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ABSTRACT

New integrative approaches are needed to harness the potential of rapidly growing
data sets of gene and protein expression and microbial taxonomic identification in
colorectal cancer (CRC). Using reported data from human proteomic and microbial
taxonomic studies, this study compares the average oxidation state of carbon (ZC)
and water demand per residue (nH2O) of proteins from tumors to those in healthy
tissues or less advanced cancer stages. The major compositional trends are lower
ZC and, to a lesser extent, higher nH2O, in tumor vs normal groups, or carcinoma
vs adenoma groups. Comparison of microbial protein compositions shows a small
shift toward lower ZC in bacteria enriched in fecal samples from cancer patients.
Thermodynamic calculations of the relative chemical stabilities of proteins show that
the cancer-related proteins tend to be stabilized by higher chemical activity of H2O
(more hydrating) and/or lower fugacity of O2 (more reducing). The compositional
exploration of molecular data suggests that a systematic chemical transformation is
a central aspect of the cancer proteome. The thermodynamic calculations highlight
the potential for interpreting proteomic data within a biochemical context, and may
contribute to a better understanding of the microenvironmental requirements for cancer
initiation and progression.

Keywords: colorectal cancer, proteomics, gut microbiome; redox potential; chemical
thermodynamics

1 INTRODUCTION
Colorectal cancer (CRC) is one of the most common and well-studied human cancers,
and is a model for the prevailing theory of genetic transformation as the primary driver
of cancer progression (Kinzler and Vogelstein, 1996). Differential gene expression and
proteomic data sets are now available to characterize numerous specific experimental
and clinical situations. Recently, many studies have generated proteomic data for
candidate biomarkers for early detection of colorectal cancer with a focus on the
membrane fractions (Chen et al., 2010; Kume et al., 2014; Sethi et al., 2015), while
others have focused on subcellular responses (e.g. chromatin; Knol et al., 2014) or
stage-specific effects (Uzozie et al., 2014; Sethi et al., 2015). Likewise, microbial
associations with CRC are increasingly well characterized using 16S rRNA and
metagenomic data (Wang et al., 2012; Zeller et al., 2014; Candela et al., 2014).
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The broad issue that motivates this study is how can molecular data be used to
understand biological processes underlying oncogenesis? Many approaches have been
utilized in the interpretation of gene- and protein-expression data; e.g. heat maps and
cluster algorithms (such as principal-components analysis or PCA), network analysis
integrated with large-scale protein and gene interaction networks, and functional
classification using the Gene Ontology (GO) or other sources of functional information.
These techniques often have as goals the identification of significantly altered genes or
proteins for further interrogation as biomarkers, or functional annotations that inform
conceptual and mathematical models of molecular interactions. Nevertheless, despite
the widespread use of bioinformatic tools, there is growing concern that the full
potential of the vast molecular data sets has not been realized (e.g. Keating and
Cambrosio, 2012).

Compared to interpretations focused on molecular interactions and mechanisms of
gene regulation, high-level descriptions and analysis of molecular data have other
benefits. For example, the information-theoretic concept of maximum entropy has been
used to identify gene expression signatures in carcinogenesis (Zadran et al., 2013).
Notably, the information-theoretic based maximum entropy calculations are analogous
to thermodynamic equilibrium; these calculations are performed without explicit
accounting for the underlying biomolecular interactions, but still allow for
quantification of a potential energy “attractor space”, or stable or steady state of the
system. However, information-theoretic models are limited in their assessment of
environmental influences such as oxidation and hydration potential. Theoretical
calculations of the relative stabilities of populations of proteins in an environmental
context are possible in a chemical thermodynamic framework. This study proposes an
application of the concept of chemical affinity as a measure of stability (i.e. propensity
for formation) which is grounded in energetic calculations that account for differences
in amino acid composition (Dick et al., 2006; LaRowe and Dick, 2012). The chemical
thermodynamic descriptions have the advantage of being expressed in terms of
variables that can be compared with independent biochemical measurements.

One of the characteristic features of tumors is varying degrees of hypoxia (Höckel
and Vaupel, 2001). The sensitivity of tumors to oxygen is exploited by hyperbaric
oxygen treatment to enhance the effects of radiotherapy (Bertout et al., 2008). Hypoxic
conditions also promote the subcellular (mitochondrial) generation of reactive oxygen
species (ROS) (Murphy, 2009). In addition to the molecular responses associated with
hypoxia, cancer cells and tissues exhibit changes in oxidation-reduction (redox) state.
Redox potential (Eh) monitored in vivo in a fibrosarcoma cell line is altered compared to
normal fibroblasts (Hutter et al., 1997), and it has been suggested that cancer cells have
suppressed ranges of redox oscillations during the cell cycle (Hoffman et al., 2008).

The hydration state of cancer cells and tissues may also vary considerably from their
normal counterparts. Microwave detection of differences in dielectric constant resulting
from greater water content in malignant tissue is being explored for medical imaging of
breast cancer (Lazebnik et al., 2007; Grzegorczyk et al., 2012). IR and Raman
spectroscopic techniques also provide evidence for a greater hydration state of
cancerous breast tissue, resulting from interaction of water molecules with hydrophilic
cellular structures of cancer cells but negligible association with the hydrophobic
molecules (triglycerides, fatty acid derivatives) more common in normal cells
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(Abramczyk et al., 2014). Increased hydration levels may also be associated with
increased hyaluronan in the extracellular matrix (ECM) of migrating and metastatic
cells (Toole, 2002).

Besides these specific responses associated with oxidation and hydration state, other
considerations point to a general importance of oxidation and hydration state for
metabolic, cellular and physiological processes. For example, the differential reactions
and transport of lactate and pyruvate are tightly interlinked with carbon oxidation state
in metabolic pathways (Brooks, 2009), and have implications for cancer metabolism
(Semenza, 2008). It has been hypothesized that the increased hydration of cancer cells
underlies a reversion to a more embryonic state (McIntyre, 2006). Therefore, these two
variables – redox and hydration potential – have been selected as the focus of the
descriptions and explorations in this study.

The compositional and thermodynamic relationships are described in the Methods.
Because reaction coefficients on O2 and H2O are to some extent interdependent, an
appropriate choice of basis species is needed in order to separate the effects of the
variables. The first part of the Results shows the comparisons for human and microbial
proteins (Sections 3.1–3.2) using molecular data taken from the proteomic studies cited
in the first paragraph above, as well as from one gene-expression study (Hlubek et al.,
2007). There is a major decrease in the average oxidation state of carbon in
chromatin-binding proteins in carcinoma and in proteins in some membrane fractions of
tumor samples (data from Knol et al., 2014; Chen et al., 2010; Kume et al., 2014), and
an increase in the water demand of proteins in precancerous adenomas (Uzozie et al.,
2014), and other membrane fractions (Sethi et al., 2015). The protein compositions of
bacteria that are more abundant in cancer-derived samples are also generally shifted
toward lower oxidation state of carbon. These systematic patterns in the chemical
compositions of proteins are aligned with the physiological hypoxic and hydrated
conditions of many cancer cells.

