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Summary 

Computational modeling of tumor growth has become an invaluable tool to simulate complex cell-

cell interactions and emerging population-level dynamics. Agent-based models are commonly used 

to describe the behavior and interaction of individual cells in different environments. Behavioral 

rules can be informed and calibrated by in vitro assays, and emerging population-level dynamics 

may be validated with both in vitro and in vivo experiments. Here, we describe the design and 

implementation of a lattice-based agent-based model of cancer stem cell driven tumor growth. 

Key words: agent-based model, tumor growth, cancer stem cell, calibration, domain, search 
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1. Introduction 

Agent-based modeling has a long history in quantitative oncology (1-3), including stem cell 

dynamics (4-9) and heterogeneity (10-12). Such models can help predict disease progression and 
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make invaluable recommendations for therapeutic interventions (13, 14). Agent-based models 

simulate the behavior and interaction of individual cells. Behavioral rules can be dependent on 

environmental conditions, which includes chemicals in the extracellular environment (15-17), 

supporting structures in the extracellular matrix (18, 19), fluid dynamics (20), physical forces (21), 

or presence and interactions with other cells (22, 23). Computer simulations are usually initialized 

with a single cell or a cluster of individual cells, and the status and behavior of each cell are 

typically updated at discrete time points based on their internal rules and current environmental 

conditions. Such models may help identify if cancer stem cells comprise a subpopulation of specific 

proportion in a tumor (24), and how to deliver radiotherapy doses efficiently to eradicate cancer 

stem cells (25). 

2. Materials 

Implement all classes and functions in a concurrent version system to allow shared programming 

and efficient debugging.  

2.1 Lattice 

A finite 2D (or 3D if necessary) lattice, where each site can be occupied by a single or a population 

of cells (crowding). 

1. Lattice size. Simulations are commonly initialized with either (i) a small number of cells to 

observer emergent population-level behavior, or (ii) a populated tissue architecture. Define lattice 

size to accommodate anticipated final cell number. Account for possible boundary effects in case of 

a growing population. Set the size of a single lattice site to the size of a cell.  

2. Neighborhood. Determine if cells interact with their four orthogonal neighbors (north, south, east, 

west; von Neumann neighborhood), or with the adjacent eight neighboring lattice points (northwest, 

north, northeast, east, west, southeast, south, southwest; Moore neighborhood) (Fig. 1).  
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3. Boundary conditions. Define behavior of cells on the boundary of the lattice, set to either 

periodic (the boundary “wraps”, so cells on the left edge interact with cells on the far right edge) or 

no-flux reflective (cells on the edge of the lattice only interact with interior and edge cells). Note 

that simulations with no-flux boundary conditions may introduce boundary effects, i.e. 

accumulation of cells near the boundary. For dynamically expanding arrays no boundary conditions 

are necessary. 

2.2 Cell 

Each cell is an individual entity with the following basic attributes: 

1. Time to next division event (tc).  

2. Type of the cell – stem/non-stem (isStem). 

3. Probability of symmetric division (ps). Cancer stem cells divide either symmetrically to produce 

two identical cancer stem cells, or asymmetrically to produce a cancer stem cell and a non-stem 

cancer cell (26). In the case of cancer stem cell define probabilities of symmetric division, 0<ps<=1, 

and asymmetric division pa=1-ps  (Fig. 2). 

 
 
Fig. 1.  Schematic of expected cell displacement, 〈𝑐𝑒𝑙𝑙〉, in the von Neumann (left) and Moore 
(right) neighborhoods on a two-dimensional lattice with lattice sizes of  x2 µm2.  
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4. Telomere length (p). Set the telomere length of the initial cell or cell population as a molecular 

clock (27-29), which is a quantification of the Hayflick limit (30). 

5. Current cell cycle phase (if required). If information about specific cell cycle phases is required 

(such as for simulations of cell cycle specific chemotherapeutics) define cell cycle phases. Cell 

cycle length can be divided into fractions comparable to experimentally measured cell cycle 

distributions.  

6. Probability of spontaneous death (α). Cancer cells (isStem = false) accumulate mutations that 

introduce genomic instability which may lead to pre-mature cell death. Define a probability of 

spontaneous cell death, α≥0, at which rate cells may die during cell division attempts. Cancer stem 

cells (isStem = true) have a superior DNA damage repair machinery (31-33) and, thus, the 

probability of spontaneous cell death can be set to zero. For more biological realism, define a cell 

death rate that is larger than zero, but less than the self-renewal rate to ensure net population 

growth. 

