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Abstract

Motivation: Codon models are widely used to identify the signature of selection at the
molecular level and to test for changes in selective pressure during the evolution of
genes encoding proteins. The large size of the state space of the Markov processes used
to model codon evolution makes it difficult to use these models with large biological
datasets. We propose here to use state aggregation to reduce the state space of codon
models and, thus, improve the computational performance of likelihood estimation on
these models.
Results: We show that this heuristic speeds up the computations of the M0 and branch-
site models up to 6.8 times. We also show through simulations that state aggregation does
not introduce a detectable bias. We analysed a real dataset and show that aggregation
provides highly correlated predictions compared to the full likelihood computations.
Finally, state aggregation is a very general approach and can be applied to any continuous-
time Markov process-based model with large state space, such as amino acid and
coevolution models. We therefore discuss different ways to apply state aggregation to
Markov models used in phylogenetics.
Availability: The heuristic is implemented in the godon package (https://bitbucket.
org/Davydov/godon) and in a version of FastCodeML (https://gitlab.isb-sib.ch/
phylo/fastcodeml).
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Introduction

Evolutionary models are necessary to study
the processes governing the evolution of genes,
genomes and organisms. While relatively sim-
ple models are often sufficient to provide a
good estimation of species or gene trees, in-
ferring the specific processes that govern the
evolution of molecular data (e.g. selection or
co-evolution) requires more complex models.
The ability to apply these complex models to
large datasets involving many genes and/or
species offers the promise to better understand
evolution in a more general context. This ap-
proach has, however, an important computa-
tional cost because of the large numbers of
parameters and/or the large size of the state
space involved in these complex models.

The computational performance of phyloge-
netic methods has always been an important
issue in molecular evolution. Likelihood-based
methods in phylogenetics would not be possi-
ble without the use of Felsenstein’s tree prun-
ing algorithm (Felsenstein, 1981) coupled with
the growth of computer performance. How-
ever, these methods only became commonly
used with the heuristics implemented in soft-
ware such as PhyML and RaXML (Guindon
et al., 2010; Stamatakis, 2014). Recent years
have thus seen tremendous decreases in com-
puting times, to the extent that data sets with
thousands of sequences can now be analysed.
However, most progress has been made on sim-
ple models of DNA or amino-acid evolution.
More complex models, such as codon models
used to detect selection, are still computation-
ally too costly to be applied on large genomic
datasets (e.g. all Ensembl Compara; Vilella
et al., 2009).

The complexity of codon models comes from
the large state-space that is necessary to rep-
resent the 61 codons (excluding the three stop
codons). The simplest codon model, which
is called M0 (Goldman and Yang, 1994), as-
sumes a single parameter ω to model a con-
stant selective pressure occurring on all sites
and branches of a phylogenetic tree. The M0
model is probably not realistic enough and

more complex models that involve multiple
transition matrices have been developed to de-
tect episodic positive selection on a subset of
sites and of phylogenetic branches (Zhang et al.,
2005; Murrell et al., 2012; Smith et al., 2015).
One of the most commonly used complex mod-
els is the branch-site model (Zhang et al., 2005),
which assumes three classes of selection (pa-
rameters ω0, ω1, ω2 with ω2 allowing positive
selection) on sites along specific branches of
the tree (called foreground branches) and two
classes (parameters ω0 and ω1) on the other
branches.

Since an accurate phylogenetic tree is criti-
cal to evolutionary and comparative studies,
most developments to speedup the parame-
ter estimation of evolutionary models have
focused first on the optimization of search
strategies to find the tree topology and branch
lengths. Examples include the choice of the
starting tree topology (Huelsenbeck et al., 2001;
Guindon and Gascuel, 2003; Stamatakis et al.,
2004; Stamatakis, 2014; Nguyen et al., 2014),
improved tree rearrangements strategies (Swof-
ford and Olsen, 1990; Guindon and Gascuel,
2003; Hordijk and Gascuel, 2005; Stamatakis
et al., 2005; Nguyen et al., 2014), computation
economy (Goloboff, 1993; Gladstein, 1997; Ron-
quist, 1998), and independent branch-length
estimation (Guindon and Gascuel, 2003).