To better understand the biochemical limits of these changes, the second part of the
Results turns to a thermodynamic description in terms of intensive chemical variables.
By using a chemical affinity (negative Gibbs energy) calculation, a chemical
thermodynamic prediction of the most stable molecules (akin to a potential “attractor
space”) can be generated (Sections 3.3–3.5). The stability fields of the
cancer-associated proteins are found more often at lower oxygen fugacity and/or higher
water activity. The transitions between stability regions of cancer and healthy-related
proteins in terms of oxidation and hydration potential vary among data sets, suggesting
that specific cell-biological and physiological effects can be identified.

Not only multistep genetic changes, but microenvironmental dynamics are
interrelated determinants of cancer progression (Schedin and Elias, 2004). Here,
biochemical patterns in proteomic data sets were explored using descriptions grounded
in chemical thermodynamics. Mapping the independently calculated chemical
stabilities allows for a step forward from a purely compositional description, and
contributes toward understanding the subcellular and microenvironmental chemical
conditions that are required for cancer progression.
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2 METHODS
2.1 Data sources
This section briefly describes the data sources: literature reference, cell or tissue type,
experimental conditions, analytical methods (e.g. proteomic analysis using label-free
MS or iTRAQ label techniques), statistical analysis of highly differentially abundant
proteins in the samples, and additional data selection steps applied in this study. The
heading of each subsection is used in the tables and plot titles to identify the different
data sets; the words separated by a slash refer to the proteins with higher differential
expression in “cancer” (or more advanced cancer stage) / “control” (healthy or less
advanced cancer stage) groups.

Names or IDs of genes or proteins given in the papers were searched in UniProt, and
corresponding UniProt accessions are provided in the Supporting Information. Amino
acid sequences of human proteins were taken from the UniProt reference proteome (file
UP000005640 9606.fasta.gz, dated 2015-04-29, downloaded from ftp.uniprot.org on
2015-05-20). Entire sequences were used; i.e., signal and propeptides were not removed
when calculating the amino acid compositions.

2.1.1 Chromatin-binding in carcinoma/adenoma
In the study of Knol et al. (2014), a combined laboratory/bioinformatic approach was
used to identify chromatin-bound (CB) proteins in colon adenomas and carcinomas.
Differential biochemical extraction was used to isolate the chromatin-binding fraction,
which was then analyzed using mass spectrometry (LC-MS/MS) for protein
identification and label-free quantification. Sequences were compared with seven
different databases to assign gene annotations. Differentially abundant proteins were
identified using beta-binomial statistics (significance threshold 0.05); of these,
sequences having three or more database hits to a nuclear annotation were kept in the
final list. Of the 169 proteins listed by Knol et al. (2014), the 27 found only in
adenomas, and the 26 found only in carcinomas, are used here for comparison (see file
KWA+14.csv in the Supporting Information).

2.1.2 Membrane fraction tumor/normal
In the study of Chen et al. (2010), solvent extraction and gel-assisted digestion were
used to prepare proteins from the membrane fraction of samples of eight tumor tissues
from CRC patients and eight matched normal tissues. Based on proteomic analysis
using iTRAQ LC-MS/MS, 42 proteins exhibited at least two-fold differential expression
(34 upregulated in tumor samples, 8 down-regulated) at a 95% confidence level
(Student’s t-test p < 0.05). Data including UniProt accessions of these proteins were
taken from Supplementary Table S2 of Chen et al. (2010) and stored in file
CCF+10.csv in the Supporting Information (this study).

2.1.3 Membrane fraction tumor/polyp
Kume et al. (2014) used phase-transfer surfactant (PTS) to extract proteins from the
membrane fractions of six matched tissue samples of polyps and cancer with or without
metastasis. iTRAQ labeling and LC-MS/MS were used for proteomic analysis and
initial assessment of expression level differences, and SRM/MRM was used to better
quantify the expression levels of biomarker candidates. At an expression ratio <0.5 or
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>2.0 and p-value <0.1, 66 proteins were found to increase, and 13 found to decrease,
between polyps and cancer without metastasis. Data including UniProt accessions of
these proteins were taken from Table IIIA and IIIC of Kume et al. (2014) and stored in
file KMK+14.csv in the Supporting Information. Only proteins recorded as having
GO cellular components “membrane” and not “extracellular” were used in this study
(45 higher in cancer / 6 higher in polyps).

2.1.4 Membrane enriched tumor/normal
In the study of Sethi et al. (2015), samples of tumor and adjacent normal tissues from
eight patients were characterized by label-free nanoLC-MS/MS of the
membrane-enriched proteome. 184 proteins were differentially expressed with a fold
change > 1.5 and p-value < 0.05. Protein identifiers and fold changes were taken from
Supporting Table 2 of Sethi et al. (2015) (69 up-regulated and 115 down-regulated in
tumors). The identifiers were manually searched in UniProt and the corresponding
accessions stored in file STK+15.csv in the Supporting Information.

2.1.5 Epithelial cell signature adenoma/normal
Uzozie et al. (2014) analyzed 30 samples of colorectal adenomas and paired normal
mucosa using iTRAQ labeling, OFFGEL electrophoresis and LC-MS/MS. Proteins with
expression fold changes (log2) at least +/- 0.5 and statistical significance threshold q <
0.02 were then compared with protein expression in colorectal cancer cells and HCEC
cells (normal control). The proteins that were also quantified in cell-line experiments
were classified as “epithelial cell signature proteins” (111), with the remainder (101)
interpreted as having a stromal origin. Information on the proteins, including UniProt
accessions, was taken from Table III of Uzozie et al. (2014) and stored in file
UNS+14.csv in the Supporting Information. Because some proteins have multiple
UniProt accessions in the source table, the actual number of epithelial proteins here is
121, with 64 higher in adenoma and 57 higher in normal tissue.

2.1.6 Stromal cell signature adenoma/normal
This is the set of non-epithelial proteins taken from Table III of Uzozie et al. (2014)
(UniProt accessions: 18 higher in adenoma, 108 higher in normal tissue) and stored in
file UNS+14.csv in the Supporting Information.

2.1.7 Wnt targets tumor/invasion front
Hlubek et al. (2007) identified Wnt target genes that are up- and down-expressed in
cells in the interior and invasion front of human colon tumors. Here, proteins for the 27
genes reported by Hlubek et al. (2007) to be significantly up-regulated in the interior
(27) or invasion front (9) of tumors are used in the comparisons.

2.1.8 Serum biomarkers abundance up/down
Jimenez et al. (2010) compiled a list of candidate serum biomarkers from a
meta-analysis of the literature. In the meta-analysis, both up- and down-expressed
proteins were associated with some number of studies; the data set used in this study is
based on those proteins identified in at least 3 studies (up-expressed: 26 proteins;
down-expressed: 19 proteins).
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2.2 Average oxidation state of carbon; Basis set I
For a protein with formula CcHhNnOoSs, the average oxidation state of carbon (ZC) is

ZC =
3n+2o+2s−h

c
(1)

This calculation permits a simple comparison of the relative degrees of oxidation of
protein molecules (Dick, 2014).