Each cell is equipped with a set of basic functions: 

 
 
Fig. 2.  a) Schematic of cancer stem cell symmetric and asymmetric division. b) Schematic 
representation of cancer stem cell symmetric (ps) and asymmetric division (pa) and non-stem 
cancer cell proliferation capacity. Adapted from (24). 
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1. Procedure advance time (input arguments = time increment Δt, list of available sites in the direct 

neighborhood).  

• Decrease time to next division (tc) by Δt. If tc < 0 set tc = 0. 

• Update current cell cycle phase (if necessary). 

• If tc ≤ 0 and there is available space, then perform division and generate new times to 

next division for both resulting cells. 

2. Procedure divide (input argument = list of available sites in the direct neighborhood). 

Choose a random number 0≤n≤1 from the uniform distribution. If n < α, then simulate cell death, 

i.e. remove cell from the simulation and instantaneously make a corresponding lattice point 

available. If required, instead of instantaneous cell removal, site on the lattice can be made available 

for new cells after specified amount of time, e.g. in order to simulate duration of apoptosis process. 

Otherwise: 

• If the cell is not-stem (isStem = false) then decrease the proliferation capacity (p) by one, as 

non-stem cancer cells do not upregulate telomerase and are thus not long-lived and cannot 

initiate, retain, and re-initiate tumors (34, 35). Simulate cell death by removing the cell from 

the simulation if the proliferation capacity is exhausted, i.e., less or equal to zero. Otherwise, 

new cell is a clone of the mother cell, i.e. non-stem cancer cell only produces non-stem 

cancer cell and decremented capacity is inherited by the daughter cell. 

• If the cell is cancer stem cell (isStem = true), then draw a number from uniform distribution 

to decide if the division is symmetric based on the probability ps. If division is symmetric, 

new cell is a perfect clone of the mother cell; that is a cancer stem cells do not erode 

telomeres and retain identical proliferation capacity after mitosis. Otherwise, non-stem 

cancer cell offspring of a cancer stem cell inherit the current telomere length and determined 

proliferation capacity, i.e. new cell is identical except for attribute isStem, which set to false. 
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3. Procedure generate time to next division. Cells divide on average every 24 hours. Derive specific 

cell cycle times tc (hours), averages and standard deviations from proliferation rate calculations 

from clonogenic assays or live microscopy imaging (36).  

4. Procedure random migration (input argument = list of available sites in the direct neighborhood). 

Cells may perform a random walk, and probabilities of migrating into adjacent lattice points can be 

obtained from a discretized diffusion equation (37, 38). Assuming Moore neighborhood (see section 

2.1 above) and a cell at position (x0,y0): at time t can move based on available lattice points in the 

immediate eight-cell Moore neighborhood N(x0,y0) with probabilities   

𝑃 𝑥!!!!,𝑦!!!! = ! !!
!,!!

!

!! ! !!
!,!!

!
! !!,!!

, 𝑖 = 1,… ,8, with 

Γ 𝑥!! ,𝑦!! = 1, if lattice point 𝑥! ,𝑦!  is unoccupied at time 𝑡
0, otherwise .    

With probability 1/(1+number of unoccupied neighboring lattice points) the cell remains 

temporarily stationary, and a cell that is completely surrounded by other cells is not moving. Note 

that in this implementation, movement to all adjacent lattice points is equally weighted. This can be 

modified to account for increased distance to diagonal lattice points. 

4. Procedure directed migration (if required) (input arguments = list of available sites in the direct 

neighborhood, function F whose gradient ∇𝐹 describes the migration stimulus, such as 

chemoattractant or chemorepellant). Vector n describes the vector connecting the current cell 

position (x0, y0) to the center of one of the adjacent lattice points (xi, yi). Directed migration only 

occurs towards available lattice sites (S) when ∇𝐹 ∙ n > 0. Weight each available site S by the 

factor cos(θ), where θ is the angle between the gradient ∇𝐹 and the movement direction n for each 

possible movement). (Notice that cos(θ) = 1 when ∇𝐹 and n are parallel, and cos(θ) = 0 when they 

are perpendicular, to give greatest weight to travel along the chemoattractant gradient direction.)  
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Sum each cos(𝜃) over the S available sites to get the averaged cosine value AS. Define the 

probability of mobilization G through an arbitrary chemotactic/haptotactic responsiveness function 

via G = H( ∇𝐹 𝐴𝑆/(𝐴𝑆 + 1)), where H has the properties:  

• H(0) = 0 (no directed motion when no lattice sites are available or the chemical gradient is 

zero), 

• H is a (monotonically) increasing function (directed motility increases with the magnitude 

chemotactic signal and alignment with the lattice), and  

• H tends to 1 as ∇𝐹 𝐴𝑆/(𝐴𝑆 + 1) approaches ∞ (directed motility increases with the 

chemotactic signal, but saturates at a maximal level scaled to 1). 

