacy was already good with the aggressive
aggregation.

The combined use of both aggregated and
non-aggregated modes in the same analysis
could be efficient in several scenarios. First, ag-
gregation could be used during likelihood max-
imization, but the final likelihood value com-
puted without aggregation, providing a more
accurate value. Second, aggregation could
be used to obtain a starting point for non-
aggregated likelihood maximization. Third,
aggregation could be used in a preprocessing
step to detect datasets of interest (e.g., gene
families with a signal of positive selection).
These datasets could then be analyze with full
likelihood to get an accurate estimation of the
parameters and model comparison. Finally, ag-
gregation could be used during the burn-in
period in a Bayesian approach (e.g. MCMC).
There are probably other scenarios where ag-
gregation can provide a faster estimation of
likelihood within a more complex analysis.

For the specific case of the branch-site model,
we have tested the second scenario of using
aggregation as a starting point and we do not
obtain a significant speedup (Fig. S15).

Obviously, state aggregation in phylogeny
and evolution is not limited to the branch-site
and M0 codon models. First, it is universally
applicable to Markov process-based codon
models, such as aBSREL (Smith et al., 2015),
RELAX (Wertheim et al., 2014), or any other
GY94 (Goldman and Yang, 1994) or MG94-
based (Muse and Gaut, 1994) model. Second,
it is not limited to codon models. Given a
trade-off between per-position matrix aggre-
gation slowdown and tree pruning speedup,
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aggregation is unlikely to give a significant
performance improvement for models with a
small number of states (e.g., nucleotide mod-
els). But even for amino acids models we can
expect some degree of speedup. In contrast,
we expect state aggregation to provide a signif-
icant performance improvement for the models
with a large number of states, such as amino
acid coevolution models that can include up to
400 states (Dib et al., 2014; Yeang and Haussler,
2007).

The aggregation of states in a Markov pro-
cess is a powerful technique used in a variety
of fields including computational biology, such
as protein network interaction analysis (Petrov
et al., 2012), single molecule photobleaching
(Messina et al., 2006), or disease-progression
models (Regnier and Shechter, 2013). Its ap-
plication to phylogenetic models has not been
systematically studied, although it has been
implemented in some software (Lartillot and
Philippe, 2004, e.g. PhyloBayes;). This is, to
our knowledge, the first systematic study of
state aggregation biases and computational ef-
ficiency for molecular evolution.

In conclusion, we demonstrate that state
aggregation is a powerful method which im-
proves computational performance of codon-
based models, with little cost in accuracy. State
aggregation is not limited to codon models,
and we expect it to be useful for a large variety
of phylogenetic models and methods.

Materials and Methods

Software

State aggregation for the M0 model was
implemented in the godon package (https:
//bitbucket.org/Davydov/godon). State
aggregation for the branch-site model was im-
plemented in a version of FastCodeML (https:
//gitlab.isb-sib.ch/phylo/fastcodeml),
which is a software that has been optimized
for computational efficiency of the calcula-
tion of the matrix exponentiation and the
matrix-vector multiplication (Valle et al., 2014).

Parameter Distribution
κ 1 + Exponential(1)
ω0 Beta(2, 5)

ω2
1 + Gamma(10, 2),

(= 1 for H0)
p0 + p1 Beta(10, 1)

p0
p0+p1

Beta(10, 1)
Tree length Gamma(2, 2)
Number of codons Uni f (100, 1000)
Number of sequences Uni f (8, 30)

Table 5: Model parameter distribution for the branch-
site model simulated dataset.

Dataset

Five datasets were simulated for the M0
model (see Table 4). We varied one param-
eter at a time, based on the following set-
tings: 300 codons, 18 sequences, ω0 = 0.3,
κ = 2, equal codon frequencies (πi = 1/61),
default tree length (4). We used the the
ENSGT00680000099620 gene tree from the En-
sembl database (Cunningham et al., 2015) for
topology and relative branch lengths.

For the branch-site model, 2,000 alignments
were simulated with stochastic birth-death
trees and κ, ω0, ω2, p0, p1, alignment length
and number of tips sequences chosen randomly
(Table 5, Fig. S16). One thousand of the align-
ments were simulated under the branch-site
model null hypothesis with ω2 = 1, while the
other 1000 alignments represented the alterna-
tive hypothesis with ω2 > 1. In these simula-
tions every parameter was estimated at random
to have a more biologically realistic dataset.

The likelihood ratio test (LRT) was used for
model selection, with a significance level of
α = 0.05.

All sequence simulations were performed us-
ing the evolver program from the PAML pack-
age.

Finally, a Primates dataset from the Selec-
tome database (Proux et al., 2009; Moretti et al.,
2014) release 6 was used to study the be-
haviour of the method on a real dataset. The
dataset consists of 15669 gene trees and align-
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Dataset
Sequence

length
Number of
sequences

ω0 κ
Codon

frequencies
Tree

length
Number of
sequences

wvar 300 18 ∼ Beta(2, 5) 2 1/61 4 200
kvar 300 18 0.3 ∼ Uni f (1/2, 10) 1/61 4 200
alen 100–5000 18 0.3 2 1/61 4 200
nseq 300 8–50 0.3 2 1/61 4 200

tlen 300 18 0.3 2 1/61
10p

p ∼ Uni f (−4, 4)
200

cfreq 300 18 0.3 2
∼ Direchlet(α)

α ∼ 10Uni f (−1/2,1) 4 200

Table 4: List of simulated datasets for M0 model.

ments (http://selectome.unil.ch/cgi-bin/
download.cgi).

Supplementary Material

Supplementary figures S1–S16 are available at
Molecular Biology and Evolution online (http:
//www.mbe.oxfordjournals.org/).
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