However, an important part of the computa-
tional cost is spent calculating the likelihood
function itself. Although this part is not the
most limiting step for tree searching methods
using simple models, it becomes a major bot-
tleneck for the evaluation of more complex
evolutionary scenarios such as codon models.
In this case, the reuse of the eigenvectors and
eigenvalues for a set of branches can improve
computational performance (Schabauer et al.,
2012; Valle et al., 2014). Other optimization tech-
niques that involve, for example, transforming
the problem of exponentiating an asymmetric
matrix into a symmetric problem, or perform-
ing matrix-matrix multiplication rather than
matrix-vectors for the estimation of conditional
vectors, have also been shown to speedup the
calculations of the likelihood (Schabauer et al.,
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Figure 1: Example of state aggregation for one position
(highlighted in purple) in a codon alignment.

2012). There has also been some progress on
Bayesian computation, e.g. using data aug-
mentation (Lartillot, 2006; Rodrigue et al., 2008;
de Koning et al., 2012). Despite these improve-
ments, likelihood calculations still remain com-
putationally intensive.

The size of the state-space of the continuous-
time Markov chain directly impacts the most
computationally intensive steps of this likeli-
hood computation, since it affects the size of
the rate and probability matrices (Q and P, see
below), as well as of the conditional probabil-
ity vector. A method allowing a reduction of
the number of states while affecting minimally
the precision of the likelihood estimation is
therefore a potentially interesting avenue to
further reduce the computational burden of
these methods.

We propose here a heuristic method to
speedup matrix exponentiation and partial like-
lihood calculations by reducing the number of
states in a continuous-time Markov chain with-
out losing the complexity of the model. We
use state aggregation techniques to selectively
combine states of the instantaneous rate matrix.
We illustrate this technique with a simple and
a complex codon model, since their state-space
is relatively large (61 states). We show using
simulations and the analysis of an empirical
dataset that aggregation can provide signifi-
cant speedup for codon models, with a very
low cost in terms of accuracy. We further dis-
cuss the potential biological applications that
could benefit from this approach to illustrate
the wide applicability of state aggregation.

Key steps of likelihood computation
in phylogenetics

The performance of the likelihood calculations
are governed by two computationally intensive
steps: matrix exponentiation and matrix-vector
multiplication.

Matrix exponentiation is at the heart of mod-
els based on continuous-time Markov chains.
The rate of change from one state to any other
in an infinitesimally small time interval is given
by the instantaneous rate matrix Q. The prob-
ability of changing between the states of the
process in a time interval t is then given by the
probability matrix P: P(t) = eQt. For computa-
tional purposes, the rate matrix is first diago-
nalized such that Q = UΛU−1, where U is the
matrix of eigenvectors and Λ is a matrix whose
diagonal elements correspond to the eigenval-
ues of the instantaneous matrix Q. This matrix
decomposition allows the probability matrix P
to be quickly computed for any time interval t
as P(t) = eQt = UeΛtU−1.

Branches of a phylogenetic tree represent
the evolutionary path between an ancestral se-
quence and its descendants. We therefore need
to compute the matrix P for every branch of
a tree. The instantaneous rate matrix Q needs
thus to be exponentiated for every branch
length. The probabilities of observing the states
in the ancestral sequence are then calculated by
multiplying the conditional probability vectors
for each descendant branch. These probability
vectors are obtained by multiplying the P ma-
trix for branch i with the conditional vector of
the corresponding descendant. This procedure,
known as Felsenstein’s tree pruning algorithm,
is repeated for every node of the phylogenetic
tree until we reach the root of the tree (Felsen-
stein, 1973).

Algorithm

State Aggregation

The computational cost of the two steps de-
scribed above highly depends on the state-
space of the continuous-time Markov chain
used. Any reduction in the state-space can
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therefore increase the efficiency of the like-
lihood calculations. We investigate here the
use of state aggregation to combine states of a
Markov chain into several groups and therefore
reduce the complexity of matrix exponentiation
and matrix-vector multiplication.

Let us consider a Markov chain taking val-
ues in a finite set S = {A1, A2, . . . , An} with
transition matrix P and stationary frequencies
π1, π2, . . . , πn. Let Sc = {A1, A2, . . . , Am} be a
set of states to be aggregated, where m < n.

The aggregated chain will have a space of

S̃ =
{

AC, Am+1, Am+2, . . . , An

}
,

where AC is the aggregated state. The new
aggregated state AC changes the entries of the
probability matrix P in the following way:

p̃Ai ,Aj = pAi ,Aj ,
p̃Ai ,AC = ∑

Ak∈SC
pAi ,Ak ,

p̃AC ,Aj
= 1

π̃AC
· ∑

k∈SC
πk pk,j,

p̃AC ,AC = 1
π̃AC

∑
k∈SC

∑
l∈SC

πk pk,l ,

where Ai, Aj /∈ SC.
The stationary frequencies are estimated as

π̃i = πi for Ai /∈ SC. These stationary fre-
quencies are consistent with frequencies of the
original Markov chain. The frequencies of the
aggregated state is estimated as π̃AC = ∑

k∈SC
πk.