If cell moves, its direction is weighted by the respective cosines for movement, so that 

cos(θ)G/(AS) is the probability of movement to the available site at angle θ. This method is 

explained in detail elsewhere (39). 

3. Methods 

3.1 Programming environment 

1. Define programming language. Agent-based models can be implemented and simulated an any 

programming language; most prominent languages including C++, Java, Julia, Python, Matlab. 

Each of those languages offers different computational speed and coding feasibility. C++ is 

considered as the environment offering the best performance, but has a high programming 

complexity. Matlab offers a great number of built-in functions and is easy to code in, but has 

significantly slower performance (e.g., when using nested loops). 

2. Define graphical output. Visualize simulation solutions of agent-based models using existing 

implementations of graphical programming or implement specific visualization tools. 
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3. Agent-based software packages. Utilize pre-developed agent-based software packages; most 

prominent include Netlogo (40, 41), CompuCell3D (36, 42), Chaste (43), or Swarm (44). 

3.3 Simulation procedure 

1. Time step. Define the simulation time step, Δt, such that Δt is smaller than the fastest biological 

process that is being considered in the model. In a model of cell proliferation (~1/day) and cell 

migration (~1 cell width/hour), set Δt≤1 hour. 

2. Develop a simulation flowchart to conceptualize and visualize the simulation procedure. At each 

defined discrete simulation time step, consider mutually exclusive processes that occur with lowest 

rate constant first. Let us assume that cell migration and cell proliferation are mutually exclusive 

(e.g., cells could migrate through most of G1, S, G2 phases). Check if maturation age is reached; if 

not, check if migration time is reached (Fig. 3).  

 

 

Fig. 3. Sample simulation flowchart with the simulation and cell cycle scheme. 
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3. Lattice update sequence. Update cells in random order to avoid lattice geometry effects. Maintain 

a list of “live” cell agents and select cells for update from this list at random. 

4. Cell update sequence. Consider vacancy in cell neighborhood in random order to avoid lattice 

geometry effects. Maintain a list of vacant adjacent lattice sites for each cell agent and select for 

update from this list at random. 

4. Notes  

1. Homogenous populations. The presented model produces a heterogeneous population of stem and 

non-stem cancer cells. If ps=1, the population remains (if only initialized with cancer stem cells) or 

will become (if initialized with both stem and non-stem cancer cells) homogenous comprised of 

only cancer stem cells. If ps=0, only non-stem cancer cells are produced and the resulting 

population size oscillates around a dynamic equilibrium or, if the probability of cancer stem cell 

death is positive and non-zero, the population will inevitably die out (45).  

2. Plasticity. The presented model considers cancer stemness a cell phenotype, whereas recent 

literature may suggest stemness to be a reversible trait (46, 47). The model can be extended to 

simulated phenotypic plasticity through cancer stem cell differentiation (that is, the cancer stem cell 

phenotype is set to non-stem cancer cell) and non-stem cancer cell de-differentiation (that is, the 

non-stem cancer cell phenotype is set to cancer stem cell) (48). 

3. Senescence. The presented model considers cell death after exhaustion of proliferation potential. 

Alternatively, cells may enter senescence (49) and, although mitotically inactive, continue to 

consume resources that influence the behavior of remaining cancer cells (50). 

4. Evolution. The presented model considers fixed parameters or rate constants for each cell trait. 

Rate constants can change due to mutations and genetic drift (51), which allows for simulations of 

the evolution of cancer stem cell traits under different environmental conditions (12, 52). 
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5. Carcinogenesis. Such modeling framework can be adapted to model tissue homeostasis and 

mutation/selection cascades during cancer development (16, 53). 