To proceed to more sophisticated chemical thermodynamic calculations, an
important choice must be made regarding the basis species used to describe the system.
The basis species, like thermodynamic components, are a minimum number of chemical
formula units that can be linearly combined to generate the composition of any
chemical species in the system of interest. Within these constraints, any specific choice
of a basis set is permitted in theory. In making the choice of components, convenience
(Gibbs, 1875), ease of interpretation and relationship with measurable variables, as well
as availability of thermodynamic data (e.g. Helgeson, 1970), and kinetic favorability
(May et al., 2001) are other useful considerations. Once the basis species are chosen,
the stoichiometric coefficients in the formation reaction for any species are determined.

Following previous studies (e.g. Dick, 2008), the basis species initially chosen here
are CO2, H2O, NH3, H2S and O2 (basis set I). For a protein with formula CcHhNnOoSs,
the reaction representing the overall formation of the protein from these basis species is

cCO2 +nNH3 + sH2S+nH2OH2O+nO2O2 
 CcHhNnOoSs (R1)

where nH2O = (h−3n−2s)/2 and nO2 = (o−2c−nH2O)/2. Dividing nH2O by the
length of the protein gives the water demand per residue (nH2O), which is useful for
comparing proteins of different size.

These or similar sets of inorganic species (such as H2 instead of O2) are often used
in studying reaction energetics in geobiochemistry (e.g. Shock and Canovas, 2010).
However, because of the stoichiometric interdependence that links redox and hydration
potentials, it is possible that a different set of basis species is more appropriate for
convenient description of subcellular processes.

2.3 Basis set II; Thermodynamic calculations
As seen in Fig. 1a and b, there is a tight correlation between ZC of protein molecules
and nH2O in the reactions to form the proteins from basis set I. This correlation is
expected based on stoichiometric requirements. The equation for nH2O (after Reaction
R1) can be combined with Eq. (1) to write

ZC =
2
c
(o−nH2O) (2)

For given c and o, a linear relationship holds between ZC and nH2O, but for a population
of proteins, variations in the chemical composition cause a dispersion around a linear
trend, which is apparent in Fig. 1.

The appearance of this correlation raises a troubling issue. Although the basis
species, like thermodynamic components, are necessarily independent compositional
variables, in the systems of proteins considered here basis set I leads to a strong
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Figure 1. Scatterplots of average oxidation state of carbon (ZC) and water demand per
residue (nH2O) for (a,c) individual human proteins and (b,d) overall (mean) composition
of proteins from microbial genomes, using (a,b) basis set I (e.g. Reaction R1) or (c,d)
basis set II (e.g. Reaction R2). Linear least-squares fits and R2 values are shown. In (a)
and (c), the intensity of shading corresponds to density of points, produced using the
smoothScatter() function of R graphics (R Core Team, 2015).

dependence between the two variables we are primarily interested in. Intuition suggests
that some combinations of basis species will alter, and in some cases, decrease, the
correlation between individual compositional variables such as ZC and nH2O.

If we “knew” the conditions in the cellular subsystem(s) of interest, any choice of
basis species would be equally convenient, because we could simultaneously vary all of
their chemical potentials appropriately. However, since we must begin in a more
exploratory mode, we restrict attention here to one or two variables, with the
implication that the others are held constant. In a subcellular setting, assuming constant
values of chemical potentials of species such as CO2, NH3 and H2S may be less
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appropriate than postulating constant (or “buffered”) potentials of more complex
metabolites. Perhaps, in modeling systems of proteins, constant chemical activities of
amino acids would be a reasonable starting assumption.

Although 1140 3-way combinations can be made of the 20 common proteinogenic
amino acids, only 324 of the combinations contain cysteine and/or methionine (one of
these is required to provide sulfur), and of these only 300, when combined with O2 and
H2O, are compositionally independent. The slope, intercept and R2 of the least-squares
linear fits between ZC and nH2O using each of these basis sets are listed in the
Supporting Information (AAbasis.csv). Many of these sets have lower R2 and lower
slopes than found for basis set I (Fig. 1a, b), indicating a decreased correlation, which is
desirable for our purposes. From those with a lower correlation (but not the lowest), the
basis set including cysteine, glutamic acid, glutamine and O2 and H2O (basis set II) has
been selected for use in this study. The scatter plots and fits between ZC and nH2O using
basis set II are shown in Fig. 1c and d.

A secondary consideration in choosing this set (rather than others with even lower
R2) is based on the centrality of glutamine and glutamic acid in many metabolic
pathways (e.g. DeBerardinis and Cheng, 2010). Accordingly, these amino acids may be
kinetically more reactive than others in mechanisms underlying protein synthesis and
degradation. The presence of side chains derived from cysteine and glutamic acid in the
abundant glutathione molecule (GSH), associated with redox homeostasis, is also
suggestive of a central metabolic requirement for these amino acids. Again, it must be
stressed that the current choice of basis species is not an absolute, uniquely determined
result; greater experience with thermodynamic modeling and better biochemical
intuition will likely provide reasons to iterate these calculations using different basis
sets (perhaps including metabolites other than amino acids).

A general formation reaction using basis set II is

nCysC3H7NO2S+nGluC5H9NO4 +nGlnC5H10N2O3

+nH2OH2O+nO2O2→ CcHhNnOoSs (R2)

where the reaction coefficients (nCys, nGlu, nGln, nH2O and nO2) can be obtained by
solving

3 5 5 0 0
7 9 10 2 0
1 1 2 0 0
2 4 3 1 2
1 0 0 0 0

×


nCys
nGlu
nGln
nH2O
nO2

=


c
h
n
o
s

 (3)

Although the definition of basis species requires that they are themselves
stoichiometrically non-degenerate, the matrix equation emphasizes the interdependence
of the reaction coefficients with each other. A consequence of this multiple dependence
is that single variables such as nH2O are not simple variables, but are influenced by both
the inherent chemical makeup of the protein and the choice of basis species used to
describe the system.

Regarding the actual mechanism of synthesis, we are definitely not saying that
proteins are synthesized by combining the specific molecules shown in Reaction R2;
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reactions such as this are simply a way to account for mass-conservation requirements.
This allows us to generate an internally consistent thermodynamic description of the
effects of changing the local environment (i.e. chemical potentials of O2 and H2O) on
the overall potential for formation of different proteins.

As an example of a specific calculation, consider the following reaction:

7C3H7NO2S+535.6C5H9NO4 +515.2C5H10N2O3→
C5275H8231N1573O1762S7 +895.2H2O+522.4O2 (R3)

Here, the the reaction is written for the formation of one mole of the protein MUC1,
a chromatin-binding protein that is highly up-expressed in CRC cells (Knol et al., 2014).
Using Eq. (1), the average oxidation state of carbon (ZC) in this protein is 0.005.
According to this reaction, water is released in the overall formation of the protein, so
the water demand (nH2O) is negative. The length of this protein is 1255 amino acid
residues, giving the water demand per residue, nH2O =−895.2/1255 = 0.71. The value
of ZC indicates that MUC1 is a relatively highly oxidized protein, while its nH2O places
it near the median water demand for cancer-associated proteins in this data set (see
Table 1 and Fig. 2 below).