The same method can be applied at the level
of the instantaneous rate matrix Q. The diag-
onal elements of the matrix must however be
set to − ∑

j 6=i
qi,j to ensure that the sum of every

row is equal to zero (Fig. S1 B, C) (Aldous and
Fill, 2002, chapter 2).

Aggregation for Codon Models

An obvious question in performing aggrega-
tion is the definition of “similar states” to ag-
gregate. We define all non observed states for
a position of the alignment to be “similar” in
the context of that position. The rationale is
that the codons that are not observed at this
site in any of the sequences at the tips of the

tree have low probability to occur as ances-
tral states. The lack of some possible codons
could be due to chance, but in many cases
we expect a subset of codons to occur at a
site because of natural selection or mutational
bias. For example, a protein site which is con-
strained to be negatively charged will only use
codons encoding such amino acids. It is thus
justified to call all other codons “similar” rel-
ative to this site. We therefore aggregated all
states unobserved at a position (i.e. triplet of
columns of the DNA alignment) into a single
state (Fig. 1). The approach that we use here to
aggregate states in codon models resembles the
models of amino acid and nucleotide substitu-
tions proposed in Yang et al. (1998); Susko and
Roger (2007); Phillips et al. (2004); Vera-Ruiz
et al. (2014). However, we propose to select the
new aggregated state-space independently for
each position of the alignment, which was not
done in the amino acid and nucleotide contexts.
Note that we performed in this study only the
aggregation on the probability matrix P. We
discuss the advantages of aggregation on the
P or Q matrices in the Discussion section.

For the aggregated process to have a Marko-
vian property, it has to satisfy the lumpability
condition, i.e. pAi ,Ak = pAj ,Ak should be true
for any i, j ∈ AC and k /∈ AC (Kemeny and
Snell, 1983), or equivalently for the instanta-
neous rate matrix (Hillston, 1995). This condi-
tion is generally not satisfied with respect to
an arbitrary aggregation scheme, as this would
require all the transition rates or substitution
probabilities to have the same value. Moreover,
in the widely used codon substitution mod-
els, double substitutions are not allowed and
their respective transition rates are set to zero,
which makes lumpability condition unsatisfi-
able. Thus the proposed technique should be
viewed as a heuristic.

The intensity of state aggregation can be
modified and we tested three different ap-
proaches by implementing them for the codon
model M0 (Goldman and Yang, 1994). The first
and least aggressive approach aggregates only
the positions that were absolutely conserved in
any sites of the alignment. The state-space for
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these sites is thus reduced to two states: the ob-
served (conserved) codon, and the “meta-state”
of the 60 other non stop codons. In the sec-
ond approach, all positions were aggregated
and the “meta-state” included all codons not
present in the position subjected to aggrega-
tion. In the third approach, all the positions
were aggregated, but the “meta-state” included
only codons corresponding to the amino-acids
not present at the current position. This can
be viewed as a less-aggressive version of the
second approach utilizing properties of the ge-
netic code. The first two approaches represent
extreme cases of the application of aggregation,
while the third one is more moderate.

Given the small speedup of the first and
third approaches on M0 (see Results), only the
second approach was employed for the more
complex branch-site model.

Additionally, two random aggregation strate-
gies were evaluated. These strategies were
used as a control to determine if our choice
of state partitioning is better than random. In
the first strategy, “meta-states” of full aggre-
gation were shuffled between the alignment
positions. This should give a speedup similar
to the full aggregation, while not relying on
codons present at each position. In the second
random strategy, the state-space was randomly
split into “meta-states”, while keeping the total
number of states per position. The number of
states stays the same in this case, but the com-
putations are expected to take more time since
multiple “meta-states” are present.

Materials and Methods

Software

State aggregation for the M0 model was im-
plemented in the godon package (https://
bitbucket.org/Davydov/godon). We selected
an optimization algorithm with a large but
fixed number of iterations (10,000 iterations in
this case) to reduce the influence of random fac-
tors associated with the optimization trajectory
on the total computation time.