6. To ensure model results are reproducible, simulation inputs (parameters) and outputs should be 

recorded using open, standardized data formats, using biologically-driven data elements that can be 

reused in independent models. The MultiCellDS (multicellular data standard) Project assembled a 

cross-disciplinary team of biologists, modelers, data scientists, and clinicians to draft a standard for 

digital cell lines, which record phenotype parameters such cell cycle time scales, apoptosis rates, 

and maximum proliferative capacity. Separate digital cell lines can represent cancer stem cells and 

non-stem cells. Similarly, standardized simulation outputs can record the position, cell cycle status, 

and other properties of simulated cells. Using standards will allow better software compatibility, 

facilitate cross-model validation, and streamline development of user-friendly software to start, 

modify, visualize, and analyze computational models. See MultiCellDS.org for further details. 

7. Model assumptions (e.g., Fig. 3) should also be recorded with standardized data formats. The 

Cell Behavior Ontology (CBO) (54) SLUKA provides a “dictionary” (ontology) of applicable stem 

cell behaviors, but it may not be able to fully capture the entire model logic in its present form. 

Extensions to the Systems Biology Markup Language (SBML) (55), such as SBML-Dynamic (56), 

are currently being developed to leverage the model structure of SBML and the ontology of CBO to 

annotate the mathematical structure of agent-based models, but the standards are not yet complete.  

8. Treatment. The presented agent-based model can be extended to account for the effects of cancer 

therapy including radiation (57-59), chemotherapy (60), oncolytic viruses (61), or immunotherapy 

(62).  

9. Analysis. Agent-based models can be rigorously analyzed for sensitivity and stability (63, 64). 

Comparison of coarse-grained model behavior (e.g., growth curves) with known analytical results 

can quality check calibration protocols and the computational implementation.  
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10. Dynamically expanding domains. Tradeoffs between lattice size and computing speed can be 

avoided using dynamically growing domains (65). 

11. Hybrid models. The discussed model setup can be extended to a hybrid discrete-continuous 

framework where single cells are modeled as discrete agents, and environmental chemicals diffuse 

on a mapped continuum layer (66-68). In those models cell cycle time may vary with environmental 

conditions (e.g., (16) and (69)).  

13. Cell neighborhood. In more complex cases daughter cells can populate empty lattice sites 

within a given distance to approximate tissue deformability. 

 

Acknowledgments  

JP and HE were partially supported by the Personalized Medicine Award 09-33000-15-03 from the 
DeBartolo Family Personalized Medicine Institute Pilot Research Awards in Personalized Medicine 
(PRAPM). PM was supported by the Breast Cancer Research Foundation and the National Institutes 
of Health [1R01CA180149]. 

 

References 

1. A. Anderson, M.A.J. Chaplain, and K. Rejniak (2007) Single-Cell-Based Models in Biology 
and Medicine, Springer Science & Business Media. 

2. H. Enderling and K.A. Rejniak (2013) Simulating cancer: computational models in oncology, 
Frontiers in oncology. 3, 233. 

3. Z. Wang, J.D. Butner, R. Kerketta, et al. (2014) Simulating cancer growth with multiscale 
agent-based modeling, Seminars in cancer biology. 

4. M. d’Inverno and R. Saunders (2004) Agent-Based Modelling of Stem Cell Self-organisation 
in a Niche, In: Engineering Self-Organising Systems, pp. 52–68 Springer Berlin Heidelberg, 
Berlin, Heidelberg. 

5. D.G. Mallet and L.G. de Pillis (2006) A cellular automata model of tumor-immune system 
interactions, Journal of theoretical biology. 239, 334–350. 

6. D.L. Chao, J.T. Eck, D.E. Brash, et al. (2008) Preneoplastic lesion growth driven by the 
death of adjacent normal stem cells, Proceedings of the National Academy of Sciences of the 
United States of America. 105, 15034–15039. 

7. H. Enderling, L. Hlatky, and P. Hahnfeldt (2009) Migration rules: tumours are conglomerates 
of self-metastases, British journal of cancer. 100, 1917–1925. 

8. H. Enderling, A.R.A. Anderson, M.A.J. Chaplain, et al. (2009) Paradoxical dependencies of 
tumor dormancy and progression on basic cell kinetics, Cancer research. 69, 8814–8821. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 23, 2015. ; https://doi.org/10.1101/035162doi: bioRxiv preprint 

https://doi.org/10.1101/035162
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

9. K.-A. Norton and A.S. Popel (2014) An agent-based model of cancer stem cell initiated 
avascular tumour growth and metastasis: the effect of seeding frequency and location, 
Journal of The Royal Society Interface. 11, 20140640–20140640. 