2.4 Thermodynamic calculations
Thermodynamic properties for the amino acids and of unfolded proteins estimated using
amino acid group additivity were calculated as described by Dick et al. (2006), taking
account of updated values for the methionine sidechain group (LaRowe and Dick, 2012).
All calculations were carried out at 37 ◦C and 1 bar. The temperature dependence of
standard Gibbs energies was calculated using the revised Helgeson-Kirkham-Flowers
(HKF) equations of state (Helgeson et al., 1981; Tanger and Helgeson, 1988).
Thermodynamic properties for O2 (gas) were calculated using data from Wagman et al.
(1982) together with coefficients for the Maier-Kelley heat capacity function (Kelley,
1960), and those for H2O (liquid) using data and extrapolations coded in Fortran
subroutines from the SUPCRT92 package (Johnson et al., 1992).

Chemical affinities of reactions were calculated using activities of amino acids set to
10−4, and activities of proteins equal to 1/(protein length) (i.e., unit activity of residues).
Continuing with the example of Reaction R3, an estimate of the standard Gibbs energy
(∆G◦f ) of the protein (Dick et al., 2006) at 37 ◦C is -40974 kcal/mol; combined with the
standard Gibbs energies of the basis species, this give a standard Gibbs energy of
reaction (∆G◦r ) equal to 66889 kcal/mol. At logaH2O = 0 and log fO2 =−65, with
activities of the amino acid basis species equal to 10−4, the overall Gibbs energy (∆Gr)
is 24701 kcal/mol. The negative of this value is the chemical affinity (A) of the reaction.
The per-residue chemical affinity (used in order to compare the relative stabilities of
proteins of different sizes) for formation of protein MUC1 in the stated conditions is
-19.7 kcal/mol.

The amino acid compositions of different proteins would yield different values of
the per-residue chemical affinity. The chemical affinities of formation of all proteins are
also sensitive to the environmental conditions represented by temperature (T ), pressure
(P) and the chemical potentials of basis species. Without making any statement about
mechanism, proteins with higher (more positive) chemical affinity are relatively
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energetically stabilized, and theoretically have a higher propensity to be formed.
Therefore, the differences in affinities reflect not only the oxidation and hydration state
of the protein molecules but also the potential for local environmental conditions to
constrain the degree of formation and relative abundances of proteins. Here, the relative
stabilities as a function of logaH2O and log fO2 are mapped on to diagrams using a
rank-difference summary of the group-wise (i.e. cancer- vs healthy-associated proteins)
chemical affinities.

2.5 Rank calculations
Consider a hypothetical system composed of 4 cancer (C) and 5 healthy (H) proteins.
Suppose that under one set of conditions (i.e. specified logaH2O and log fO2), the
per-residue affinities of the proteins give the following ranking in ascending order (I):

C C C C H H H H H
1 2 3 4 5 6 7 8 9

This gives as the sum of ranks for cancer proteins ∑rC = 10, and for healthy
proteins ∑rH = 35. The difference in sum of ranks then is ∆rC−H =−25; the negative
value is associated with a higher rank sum for the healthy proteins, indicating that these
as a group are more stable than the cancer proteins. In a second set of conditions, we
might have (II):

H H H H H C C C C
1 2 3 4 5 6 7 8 9

Here, the difference in rank sums is ∆rC−H = 30−15 = 15.
For systems where the numbers of cancer and healthy proteins are equal, the

maximum possible differences in rank sums would have equal absolute values, but that
is not the case in this and other systems having unequal numbers of cancer and healthy
proteins. To characterize those data sets, the weighted rank-sum difference can be
calculated using

∆r = 2
(nH

n ∑rC−
nC

n ∑rH

)
(4)

where nH, nC and n are the numbers of healthy, cancer, and total proteins in the
comparison. In the example here, we have nH/n = 5/9 and nC/n = 4/9. Eq. (4) then
gives ∆r =−20 and ∆r = 20, respectively, for conditions (I) and (II) above, showing
equal weighted rank-sum differences for the two extreme rankings.

We can also consider a situation where the ranks of the cancer and healthy proteins
are evenly distributed:

H C H C H C H C H
1 2 3 4 5 6 7 8 9

Here the absolute difference in rank sums is ∆rC−H = 5, but the weighted rank-sum
difference is ∆r = 0. The zero value for an even distribution, and the opposite values for
the two extremes, demonstrate the acceptability of this weighting scheme.
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3 RESULTS
3.1 Compositional descriptions of human proteins
For proteins in the selected data sets (Section 2.1), Fig. 2 shows values of average
oxidation state of carbon calculated from the chemical formulas of the proteins (ZC; Eq.
1) and water demand per residue calculated from the overall formation reaction in terms
of basis set II (nH2O; Reaction R2).

Fig. 2a reveals that ZC of chromatin-binding proteins in carcinoma reported by Knol
et al. (2014) are shifted to lower (more negative) values compared to proteins in
adenoma, except for three outliers at high ZC (MUC1, LRP1 and PTGES3). A moderate
shift toward higher nH2O is exhibited by chromatin-binding proteins in carcinoma. The
ZC of proteins in membrane fractions of tumor samples identified by Chen et al. (2010)
are lower than paired normal samples (Fig. 2b), and the ZC of proteins in membrane
fractions of tumor samples identified by Kume et al. (2014) are lower than paired polyp
samples (Fig. 2c). These observations are summarized in Table 1, giving the median
values of ZC and nH2O and p-values calculated using the Mann-Whitney test (a
non-parametric test that does not assume a particular distribution). Although ZC is
consistently lower for tumor and carcinoma-derived proteins in these data sets, the
lower degree of statistical significance (represented by the p-values) precludes making a
definitive statement about relative water demand for these proteins.

In the next row of Fig. 2, compositions of membrane-enriched proteins in the study
of Sethi et al. (2015) are seen to be offset toward higher nH2O for tumor relative to
normal samples (Fig. 2d). The adenoma-derived proteins reported by Uzozie et al.
(2014) as identified with “epithelial cell signature” have a strongly elevated relative
water demand per residue compared to proteins from normal tissue, while
adenoma-derived proteins more likely to have a stromal origin show a somewhat
smaller increase in nH2O relative to normal tissue (Fig. 2e,f).

Overall, the compositions of the proteins in carcinoma and tumor-derived proteins
relative to their adenoma or normal counterparts manifest either a strongly lower
median ZC with variable sign of the median nH2O difference, or a higher median nH2O
with smaller ZC difference (Fig 2i). These trends are also apparent, although with lower
statistical significance, for proteins of Wnt target genes in the tumor center compared to
the invasion front (lower ZC, Fig. 2g) and for candidate serum biomarkers with
increased relative abundance compared to those with decreased relative abundance in
CRC patients (higher nH2O, Fig. 2h). The possible significance of these findings in
relation to biochemical and physiological observations of tumor oxidation and hydration
state is discussed further below.