State aggregation for the branch-site

model was implemented in a version
of FastCodeML (https://gitlab.isb-sib.ch/
phylo/fastcodeml, branch agg), which is a
software that has been optimized for computa-
tional efficiency of the calculation of the matrix
exponentiation and the matrix-vector multipli-
cation (Valle et al., 2014).

All sequence simulations were performed us-
ing the evolver program from the PAML pack-
age (Yang, 2007).

Dataset

Six datasets were simulated for the M0 model
(see Table S1). We varied one parameter
at a time, based on the following settings:
300 codons, 18 sequences, ω0 = 0.3, κ =
2, equal codon frequencies (πi = 1/61),
default tree length (4). We used the the
ENSGT00680000099620 gene tree from the En-
sembl database (Cunningham et al., 2015) for
topology and relative branch lengths.

For the branch-site model, 2,000 alignments
were simulated with stochastic birth-death
trees and κ, ω0, ω2, p0, p1, alignment length
and number of tips sequences chosen randomly
(Table S2 A, Fig. S2). One thousand of the align-
ments were simulated under the branch-site
model null hypothesis with ω2 = 1, while the
other 1000 alignments represented the alterna-
tive hypothesis with ω2 > 1. In these simu-
lations every parameter was drawn randomly
from a specific distributions (Table S2) to ob-
tain more biologically realistic datasets. We
chose at random a single foreground branch
to perform the simulations and the same fore-
ground branch was used foreground the in-
ferrence. We used evolver from PAML 4.8 for
simulation (Yang, 2007).

We also simulated datasets using an ex-
tended branch-site model. In this model, ω0
and ω2 (when ω2 > 1) were replaced by a
set of discrete categories created from Beta
and Gamma distributions respectively (five
discrete categories were used). We also in-
corporated Gamma distributed site-rate vari-
ations (Rubinstein et al., 2011). The parame-
ters for these distributions are described in Ta-
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ble S2 B and Fig. S3. We used the cosim pack-
age for the simulations (https://bitbucket.
org/Davydov/cosim).

The likelihood ratio test (LRT) was used for
model selection, with a significance level of
α = 0.05.

We performed multiple hypothesis testing
correction using the qvalue R package, π0 was
estimated using the bootstrap method (Storey
et al., 2004).

Finally, a Primates dataset from the Selec-
tome database (Proux et al., 2009; Moretti et al.,
2014) release 6 was used to study the be-
haviour of the method on a real dataset. The
dataset consists of 15669 gene trees and align-
ments (http://selectome.unil.ch/cgi-bin/
download.cgi). We tested the inferrence of se-
lection on every non-terminal branch of the
Primates trees.

Results

M0 Model

For the simple M0 model, we first compare
the performance of likelihood maximization in
three different modes: full likelihood (no ag-
gregation), aggregation for conserved positions
and full aggregation. Here we kept the branch
lengths fixed and optimized ω and κ.

The parameter values obtained for all
datasets using both aggregation modes are
highly correlated with values estimated by the
full likelihood (Fig. S4, S5, S6, S7, S8, S9). The
error in estimation of the parameters is small
and is not dependent on the simulation pa-
rameters (Fig. 2, S10, S11), with the exception
of tree length (Fig. 3). The bias in parame-
ter estimation associated with the long trees is
smaller for less aggressive aggregation strate-
gies (Fig. S12). Comparisons with the two ran-
dom aggregation strategies show noticeably
better accuracies in parameter estimation with
the observation-based aggregation (Fig. S13).

The mean computational speedup is approx-
imately 1.7 for aggregation on all positions
(Fig. 4), but only 1.2 and 1.02 (Fig. S14) for ge-
netic code based aggregation and aggregation
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Figure 2: Estimated ω (A) and κ (B) values depending
on the alignment length (alen dataset, M0
model). Lines correspond to the simulation
parameter values.

limited to fixed positions respectively. We thus
only analyzed in details the behavior of the full
aggregation mode.

First, we see a strong effect of the align-
ment length on the speedups obtained (Fig. 5).
Matrix eigendecomposition is performed only
once per likelihood evaluation and the decrease
in the state-space between the full likelihood
and the aggregation does not have any im-
pact on the eigendecomposition performance.
However, a longer alignment will increase the
number of times the tree pruning step is per-
formed (i.e. once per site), which becomes
more important in the overall computational
cost. For instance, the speedup obtained with
an alignment of 500 codons is 1.8 with full ag-
gregation. The maximum speedup of 6.8 fold
was achieved on extremely long alignments
(above 10,000 codons) and short trees (total
length < 0.05).