10. P. Gerlee and A.R.A. Anderson (2008) A hybrid cellular automaton model of clonal 
evolution in cancer: the emergence of the glycolytic phenotype, Journal of theoretical 
biology. 250, 705–722. 

11. A. Sottoriva, J.J.C. Verhoeff, T. Borovski, et al. (2010) Cancer stem cell tumor model reveals 
invasive morphology and increased phenotypical heterogeneity, Cancer research. 70, 46–56. 

12. J. Poleszczuk, P. Hahnfeldt, and H. Enderling (2015) Evolution and Phenotypic Selection of 
Cancer Stem Cells, PLoS computational biology. 11, e1004025. 

13. A.R.A. Anderson and V. Quaranta (2008) Integrative mathematical oncology, Nature 
reviews. Cancer. 8, 227–234. 

14. T.E. Yankeelov, V. Quaranta, K.J. Evans, et al. (2015) Toward a Science of Tumor 
Forecasting for Clinical Oncology, Cancer research. 75, 918–923. 

15. J.B. Xavier and K.R. Foster (2007) Cooperation and conflict in microbial biofilms, 
Proceedings of the National Academy of Sciences of the United States of America. 104, 876–
881. 

16. R.A. Gatenby, K. Smallbone, P.K. Maini, et al. (2007) Cellular adaptations to hypoxia and 
acidosis during somatic evolution of breast cancer, British journal of cancer. 97, 646–653. 

17. H. Enderling, L. Hlatky, and P. Hahnfeldt (2012) The promoting role of a tumour-secreted 
chemorepellent in self-metastatic tumour progression, Mathematical medicine and biology : a 
journal of the IMA. 29, 21–29. 

18. H. Enderling, N.R. Alexander, E.S. Clark, et al. (2008) Dependence of invadopodia function 
on collagen fiber spacing and cross-linking: computational modeling and experimental 
evidence, Biophysical journal. 95, 2203–2218. 

19. D.K. Schlüter, I. Ramis-Conde, and M.A.J. Chaplain (2012) Computational modeling of 
single-cell migration: the leading role of extracellular matrix fibers, Biophysical journal. 103, 
1141–1151. 

20. K.A. Rejniak (2007) An immersed boundary framework for modelling the growth of 
individual cells: an application to the early tumour development, Journal of theoretical 
biology. 247, 186–204. 

21. D. Drasdo and S. Höhme (2005) A single-cell-based model of tumor growth in vitro: 
monolayers and spheroids, Physical biology. 2, 133–147. 

22. I. Ramis-Conde, D. Drasdo, A.R.A. Anderson, et al. (2008) Modeling the influence of the E-
cadherin-beta-catenin pathway in cancer cell invasion: a multiscale approach, Biophysical 
journal. 95, 155–165. 

23. D.K. Schlüter, I. Ramis-Conde, and M.A.J. Chaplain (2015) Multi-scale modelling of the 
dynamics of cell colonies: insights into cell-adhesion forces and cancer invasion from in 
silico simulations, Journal of the Royal Society, Interface / the Royal Society. 12, 20141080–
20141080. 

24. H. Enderling (2014) Cancer stem cells: small subpopulation or evolving fraction? Integrative 
biology : quantitative biosciences from nano to macro. 7, 14–23. 

25. J.C.L. Alfonso, N. Jagiella, L. Núñez, et al. (2014) Estimating dose painting effects in 
radiotherapy: a mathematical model, PloS one. 9, e89380. 

26. D. Dingli, A. Traulsen, and F. Michor (2007) (A)symmetric stem cell replication and cancer, 
PLoS computational biology. 3, e53. 

27. A.M. Olovnikov (1973) A theory of marginotomy. The incomplete copying of template 
margin in enzymic synthesis of polynucleotides and biological significance of the 
phenomenon, Journal of theoretical biology. 41, 181–190. 

28. E.H. Blackburn and J.G. Gall (1978) A tandemly repeated sequence at the termini of the 
extrachromosomal ribosomal RNA genes in Tetrahymena, Journal of molecular biology. 120, 
33–53. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 23, 2015. ; https://doi.org/10.1101/035162doi: bioRxiv preprint 

https://doi.org/10.1101/035162
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

29. C.B. Harley (1991) Telomere loss: mitotic clock or genetic time bomb? Mutation 
ResearchDNAging. 256, 271–282. 

30. L. Hayflick (1965) The limited in vitro lifetime of human diploid cell strains, Experimental 
cell research. 37, 614–636. 