3.2 Compositional descriptions of microbial proteins
Healthy individuals maintain a thriving enteric microbial population. The microbiota
support important functions including digestion (Turnbaugh et al., 2009) and
immunological regulation and inflammatory responses, which are strongly tied to
oxidation-reduction conditions (Koboziev et al., 2014). The healthy gut can be
characterized by a “core microbiome” composed of a common set of genes (or
functions) that are present regardless of differences in taxonomic composition
(Turnbaugh et al., 2009). Because of the diverse responses of microbial populations to
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Figure 2. Average oxidation state of carbon (ZC) and water demand per residue (nH2O) for proteins
differentially expressed in cancerous tissues or samples (see Sections 2.1.1–2.1.8 for data sources and
Table 1 for summary statistics of the comparisons). Open red squares represent the tumor-associated
proteins or more advanced cancer stages, and filled blue circles represent proteins associated with normal
tissue or less advanced cancer stages. Plot (i) shows the median values in each of the data sets.
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Table 1. Summary of compositional comparisons: median values of ZC and nH2O in human proteins and
overall (mean) protein compositions of microbes, and Wilcoxon rank sum test (Mann-Whitney) statistics
and p-values. Depending on the data sets (see footnotes and Section 2.1), “control” refers to normal tissue
or less advanced cancer stage (e.g. adenoma), and “cancer” refers to cancer tissue or more advanced
cancer stage (e.g. carcinoma).

ZC medians nH2O medians
comparison control cancer p-value control cancer p-value
Human proteins
Chromatin-binding in carcinoma/adenoma a -0.105 -0.164 0.0002 -0.757 -0.727 0.5
Membrane fraction tumor/normal b -0.053 -0.173 0.004 -0.740 -0.759 0.5
Membrane fraction tumor/polyp c -0.104 -0.153 0.05 -0.745 -0.788 0.5
Membrane enriched tumor/normal d -0.146 -0.150 0.7 -0.764 -0.761 0.2
Epithelial cell signature adenoma/normal e -0.135 -0.140 0.9 -0.778 -0.736 0.06
Stromal cell signature adenoma/normal e -0.129 -0.162 0.4 -0.803 -0.764 0.09
Wnt targets tumor/invasion front f -0.078 -0.113 0.5 -0.785 -0.789 0.7
Serum biomarkers abundance up/down g -0.126 -0.134 0.8 -0.799 -0.741 0.3

Microbial proteins
fecal 16S rRNA h -0.163 -0.177 0.3 -0.765 -0.741 0.2
fecal metagenome i -0.174 -0.190 0.6 -0.738 -0.730 0.5
co-abundance groups j -0.138 -0.196 0.2 -0.742 -0.746 0.8

a. Knol et al. (2014); b. Chen et al. (2010); c. Kume et al. (2014); d. Sethi et al. (2015); e. Uzozie et al.
(2014); f. Hlubek et al. (2007); g. Jimenez et al. (2010); h. Wang et al. (2012); i. Zeller et al. (2014); j.
Candela et al. (2014).

the cancer state (Sears and Garrett, 2014), summary data on microbial populations from
three studies were selected for inclusion in the descriptions of chemical compositions
generated in this study. First, in a study of 16S RNA of fecal microbiota, Wang et al.
(2012) reported genera that are significantly increased and decreased in CRC compared
to healthy patients. In order to compare the chemical composition of the microbial
population, single species with sequenced genomes were chosen to represent each of
these genera (see Table 2). Where possible, the species selected are those mentioned by
Wang et al. (2012) as being significantly altered, or are species reported in other studies
to be present in healthy or cancer states (see Table 2).

In the second study considered (Zeller et al., 2014), changes in the metagenomic
abundance of fecal microbiota associated with CRC were analyzed for their potential as
a biosignature for cancer detection. The species shown in Fig. 1A of Zeller et al. (2014)
with a log odds ratio greater than 0.15 were selected for comparison, and are listed in
Table 3. Here, Fusobacterium is identified as a pro-carcinogenic group, as has also been
reported elsewhere (Kostic et al., 2012; Castellarin et al., 2012). Finally, Candela et al.
(2014) report the findings of a network analysis that identified 5 microbial
“co-abundance groups” at the genus level. As before, single representative species were
selected in this study, and are listed in Table 2. Except for the presence of
Fusobacterium, the co-abundance groups show little genus-level overlap with profiles
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Table 2. Microbial species selected as models for genera and co-abundance groups that
differ between CRC and healthy patients.

Phylum Species Abbrv. Bioproject Refs.
Model species for genera significantly higher in healthy patientsa

Bacteroidetes Bacteroides vulgatus ATCC 8482 Bvu PRJNA13378 c

Bacteroidetes Bacteroides uniformis ATCC 8492 Bun PRJNA18195 c

Firmicutes Roseburia intestinalis L1-82 (DSM 14610) Rin PRJNA30005 d

Bacteroidetes Alistipes indistinctus YIT 12060 Ain PRJNA46373 c

Firmicutes Eubacterium rectale ATCC 33656 Ere PRJNA29071 e

Proteobacteria Parasutterella excrementihominis YIT 11859 Pex PRJNA48497 f

Model species for genera significantly higher in CRC patientsa

Bacteroidetes Porphyromonas gingivalis W83 Pgi PRJNA48 g

Proteobacteria Escherichia coli NC101 Eco PRJNA47121 c,h

Firmicutes Enterococcus faecalis V583 Efa PRJNA57669 c

Firmicutes Streptococcus infantarius ATCC BAA-102 Sin PRJNA20527 i

Firmicutes Peptostreptococcus stomatis DSM 17678 Pst PRJNA34073 j

Bacteroidetes Bacteroides fragilis YCH46 Bfr PRJNA58195 g

Model species for protective co-abundance groupsb

Actinobacteria Bifidobacterium longum NCC2705 Blo PRJNA57939 g,k

Firmicutes Faecalibacterium prausnitzii SL3/3 Fpr PRJNA39151 e,l

Model species for pro-carcinogenic co-abundance groupsb

Fusobacteria Fusobacterium nucleatum ATCC 23726 Fnu PRJNA49043 m,n

Bacteroidetes Prevotella copri DSM 18205 Pco PRJNA30025 k,o

Firmicutes Coprobacillus sp. D7 Csp PRJNA32495 h

a. Genus identification from Table 2 of Wang et al. (2012). Based on comments in Wang et al. (2012),
Bacteroides is represented here by two species (B. vulgatus and B. uniformis) in healthy patients, and one
species (B. fragilis) in CRC patients. b. Genus-level definition of co-abundance groups from Candela
et al. (2014). c. Wang et al. (2012); species closely related to 16S rRNA-derived operational taxonomic
units (OTUs; Figure 2 of Wang et al., 2012) or otherwise mentioned by those authors (E. faecalis). d.
Duncan et al. (2002). e. Louis and Flint (2007). f. Nagai et al. (2009). g. Chen et al. (2012). h. Candela
et al. (2014). i. Biarc et al. (2004). j. Zeller et al. (2014). k. Weir et al. (2013). l. Sokol et al. (2008). m.
Castellarin et al. (2012). n. Kostic et al. (2012). o. cf. Chen et al. (2012); Candela et al. (2014) (more
abundant in CRC patients); Weir et al. (2013) (more abundant in healthy subjects).

derived from the previous two studies.
For each of the microbial species listed in Tables 2 and 3, an overall protein

composition was calculated from the NCBI Bioproject genomes as average
compositions of protein sequences, without any weighting for transcript or actual
protein abundance in organisms, and exclude any post-translational modifications. The
water demand per residue (nH2O) vs. oxidation state of carbon (ZC) in proteins from all
of the microbial species considered here are plotted in Fig. 1b and d.