While there is a larger error on the estimation
of model parameters (κ and ω) with shorter
alignments, this effect is identical with or with-
out aggregation (Fig. 2). The heuristic that we
propose does therefore not increase error on a
simple model even with short alignments. In-
terplay between eigendecomposition and prun-
ing times explains the direct effect of the re-
lationship between the number of sequences
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Figure 3: Estimated ω (A) and κ (B) values depending
on the tree length (tlen dataset, M0 model).
Lines correspond to the simulation parame-
ter values. Tree length limited to the range
[0.01; 300], see text).

and the speedup (Fig. 6). A large number of se-
quences decreases the proportion of time spent
in the eigendecomposition phase and subse-
quently increases the speedup.

Changes in the other parameters impact the
speedup of the aggregation mode insofar as
they change the number of codon states per
alignment site. The latter has then a direct ef-
fect on the number of non aggregated states.
Indeed, we aggregate into one state all codons
which are not observed in a given position.
Thus any processes that reduces the number of
different codons per position also increases the
efficiency of aggregation. Hence, the speedup
is slightly higher for smaller ω values because,
as ω approaches 0, more and more codons at a
particular site are only part of a synonymous
codon set. The number of possible codons
is thus greatly reduced and there is a higher
chance that the aggregation will lead to very
few states. In contrast, increasing ω values
will lead to an increasing number of states ob-
served. Similarly, extremely short branches
limit state variety at each site, which in turn
increase the level of aggregation possible and
thus increase speedup (Fig. 7). Biased codon
frequencies can also reduce diversity of states
and thus increase aggregation speedup. In our
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Figure 4: Speedup of aggregation on all alignment posi-
tions with M0 model. A) wvar dataset with
variable ω value, B) kvar dataset with vari-
able κ.
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Figure 5: Speedup depending on a number of the codons
(alen dataset, M0 model).

simulations, codon frequencies were drawn
from a Dirichlet distribution and we varied
the concentration parameter α to estimate the
effect of codon frequencies on codon aggrega-
tion. We see a better speedup associated with
smaller values of the α parameter, which leads
to a higher variance between codon frequencies
(Fig. S15).

Total tree length is the only parameter in our
simulations that also affects the accuracy of the
estimation of model parameters (Fig. 3, S16).
Longer trees tend to improve the accuracy of
the estimation of the parameters ω and κ. How-
ever, extremely long trees lead to an increase
in error both in aggregated and in full likeli-
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Figure 6: Speedup versus number of sequences (nseq
dataset, M0 model).
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Figure 7: Speedup versus tree length (tlen dataset, M0
model).

hood mode, probably because of saturation. It
appears that under reasonable conditions of
applicability of the M0 model (i.e. total tree
length < 20 substitutions per codon), aggre-
gation does not lead to any detectable bias,
while for extremely long trees aggregation can
introduce a slight bias.

We also estimated the branch lengths during
the optimization of the M0 model. There was
no systematic bias in branch lengths estimation
for short trees (Fig. S17), while we observed an
increased error in branch lengths estimation on
extremely long trees (Fig. S18). The error on
branch lengths was accompanied by increased
errors on ω and κ.

Thus, overall speedup on the simple M0
model can be explained by average observed
codons count and by alignment length (Fig. 8).
The relationship between speedup and ω, κ,
tree length and codon frequencies is effectively
explained by a reduced size of the state space
of the continuous-time Markov chain. Aggre-
gation is thus all the more effective when se-
quence data are biased or when analyses con-
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4 8 12 16
Averege observed codons count

S
pe

ed
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●

●

●

●

●

●
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Figure 8: Speedup versus average codon count for M0
model. Each point represents one simulated
alignment, dataset indicated by color. For
the dataset with changing alignment length
(alen), variation in speedup does not depend
on the observed codon count (which does not
vary significantly), but longer alignments lead
to higher speedup, see Fig. 5.

tain closely related species, which is probably
the case for many real multiple sequence align-
ments.

Branch-Site Model

Given the small speedup that we obtained for
the aggregation on fixed positions, we imple-
mented only the full aggregation mode for the
branch-site model in FastCodeML. We then
compared this new implementation with the
standard FastCodeML. We see a slight increase
in both false positives and true positives with
aggregation (Tables 1, 2). Overall, ROC curves
show that the performance of FastCodeML in
aggregation mode is similar to the full likeli-
hood mode (Fig. 9). Thus any errors in estima-
tion under aggregation seem to have very little
impact on the Likelihood ratio test (LRT) used
to test for the presence of positive selection
with the branch-site model.