31. S. Bao, Q. Wu, R.E. McLendon, et al. (2006) Glioma stem cells promote radioresistance by 
preferential activation of the DNA damage response, Nature. 444, 756–760. 

32. M. Maugeri-Saccà, M. Bartucci, and R. De Maria (2012) DNA damage repair pathways in 
cancer stem cells, Molecular cancer therapeutics. 11, 1627–1636. 

33. S. Skvortsov, P. Debbage, P. Lukas, et al. (2015) Crosstalk between DNA repair and cancer 
stem cell (CSC) associated intracellular pathways, Seminars in cancer biology. 31, 36–42. 

34. R.C. Allsopp, G.B. Morin, R. DePinho, et al. (2003) Telomerase is required to slow telomere 
shortening and extend replicative lifespan of HSCs during serial transplantation, 
Hematopoiesis. 102, 517–520. 

35. (2010) Telomeres and telomerase in normal and cancer stem cells, 584, 3819–3825. 
36. X. Gao, J.T. McDonald, L. Hlatky, et al. (2013) Acute and fractionated irradiation 

differentially modulate glioma stem cell division kinetics, Cancer research. 73, 1481–1490. 
37. A.R.A. Anderson, M.A.J. Chaplain, E.L. Newman, et al. (2000) Mathematical Modelling of 

Tumour Invasion and Metastasis, Computational and mathematical methods in medicine. 2, 
129–154. 

38. A.R.A. Anderson, A.M. Weaver, P.T. Cummings, et al. (2006) Tumor morphology and 
phenotypic evolution driven by selective pressure from the microenvironment, Cell. 127, 
905–915. 

39. H. Enderling, L. Hlatky, and P. Hahnfeldt (2010) Tumor morphological evolution: directed 
migration and gain and loss of the self-metastatic phenotype, Biology direct. 5, 23. 

40. I. Kareva (2015) Immune evasion through competitive inhibition: the shielding effect of 
cancer non-stem cells, Journal of theoretical biology. 364, 40–48. 

41. R. Bravo and D.E. Axelrod (2013) A calibrated agent-based computer model of stochastic 
cell dynamics in normal human colon crypts useful for in silico experiments, Theoretical 
biology & medical modelling. 10, 66. 

42. M.H. Swat, G.L. Thomas, J.M. Belmonte, et al. (2012) Multi-scale modeling of tissues using 
CompuCell3D, Methods in cell biology. 110, 325–366. 

43. G.R. Mirams, C.J. Arthurs, M.O. Bernabeu, et al. (2013) Chaste: an open source C++ library 
for computational physiology and biology, PLoS computational biology. 9, e1002970. 

44. N. Minar, R. Burkhart, C. Langton, et al. (1996) The swarm simulation system: A toolkit for 
building multi-agent simulations, Working Paper 96-06-042, Santa Fe Institute, Santa Fe. 

45. H. Enderling (2013) Cancer stem cells and tumor dormancy, Advances in experimental 
medicine and biology. 734, 55–71. 

46. (2013) Cell Plasticity and Heterogeneity in Cancer, 59, 168–179. 
47. S. Schwitalla (2014) Tumor cell plasticity: the challenge to catch a moving target, Journal of 

gastroenterology. 49, 618–627. 
48. J. Poleszczuk and H. Enderling (2016) Cancer Stem Cell Plasticity as Tumor Growth 

Promoter and Catalyst of Population Collapse, Stem cells international. 1–12. 
49. J. Campisi, S.H. Kim, C.S. Lim, et al. (2001) Cellular senescence, cancer and aging: the 

telomere connection, Experimental gerontology. 36, 1619–1637. 
50. J. Poleszczuk, P. Hahnfeldt, and H. Enderling (2014) Biphasic modulation of cancer stem 

cell-driven solid tumour dynamics in response to reactivated replicative senescence, Cell 
proliferation. 47, 267–276. 

51. A. Sottoriva, L. Vermeulen, and S. Tavaré (2011) Modeling evolutionary dynamics of 
epigenetic mutations in hierarchically organized tumors, PLoS computational biology. 7, 
e1001132. 