The plots of nH2O vs. ZC for overall microbial proteins in each data set are shown in
Fig. 3. It is apparent that the proteins in the microbes from cancer patients generally
have lower ZC than the healthy patients in the same study (see also Table 1). The two
Fusobacterium species identified by Zeller et al. (2014) have the lowest ZC of any
microbial species considered here. The overall human protein composition is also
plotted in Fig. 3, showing higher ZC than any of the microbial proteomes except for
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Table 3. Species from a consensus microbial signature for CRC classification of fecal
metagenomes (Zeller et al., 2014). Only species reported as having a log odds ratio
bigger than ±0.15 are listed here, together with strains and Bioproject ID’s used as
models in the present study.

Species Strain Abbrv. Bioproject
Higher in CRC patients
Fusobacterium nucleatum subsp. vincentii ATCC 49256 Fnv PRJNA1419
Fusobacterium nucleatum subsp. animalis D11 Fna PRJNA32501
Peptostreptococcus stomatis DSM 17678 Pst PRJNA34073
Porphyromonas asaccharolytica DSM 20707 Pas PRJNA51745
Clostridium symbiosum ATCC 14940 Csy PRJNA18183
Clostridium hylemonae DSM 15053 Chy PRJNA30369
Lactobacillus salivarius ATCC 11741 Lsa PRJNA31503

Higher in healthy patients
Clostridium scindens ATCC 35704 Csc PRJNA18175
Eubacterium eligens ATCC 27750 Eel PRJNA29073
Methanosphaera stadtmanae DSM 3091 Mst PRJNA15579
Phascolarctobacterium succinatutens YIT 12067 Psu PRJNA48505
unclassified Ruminococcus sp. ATCC 29149(*) Rsp PRJNA18179
Streptococcus salivarius SK126 Ssa PRJNA34091

* R. gnavus

Bifidobacterium longum.
The proteins from cancer-associated bacteria do not have a consistently different

median nH2O than those from healthy-associated bacteria, but the comparisons show
that the overall changes in microbial populations associated with CRC favor species
with proteins that are more reduced than the healthy populations.

3.3 Thermodynamic descriptions: background
Many workers have investigated the oxidation-reduction (redox) state of cells and
biomolecules and redox-dependent signaling processes in both healthy and cancerous
cells. A simplified categorization of redox molecules and processes might include the
following. 1) Reactive oxygen species, earlier thought to be generally harmful in cells,
are now considered to be important signaling molecules (e.g. Sarsour et al., 2009). 2)
Low-molecular weight thiols are also involved in molecular signaling, and have been
proposed as key components of cell-cycle progression (Menon et al., 2003). The
concentrations of reduced thiols and oxidized disulfides, especially of reduced and
oxidized glutathione, are often used to quantify redox potential (Eh). 3) Oxygen itself is
a major contributor to redox reactions. Tumor hypoxia is common in cancer (Höckel
and Vaupel, 2001), and regulatory response to oxygen is important for oncogenesis
(Harris, 2002). 4) The covalent structure of organic molecules determines the oxidation
state of carbon; differences in molecular composition imply that energetics of
biosynthetic processes generally have a strong dependence on changing redox potential.
The different oxidation states of metabolites including lactate and pyruvate are essential
in accounting for their utilization in metabolic processes (e.g. Brooks, 2009). The
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Figure 3. Average oxidation state of carbon (ZC) and water demand per residue (nH2O) for overall amino
acid compositions of proteins in genomes of healthy- and cancer-associated microbes. Data are shown for
representative species for (a) microbial genera identified in fecal 16s RNA (Wang et al., 2012; Table 2 top),
(b) microbial signatures in fecal metagenomes (Zeller et al., 2014; Table 3), and (c) microbial
co-abundance groups (Candela et al., 2014; Table 2 bottom).

subcellular distribution of proteins with different oxidation states of carbon can also be
used to suggest that the synthesis and degradation of all proteins in cells depend on and
influence subcellular redox conditions (Dick, 2014).

Higher chemical affinities correspond with greater relative stability, so the relative
stabilities of the proteins are a function of both amino acid composition and
environmental conditions represented by the activities of the basis species, including not
only O2 and H2O but the others. When the highest chemical affinities are mapped onto
2-dimensional spaces (here, log fO2 and logaH2O), a diagram with fields results, which
may be called a predominance diagram, referring to the limiting equilibrium case, or
more generally, a maximal relative stability diagram (or, more simply, stability
diagram). However, even in actual situations in which equilibrium is not achieved, the
calculations add a layer of information about relative energetics of reactions. The
environmentally dependent reaction energetics support a richer interpretation than
comparison of chemical compositions alone.
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Figure 4. Maximal relative stability diagrams for overall microbial protein
compositions, showing the range of oxygen fugacity and water activity (in log units:
log fO2 and logaH2O) where the protein composition from the labeled species has a
higher affinity (lower Gibbs energy) of formation than the others. Blue and red shading
designate microbes associated with healthy and cancer samples, respectively. Plot (d) is
a composite figure in which the intensity of shading corresponds to the number of
overlapping cancer- or healthy-related proteins in the preceding diagrams.

3.4 Relative stability fields for microbial populations
Stability diagrams are shown in Fig. 4a–c for the three sets of microbial proteins
described above. The first diagram, representing significantly changed genera detected
in fecal 16S rRNA (Wang et al., 2012; first part of Table 2), shows maximal stability
fields for proteins from 5 species associated with healthy patients, and 3 species
associated with CRC patients, in the range of log fO2 and logaH2O shown. The other 4
proteins in the system are not more stable than the others over this range of conditions.

The relative positions of the stability fields in Fig. 4a are roughly aligned with the

17/30

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 4, 2016. ; https://doi.org/10.1101/035857doi: bioRxiv preprint 

https://doi.org/10.1101/035857
http://creativecommons.org/licenses/by/4.0/


values of ZC and nH2O of the proteins; note for example the high-log fO2 positions of the
fields for the relatively high-ZC Escherichia coli and Alistipes indistinctus, and the
high-logaH2O position of the field for the high-nH2O Peptostreptococcus stomatis. Aside
from E. coli, the proteins from the species associated with CRC in this dataset occupy
the lower log fO2 (reducing) and higher logaH2O zones of this diagram.