For ω0, κ, and p1, Pearson’s correlation coef-
ficients between aggregated and full likelihood
estimates are 0.9986, 0.9969 and 0.9735, respec-
tively (Fig. 10). A lower correlation is observed
for p0 and ω2 (0.9578 and 0.9109, respectively).
Yet, these correlations are much higher than
those obtained between the full likelihood es-
timate and simulated values: 0.35 for p0 and
0.20 for ω2.
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Figure 9: ROC (receiver operating characteristic) curves
for FastCodeML in full likelihood and ag-
gregated likelihood modes for the branch-site
model simulations. Specificity, sensitivity and
area under curve (AUC) indicated.

Mode
True

positives
True

negatives
False

positives
False

negatives

normal 551 973 27 449
aggregated 562 970 30 438

Table 1: Statistical performance of FastCodeML in nor-
mal and aggregated modes on simulated data.
Numbers in the cells correspond to the number
of performed tests. A single branch was tested
per tree.

As with the M0 model, speedup is mostly
affected by sequence length and tree length
(Fig. 11) through their effects on observed
codon counts (Fig. S19). We reached a max-
imum speedup of 4.4 fold per likelihood com-
putation for the branch-site model.

The extended branch-site model violates sev-
eral assumptions of the branch-site model (ho-
mogeneous synonymous rate, fixed ω0 and ω2
values). In those cases, where data is more
complex than the model, the performance of
the aggregated mode becomes slightly worse
compared to the full likelihood mode S23, al-
though it remains very close (AUC 0.812 vs.
0.818).

Finally, we used FastCodeML in normal and
aggregated modes on a real dataset from Pri-
mates (Tables 3, S3). After correction for multi-
ple testing (false discovery rate cutoff 0.05), 20
branches were identified to be under positive

A
Selection detected

(aggregated)

− +
Selection detected − 963 12
(normal) + 7 18

B
Selection detected

(aggregated)

− +
Selection detected − 429 23
(normal) + 9 539

Table 2: Statistical performance of FastCodeML on the
simulated dataset. Numbers in the cells cor-
respond to the number of performed tests. A
single branch was tested per tree. A) Without
positive selection; B) With positive selection.

Selection detected
(aggregated)

− +
Selection detected − 77576 280
(normal) + 190 1114

Table 3: Statistical performance of FastCodeML on the
Primates dataset. Detected selection in normal
and aggregated modes of FastCodeML. Num-
bers in the cells correspond to the number of
performed tests. Every non-terminal branch
was tested.

selection using full likelihood computations
and 18 using aggregation, with 13 branches
in common. We did not encounter multi-
ple branches detected for an individual tree.
The predictions are consistent between the two
methods in 99.97% of the cases, which is higher
than the consistency of 97.45% for the simu-
lated data (Table 2). Aggregation gives a me-
dian speedup of 2.7 on this real dataset, con-
firming that real data can be sufficiently biased
to make aggregation quite efficient.
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Figure 10: Correlation between aggregated and non ag-
gregated parameter estimates for the branch-
site model.

Discussion

We propose state aggregation as a technique
for speeding up the computation of likelihood
in a phylogenetic context. By reducing the
size of the state space of the Markov process,
aggregation accelerates the phase of tree prun-
ing during the likelihood computation and, in
some cases, the eigendecomposition of the tran-
sition rate matrix. We show that aggregation
can be applied to the likelihood calculation of
two of the most commonly used codon models.
It can also be used for other types of models
(see below), in both maximum likelihood and
Bayesian frameworks.

The speedup for codon models depends on
the alignment length and the observed codon
counts, the latter being mostly affected by the
tree length (Fig. 8, S19).

These effects are especially strong with the
M0 model, because the likelihood optimizer
uses a fixed number of iterations. A simi-
lar trend is observed with a variable number
of iterations, but with increased stochasticity
(Fig. S20). In general, state aggregation does
not appear to have a systematic influence on
the total number of iterations (Fig. S21). The
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Figure 11: Effect of A) alignment length and B) tree
length on the speedup, branch-site model.

total run-time is therefore proportional to the
likelihood computation time.

Alignment length and observed codon
counts have a similar effect on a speedup for
the branch-site model. We see more explic-
itly the dependency if we normalize for the
number of likelihood function computations
(Fig. S22).