52. J.G. Scott, A.B. Hjelmeland, P. Chinnaiyan, et al. (2014) Microenvironmental variables must 
influence intrinsic phenotypic parameters of cancer stem cells to affect tumourigenicity, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 23, 2015. ; https://doi.org/10.1101/035162doi: bioRxiv preprint 

https://doi.org/10.1101/035162
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

PLoS computational biology. 10, e1003433. 
53. A.J. Carulli, L.C. Samuelson, and S. Schnell (2014) Unraveling intestinal stem cell behavior 

with models of crypt dynamics, Integrative biology : quantitative biosciences from nano to 
macro. 6, 243–257. 

54. J.P. Sluka, A. Shirinifard, M. Swat, et al. (2014) The cell behavior ontology: describing the 
intrinsic biological behaviors of real and model cells seen as active agents, Bioinformatics 
(Oxford, England). 30, 2367–2374. 

55. M. Hucka, A. Finney, H.M. Sauro, et al. (2003) The systems biology markup language 
(SBML): a medium for representation and exchange of biochemical network models, 
Bioinformatics (Oxford, England). 19, 524–531. 

56. C. Myers and C. Myers (2011) Dynamic Structures in SBML, Nature Precedings. 
57. H. Enderling, D. Park, L. Hlatky, et al. (2009) The Importance of Spatial Distribution of 

Stemness and Proliferation State in Determining Tumor Radioresponse, Mathematical 
Modelling of Natural Phenomena. 4, 117–133. 

58. G.G. Powathil, M. Kohandel, S. Sivaloganathan, et al. (2007) Mathematical modeling of 
brain tumors: effects of radiotherapy and chemotherapy, Physics in medicine and biology. 
52, 3291–3306. 

59. H. Kempf, H. Hatzikirou, M. Bleicher, et al. (2013) In silico analysis of cell cycle 
synchronisation effects in radiotherapy of tumour spheroids, PLoS computational biology. 9, 
e1003295. 

60. G.G. Powathil, K.E. Gordon, L.A. Hill, et al. (2012) Modelling the effects of cell-cycle 
heterogeneity on the response of a solid tumour to chemotherapy: biological insights from a 
hybrid multiscale cellular automaton model, Journal of theoretical biology. 308, 1–19. 

61. D. Wodarz, A. Hofacre, J.W. Lau, et al. (2012) Complex Spatial Dynamics of Oncolytic 
Viruses In Vitro: Mathematical and Experimental Approaches, PLoS computational biology. 
8, e1002547. 

62. W. Shengjun, G. Yunbo, S. Liyan, et al. (2012) Quantitative study of cytotoxic T-
lymphocyte immunotherapy for nasopharyngeal carcinoma, Theoretical biology & medical 
modelling. 9, 6. 

63. P. Gerlee and A.R.A. Anderson (2007) Stability analysis of a hybrid cellular automaton 
model of cell colony growth, Physical review. E, Statistical, nonlinear, and soft matter 
physics. 75, 051911. 

64. P. Gerlee and A.R.A. Anderson (2010) Diffusion-limited tumour growth: simulations and 
analysis, Mathematical biosciences and engineering : MBE. 7, 385–400. 

65. J. Poleszczuk and H. Enderling (2014) A High-Performance Cellular Automaton Model of 
Tumor Growth with Dynamically Growing Domains, Applied Mathematics. 5, 144–152. 

66. A.R.A. Anderson (2005) A hybrid mathematical model of solid tumour invasion: the 
importance of cell adhesion, Mathematical medicine and biology : a journal of the IMA. 22, 
163–186. 

67. P. Gerlee and A.R.A. Anderson (2007) An evolutionary hybrid cellular automaton model of 
solid tumour growth, Journal of theoretical biology. 246, 583–603. 

68. H. Enderling, L. Hlatky, and P. Hahnfeldt (2012) Immunoediting: evidence of the 
multifaceted role of the immune system in self-metastatic tumor growth, Theoretical biology 
& medical modelling. 9, 31. 

69. P. Macklin, M.E. Edgerton, A.M. Thompson, et al. (2012) Patient-calibrated agent-based 
modelling of ductal carcinoma in situ (DCIS): from microscopic measurements to 
macroscopic predictions of clinical progression, Journal of theoretical biology. 301, 122–
140. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 23, 2015. ; https://doi.org/10.1101/035162doi: bioRxiv preprint 

https://doi.org/10.1101/035162
http://creativecommons.org/licenses/by-nc-nd/4.0/