In thermodynamic calculations for proteins from bacteria detected in fecal
metagenomes (Zeller et al., 2014; Table 3), 3 of 6 healthy-associated microbes, and 4 of
7 cancer-associated microbes exhibit maximal relative stability fields (Fig. 4b). Here,
the cancer-associated proteins occupy the more reducing (Fusobacterium nucleatum
subsp. vincentii and subsp. animalis) or more oxidizing (Clostridium hylemonae,
Porphyromonas asaccharolytica) regions, while the proteins from bacteria more
abundant in healthy individuals are relatively stable at moderate oxidation-reduction
conditions. For the proteins representing microbial co-abundance groups (Candela et al.,
2014; second part of Table 2), all of the 5 bacterial species show up on the diagram.
Here, the cancer-associated proteins are more stable at reducing conditions and the
healthy-related proteins are stabilized by oxidizing conditions. These patterns in relative
stability are in accord with the distribution of ZC of the proteins (Fig. 2b, c).

In Fig. 4d is a composite representation of the calculations, in which greater
cumulative counts of maximal stability of healthy- and cancer-related proteins in the
three studies are represented by deeper blue and red shading, respectively. The region
predicted to be most energetically favorable for the formation of proteins in bacteria
enriched in CRC is found at low log fO2; proteins from bacteria that are abundant in
healthy patients tend to be stabilized by moderate values of log fO2 . These
oxidation-potential distinctions between the two groups are most apparent at high
logaH2O. Thus, despite the differences in experimental design and specific taxonomic
identity among the three data sets considered here, the thermodynamic calculations
reveal a shared pattern of relative stabilities in terms of oxidation state.

3.5 Relative stability fields for human proteins
Compared to the overall microbial protein compositions used here (Tables 2, 3), there is
a greater number of individual proteins identified in the data sets for healthy and cancer
proteins in humans. A plot of the relative affinities of formation of individual proteins in
Fig. 5a shows a sensitivity to theoretical redox potential, with lower log fO2 tending to
provide more favorable energetic conditions for the formation of up-expressed proteins
in chromatin-binding fractions in carcinoma compared to adenoma. How can this visual
impression be summarized quantitatively, in order to explore the data in multiple
dimensions (both logaH2O and log fO2)? Unlike the small number of overall microbial
proteins, the higher numbers of proteins in these human comparisons diminish the
utility of comparisons using maximal stability diagrams.

In Fig. 5b, the difference in mean values of chemical affinity per residue of
carcinoma and adenoma-associated proteins is plotted, appearing as a straight line as a
function of log fO2 . This linear behavior would translate to evenly-spaced contours on a
log fO2-logaH2O diagram. The rank-difference calculation of affinities (see Methods),
shown by the jagged curving line Fig. 5b, provides a richer response function to
changing chemical conditions. It emphasizes the transition zone between groups of
proteins, and gives rise to two-dimensional stability diagrams with curved and diversely
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Figure 5. Calculated chemical affinities per residue of proteins in the “membrane
fraction tumor/polyp” data set. Values for individual proteins as a function of log fO2 at
logaH2O = 0 are shown in plot (a) as deviations from the mean value for all proteins.
Healthy- and cancer-related proteins are indicated by solid blue and dashed red lines,
respectively. Plot (b) shows the difference in mean value between healthy and cancer
proteins (straight line and left-hand y-axis) and the weighted difference in sums of ranks
of affinities as a percentage of maximum possible rank-sum difference (jagged line and
right-side y-axis). Positive values of affinity or rank-sum difference in plot (b)
correspond to relatively greater stability of the cancer-related proteins.

spaced contours.
The differences between sums of ranks of healthy- and cancer-associated proteins

are depicted in Fig. 6 by the intensity of shading, with darker blue areas corresponding
to more a negative difference (i.e. healthy-related proteins more stable) and darker red
areas to a more positive difference (i.e. cancer-related proteins more stable). Under the
interpretation of the energies as an indicator of propensity of formation of the proteins,
the blue zones can be considered to be a prediction of the chemical conditions most
conducive for a healthy state.

The proteins in the first three data sets are distinguished by large changes in the
average oxidation state of carbon (ZC) (Table 1). Correspondingly, the three affinity
rank-difference plots (Fig. 6a-c) show sub-vertical equal-rank lines, with a higher
ranking of stabilities of cancer-related proteins toward the left-hand side, or lower
log fO2 . In the “membrane fraction tumor/polyp” data set, both ZC and nH2O vary
considerably, and the equal-rank line in Fig. 6c accordingly has a more diagonal slope.
The second row of Fig. 6 shows plots for data sets in which the compositional
differences are more strongly determined by changes in nH2O. In each of these
comparisons, the groups of cancer proteins are energetically favored by increasing
logaH2O.

The final two stability plots in Fig. 6 show the calculated relations for data sets that
are derived from patterns of gene expression for a specific signaling pathway (“Wnt
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Figure 6. Weighted rank-sum comparisons of chemical affinities of formation of human proteins as a
function of log fO2 and logaH2O. The solid lines indicate equal ranking of proteins in the cancer and
healthy groups, and dotted contours are drawn at 10% increments of the maximum possible rank-sum
difference. Blue and red areas correspond to higher ranking of cancer- and healthy-related proteins,
respectively, with the intensity of the shading increasing up to 50% the maximum possible rank-sum
difference. (For readers without a color copy: the cancer stability fields lie to the left of (a,b,c,g) or above
(d,e,f,h) the stability fields for healthy proteins.) Panel (i) shows calculated values of Eh over the same
range of log fO2 and logaH2O (cf. Reaction R4).
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targets in tumor/invasion front”) or from a meta-analysis of extra-cellular proteins
(“serum biomarkers abundance up/down”). Some features of the amino acid
compositions of proteins in these data sets lead to stability diagrams that have a more
complex topography (Fig. 6g-h). Nevertheless, the relative stabilization of tumor
interior proteins and of up-expressed serum biomarker candidates follows the trends
seen above of a stronger association of cancer with more reducing or more hydrating
conditions.

The interpretation of log fO2 and logaH2O as simple expressions of physical
quantities (i.e. concentrations) is not straightforward (see Discussion). Nevertheless,
effective values of oxidation-reduction potential (Eh) can be calculated by considering
the water oxidation reaction, i.e.

H2O 
 1
2O2 +2H++2e− (R4)

If one assumes that logaH2O = 0 (unit water activity, as in an infinitely dilute solution),
this reaction can be used to interconvert log fO2 , pH and pe (or, in conjunction with the
Nernst equation, Eh) (e.g. Garrels and Christ, 1965, p. 176; Anderson, 2005, p. 363).
However, in the approach proposed here for metastable equilibrium among proteins in a
subcellular metabolic context, no such assumptions are made on the operational value
of logaH2O, used as an internal indicator, not necessarily externally buffered by an
aqueous solution. Consequently, the effective Eh is considered to be a function of
variable log fO2 and logaH2O, as shown in Fig. 6i for pH = 7.4 and T = 37 ◦C. This
comparison gives some perspective on operationally reasonable ranges of log fO2 and
logaH2O.

