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Abstract—To simulate the spatiotemporal distribution of 

chemical compounds, we present BioFVM, an open-source 

reaction-diffusion equation solver using finite volume methods 

with motivation for biological applications. With various 

numerical solvers, we can simulate the interaction of dozens of 

compounds, including growth substrates, drugs, and signaling 

compounds in 3-D tissues, with cells by treating them as various 

source/sink terms. BioFVM has linear computational cost 

scalings and demonstrates first-order accuracy in time and 

second-order accuracy in space. Beyond simulating the 

transport of drugs and growth substrates in tissues, the ability 

to simulate dozens of compounds should make 3-D simulations 

of multicellular secretomics feasible. 

I. INTRODUCTION TO THE TYPE OF PROBLEM IN CANCER  

Tissues are filled with various chemical compounds, 
including signaling and other factors that regulate how cells 
move, grow, and die, depending on the concentration and/or 
gradient of any and all of these compounds. In order for 
cancer cells to survive and grow, they need to obtain oxygen 
and other nutrients released from blood vessels, and change 
phenotype based upon signaling factors released by other 
cells and the vasculature. These chemical substances move 
through tissues by diffusion, and are impacted by uptake by 
tumor and other cells and reaction terms (e.g., decay). (In 
some tissues, advection is also dominant; these effects are 
not considered in this version.) These same transport 
processes can be used to model how chemotherapeutic drugs 
reach their intended targets: susceptible cancer cells. By 
performing computational simulations of the movement of 
dozens of various chemical substances and of cellular 
chemical uptake and secretion rates, we can test hypotheses 
that can control the overall growth of cancer cells and enable 
3-D simulations of multicellular secretomics. 

Simulating this motion requires solving a system of 

reaction-diffusion equations for a vector 𝜌⃗ of substrates: 
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where D and λ are the diffusion and decay coefficients, S 
and U are the bulk source and uptake terms, and Sk and Uk 
are cell-centered source and uptake terms. The  symbol 
denotes the Hadamard (element-wise) product between two 
vector terms, δ is the Dirac delta function, and ρT represents 
target densities of the substrates.  

We present here BioFVM [1], an open-source software 
package written in C++ to efficiently solve this system of 
equations on multicore desktop computer and single 
supercomputer nodes. Using the finite volume method 
(FVM) [2], this software fills a niche and focuses on the 
biological transport processes of interest to cancer modelers. 
BioFVM is intended to work in concert with multicellular 
modeling packages (e.g., Chaste [3], CompuCell3D [4], 
PhysiCell [5]) to simulate how cells change their phenotypes 
as they interact with other cells and the biochemical 
microenvironment. Combining BioFVM with an agent-
based code enables a user to simulate the growth, survival, 
and death of not only cancer cells, but of multicellular 
processes in general.  

BioFVM is open source under the Apache 2.0 license. It 
can be downloaded for free at: 

http://BioFVM.MathCancer.org OR http://BioFVM.sf.net. 

A series of tutorials is included with every download. 
The method is described in detail in [1].   

II. ILLUSTRATIVE RESULTS OF APPLICATION OF METHODS 

BioFVM obtains first-order accuracy in time, second-
order accuracy in space, and linear scaling of cost in terms of 
each of the number of substrates, voxels, and time steps [1]. 
Simulating additional substrates does not significantly 
increase the computational cost of a simulation. Fig. 1 
demonstrates the computational cost scaling when increasing 
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Figure 1: Number of substrates vs. execution time (seconds) for a 
simulation with otherwise identical conditions. 
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the number of substrates from 1 to 100.  

Fig. 2 shows an example simulating oxygen and glucose 
transport in a liver lobule. We marked central veins in 
histological images of liver tissues, estimated the 
corresponding lobular geometry, generated sinusoids, added 
hepatocytes, and imported tissue into BioFVM with a 5 mm

3
 

computational domain (5 mm  5 mm  200 μm). We 
simulated oxygen and glucose release by the portal triads, 
diffusion, and uptake by hepatocytes. The desktop simulation 

used 625,000 voxels (20 m resolution) with 900,000 cells. 
See [1] for further examples and test results.  

 

III. QUICK GUIDE TO THE METHODS 

We discretize the spatial simulation domain into voxels 
to solve the reaction-diffusion equation with the finite 
volume method. BioFVM currently supports uniform 
Cartesian meshes, where the FVM reduces to a finite 
difference scheme; support for non-Cartesian Voronoi 
meshes is expected in a future release.  

We several techniques to speed up numerical 
computations. We use operator splitting [6, 7] to solve the 
bulk source/sink terms first, the cellular source/sink terms 
second, and diffusion/decay terms third. The splitting is 
O(Δt) accurate and stable when the individual solvers are 
first-order accurate and stable [6]. Moreover, it simplifies 
development, allows efficient solvers to be tailored to each 
term, and holds the door open to new solvers (e.g., 
advection) without significant change to the overall code.  

We solve the bulk and cell-centered source/sink terms 
using the (1

st
-order, stable) backwards Euler scheme. In each 

time step, the source/sink terms are independent across 
space. Thus, parallelize their solutions using OpenMP. See 
[1] for the full details of the discretization.  

We divide the 3-D diffusion/decay terms into a series of 
1-D equations, one for each dimension [6]. After this 
splitting, a strip of voxels (e.g. all voxels with the same yj 
and zk values, but different x values) is independent of any 
other strip; discretizing the diffusion and decay terms yields 
a tridiagonal linear system, which can be directly by using 
the Thomas algorithm [8]. Because each x strip is 
independent, we can distribute and run many instances of the 
Thomas solver across the processor cores with OpenMP, 
allowing us to easily parallelize the x diffusion problem. We 
solve along each of the y and z dimensions similarly.  

To further optimize the code, we used some 
computational techniques that better utilize modern 
computer architecture, trading memory for computational 
speed wherever possible. Rather than solving the PDE for 

each chemical substrate sequentially (which requires 10 
more computational time to solve for 10 substrates than 
solving for one substrate), we discretized the solvers to 
operate on entire vector of substrates simultaneously, thus 
taking advantage of SIMD and similar hardware 
optimizations on modern CPUs. We used BLAS operations 
(e.g. axpy) on C++ vectors to accelerate computations to 
avoid hidden memory allocations/copies [9]. Due to these 
optimizations, we found that simulating 10 substrates 

requires approximately 2.6 more computational time than a 
single substrate [1]. Because the diffusion and decay 
coefficients are assumed constant, we could pre-compute the 
forward sweep and part of the back substitution steps for the 
Thomas solvers, allowing further improvement in the 
computational speed. [1].   
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Figure 2: Simulating transport of oxygen (left) and glucose (right) in virtual 
liver lobules (hexagonal shapes). Nondimensionalized substrate values 

increase from blue to red.  
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