The most time consuming stages of the like-
lihood computation are matrix exponentiation
and tree pruning. FastCodeML uses highly
optimized algorithms to do matrix exponenti-
ation (Schabauer et al., 2012) and state aggre-
gation improves the time to perform the tree
pruning steps of the likelihood calculations
(Fig. S1 A, B).

While the dependency of the speedup on the
alignment length and the codon counts make
intuitive sense, we can understand it in more
details by considering the steps of the likeli-
hood computation. Let us consider the compu-
tation time of the total likelihood (Fig. S1 A):

Tf ull = teigen + Ktexp + NK61tprun,

where teigen is the time to decompose the in-
stantaneous rate matrix, texp is the time to ex-
ponentiate the rate matrix for each internal
node, tprun is the time to compute the partial
likelihood vector per internal node per posi-
tion, K is the number of internal nodes and
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N is the number of positions in the alignment.
The number of states is 61 for Markov chains
modeling codon sequences.

Similarly for the state aggregation (Fig. S1 B):

Taggr = teigen + Ktexp + NKtagg + NKMtprun,

where tagg is the matrix aggregation time per
internal node per position, and 61 is replaced
by M, the number of states after aggregation.
For a given branch and site combination, the
aggregation time is comparable to the time
spent computing a single element of the partial
likelihood vector. In the full mode, 61 elements
of the vector should be computed. The gain of
computing time observed with the aggregation
methods comes from the need to do a single
aggregation step, which is fast, followed by the
computation of M (M < 61) vector elements.

Aggregation speedup is thus:

Speedup =
Tf ull

Tagg
=

teigen + Ktexp + NK61tprun

teigen + Ktexp + NKtagg + NKMtprun
.

Generally performance is limited by eigen-
decomposition and pruning, so we can approx-
imate speedup as:

Speedup ≈
teigen + NK61tprun

teigen + NKtagg + NKMtprun
.

This representation gives a clear explanation
for the dependency of the speedup on the align-
ment length and the observed codon counts. In-
creasing the alignment length causes a weaker
effect on the non-accelerated eigendecomposi-
tion phase, which results in a more efficient
acceleration. In contrast, a higher codon diver-
sity in each alignment position increases the
number of states in the aggregated Markov
process (M), thus reducing the advantage of
the aggregated process relative to the full one.

Not only does aggregation provide diminish-
ing speedup with longer trees (more observed
states, larger M), it also introduces a bias in
the parameter estimation for extremely long
trees. Consequently, for trees longer than 100

expected substitutions per position it is not
practical to use state aggregation: biased re-
sults would be obtained without any signifi-
cant speedup. In practice, however, extremely
long trees are rare, for example in the Selec-
tome database 99% of the trees has total length
below 18 expected substitutions per position.

State aggregation can be applied either to the
probability matrix P or to the instantaneous
matrix Q (Fig. S1 B, C). In this work we were
focused on applying aggregation to the prob-
ability matrix P. In this case (Fig. S1 B), ag-
gregation is applied after exponentiation and
must be performed for every position indepen-
dently. The performance improvement is there-
fore achieved during the tree pruning phase.
In the case of the matrix Q (Fig. S1 C), aggre-
gation is applied prior to the exponentiation.
This leads to smaller dimensions of P matrices,
but eigendecomposition and exponentiation
have to be performed for every position inde-
pendently, since those positions will differ in
the states aggregated. Moreover, aggregation
of the matrix Q is expected to introduce more
bias that will accumulate along the branches.
Aggregation performed on the Q matrix will
discard differences in substitution trajectories
passing through unobserved states. There will
thus be an accumulation of the error during
both exponentiation and pruning phases. Ag-
gregation done after the exponentiation phase
only introduces error during the tree pruning
phase. Preliminary results do not show an ad-
vantage of aggregating the matrix Q for codon
models (not shown). A solution might be to
perform a “softer” aggregation on clusters of
sites with similar patterns of codons. This
would be done by first clustering alignment
positions and then producing aggregated in-
stantaneous rate matrices for each cluster. This
should diminish the bias and allow to exponen-
tiate a smaller number of Q matrices than for
the aggregation per site, while still computing
on smaller Q matrices than in non aggregated
mode. It is also possible that aggregation of
the Q matrix could be more useful for other
types of models, especially those with large
instantaneous rate matrices, such as coevolu-
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tion models (Dib et al., 2014). Finally, a second
round of aggregation might be performed after
the exponentiation in order to speedup the tree
pruning stage (Fig. S1 D). The computational
and statistical performance of such approaches
has yet to be investigated.

It is also possible to implement aggregation
on a subset of the data only. In our case, we
chose an extreme situation and aggregated
only the most conserved positions. The result
was a large loss in speedup relative to aggre-
gation on all positions without any gain in
accuracy. But there might be other cases where
aggregation on a subset of data only makes
most sense in terms of the cost (accuracy) —
benefit (speedup) trade-off. Moreover, there
are multiple ways to perform the aggregation
itself. Here, we collapsed all of the codons or
amino-acids which are not observed at the po-
sition of the alignment. It is also possible to
use other approaches to aggregation, e.g. ag-
gregate all the codons reachable by more than
a single mutation (or follow the amino-acids
similarity properties). Models of amino acid
substitutions have been derived from codon-
based Markov models by aggregating codons
separated by only synonymous substitutions.
These models were, however, not built nor eval-
uated for computational efficiency (Yang et al.,
1998; Ren et al., 2005; Susko and Roger, 2007;
Kosiol and Goldman, 2011). Less aggressive
aggregation shows increase in the accuracy at
the price of reduced speedup, although, in our
tests, accuracy was already good with the ag-
gressive aggregation.

The combined use of both aggregated and
non-aggregated modes in the same analysis
could be efficient in several scenarios. First, ag-
gregation could be used during likelihood max-
imization, but the final likelihood value com-
puted without aggregation, providing a more
accurate value. Second, aggregation could
be used to obtain a starting point for non-
aggregated likelihood maximization. Third,
aggregation could be used in a preprocessing
step to detect datasets of interest (e.g., gene
families with a signal of positive selection).
These datasets could then be analyze with full

likelihood to get an accurate estimation of the
parameters and model comparison. Finally, ag-
gregation could be used during the burn-in
period in a Bayesian approach (e.g. MCMC).
There are probably other scenarios where ag-
gregation can provide a faster estimation of
likelihood within a more complex analysis.

For the specific case of the branch-site model,
we have tested the second scenario of using
aggregation as a starting point and we do not
obtain a significant speedup (Fig. S24).

Aggregation can also have an impact on
memory usage. Aggregation on the probability
matrix P will reduce the size of the partial like-
lihood vectors (by a factor of r = 61/Nstates).
Additionally the Q matrix aggregation reduces
the size of the P-matrices (by a factor of r2).
On the other hand, the actual improvement
strongly depends on the details of the imple-
mentation, as partial likelihood vectors and
probability matrices can be reused in a number
of ways. Our implementation did not focus
on the reduction of memory footprint and we
thus do not discuss this aspect further.

Obviously, state aggregation in phylogeny
and evolution is not limited to the branch-
site and M0 codon models. First, it is uni-
versally applicable to Markov process-based
codon models, such as the commonly used
M1a/M2a, M8a/M8 (Wong et al., 2004), aB-
SREL (Smith et al., 2015), RELAX (Wertheim
et al., 2014), or any other GY94 (Goldman and
Yang, 1994) or MG94-based (Muse and Gaut,
1994) model. Second, it is not limited to codon
models. Given a trade-off between per-position
matrix aggregation slowdown and tree pruning
speedup, aggregation is unlikely to give a sig-
nificant performance improvement for models
with a small number of states (e.g., nucleotide
models). But even for amino acids models we
can expect some degree of speedup. In con-
trast, we expect state aggregation to provide a
significant performance improvement for the
models with a large number of states, such
as amino acid coevolution models that can in-
clude up to 400 states (Yeang and Haussler,
2007; Dib et al., 2014).

The aggregation of states in a Markov pro-
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cess is a powerful technique used in a vari-
ety of fields including computational biology,
such as protein network interaction analysis
(Petrov et al., 2012), reaction modeling (Ullah
et al., 2012), single molecule photobleaching
(Messina et al., 2006), or disease-progression
models (Regnier and Shechter, 2013). Its ap-
plication to phylogenetic models has not been
systematically studied, although it has been
implemented in some software (Lartillot and
Philippe, 2004, e.g. PhyloBayes;). This is, to
our knowledge, the first systematic study of
state aggregation biases and computational ef-
ficiency for molecular evolution.

In conclusion, we demonstrate that state
aggregation is a powerful method which im-
proves computational performance of codon-
based models, with little cost in accuracy. State
aggregation is not limited to codon models,
and we expect it to be useful for a large variety
of phylogenetic models and methods.
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