The physiological reduction potential monitored by the reduced glutathione (GSH) /
oxidized glutathione disulfide (GSSG) couple ranges from ca. -260 mV for proliferating
cells to ca. -170 mV for apoptotic cells (Schafer and Buettner, 2001), lying toward the
middle part of the range of conditions shown in Fig. 6 (e.g. Eh = -0.2 V corresponds to
log fO2 = -62.8 at unit activity of H2O). Notably, this implies that the chemical energetic
conditions most favorable for formation of cancer-related proteins (lower log fO2 or
higher logaH2O) may be associated with redox potentials that characterize cell
proliferation.

4 DISCUSSION
Here, proteomic data were analyzed within a chemical thermodynamic framework that
supports placing chemical compositions of proteins in a microenvironmental context.
To identify some of the implications of these findings, first consider some aspects of
hypoxia and redox potential in cancer cells and tissues.

Hypoxia, or low oxygen concentration (Höckel and Vaupel, 2001), is often
described as a key feature of the tumor microenvironment. A key cellular response to
hypoxia is “oxidative stress”, leading to a greater production of reactive oxygen species
(ROS) (Murphy, 2009) and disruption of redox-sensitive signaling networks (e.g. Wei
et al., 2013). In contrast to oxygenation level, oxidation-reduction potential (redox
potential or Eh) can be monitored by the concentrations of reduced and oxidized
glutathione (GSH/GSSG) and other redox couples. Cellular growth state can be
influenced by hypoxia and/or redox potential; hypoxia is known to maintain
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undifferentiated states of stem cells (Mohyeldin et al., 2010), and proliferation is
generally associated with lower intracellular Eh values (Hutter et al., 1997; Schafer and
Buettner, 2001), while a rise in intracellular Eh accompanies differentiation (Nkabyo
et al., 2002).

The results here show that the chemical makeup of some populations of proteins is
relatively reduced in cancer cells (the chromatin-binding and membrane proteins, and
also the Wnt targets). The reduced chemical composition suggests the possibility of
molecular adaptation to the biochemical constraints associated with lower oxygen
and/or redox potential. These comparisons therefore identify a high-level cellular
response to microenvironmental conditions that must coexist, but is not necessarily
coincident, with the mechanistic basis for signaling in the HIF-1 pathway.

A thermodynamic perspective may open up other possibilities for control. For
example, lactate buildup is usually regarded as a primary factor for lowered pH in the
tumor microenvironment, promoting tumor growth (Gatenby and Gillies, 2004).
However, tumors are not homogeneous. Often, catabolic products of stromal cells feed
the anabolic requirements of epithelial cancer cells (Martinez-Outschoorn et al., 2014).
The metabolic consequences of the “lactate shuttle” that operates in this scenario are
tied to differences in oxidation state of lactate (ZC=0) and pyruvate (ZC=0.667) (Brooks,
2009). Interestingly, the decrease in ZC of proteins in cancer relative to healthy samples
is greater for the significantly changed proteins in stromal cells than in epithelial cells
(see Table 1). The accumulation of the relatively reduced lactate molecule and the
decrease in oxidation state of the proteome may both be associated with reducing
conditions in specific locations within tumors.

Whether specific prevention and treatment strategies (for example, antioxidants) can
prevent or reverse the redox-linked cellular adaptations in cancer is a matter of
continuing debate. In general there is little evidence for a tight link between redox
potential and hypoxia in tumors or healthy tissues, but one study has reported a
correlation between redox potential and oxygenation in tumors on the basis of magnetic
resonance imaging (MRI) using redox and oxygen-sensitive MRI probes (Hyodo et al.,
2012). From a thermodynamic perspective, the cancer-related shifts toward a reduced
protein composition constitute a cellular response that decrease the energy for
biomolecular synthesis in a reducing environment. Therefore, it may be worthwhile to
consider the implication of the current results that a return to normal proteomic state
entails a net oxidation of the proteome.

In addition to oxidation state, the importance of hydration state can not be neglected.
Increased hydration state in cells has been identified as a signal for protein synthesis
and cell proliferation (Häussinger, 1996). A possible consequence of increasing water
activity is enhanced rates of enzymatic hydrolysis (Cohen and Wolfenden, 1971), which
could lead to DNA-damaging mutation through hydrolytic deamination of methylated C
residues (Kinzler and Vogelstein, 1996). In some of the data sets considered here
(membrane enriched, epithelial and stromal cell signature, and serum biomarkers), the
cancer proteome is stabilized by a higher hydration potential. Therefore, it seems
possible (but by no means conclusive) that whole-cell and secreted proteins may be
driven to more hydrated states, in contrast with certain subcellular systems
(chromatin-binding proteins, membrane fractions) which are more strongly shifted
toward reducing conditions.
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Regarding microbial populations associated with healthy and cancer tissues in the
colon, the growth of bacteria that produce butyrate is associated with a healthy status
and decreased levels of inflammation (Hamer et al., 2008; Candela et al., 2014). One of
the beneficial outcomes of increased fiber in the diet is greater production of butyrate
and other short-chain fatty acids (SCFA). The increased SCFA abundance in turn
enhances microbial growth and protein synthesis, also depleting the nitrogen availability
in the colon, measured as NH3 (Cummings, 1981). The results of the present study
show that proteins in cancer-associated bacteria are relatively reduced. Beyond the
recognition of anaerobic conditions in the gut, little information can be found in the
literature about the effects on the gut microbiome of changes in oxidation conditions.
The combination of changes in oxidation state and nitrogen demand suggest the need
for a multidimensional analysis to understand the chemical conditions that may enhance
or inhibit the growth of pro-inflammatory microbes.

Some words should be added on the limitations of thermodynamic variables as
indicators of the oxidation and hydration state of the system. Here, we selected logaH2O
and log fO2 as primary variables of interest. However, the conceptual basis of these
variables as indicators of the hydration and oxidation state of the system (Anderson,
2005) does not support a direct interpretation in terms of measurable concentrations.
There are astronomical differences between theoretical values of oxygen fugacity and
actual concentrations or partial pressures of oxygen (e.g. Anderson, 2005, p. 364–365).
Partial pressures of oxygen in human arterial blood are around 90-100 mmHg, and some
thresholds for hypoxic conditions include 10 mmHg for energy metabolism, 0.5 mmHg
for mitochondrial oxidative phosphorylation, and 0.02 mmHg for full oxidation of
cytochromes (Höckel and Vaupel, 2001). Taking 1 mmHg = 1/760 atm = 1/750 bar and
assuming ideal mixing, the equivalent range of oxygen fugacities indicated by these
measurements is log fO2 = -4.57 to -0.88, higher by far than the theoretical values that
distinguish the relative stabilities of cancer and healthy-associated proteins computed
here.

Likewise, the range of logaH2O shown here deviates tremendously from
laboratory-based determination of water activity or hydration levels. For example,
experimental determination of water activity in saturated protein solutions is as low as
0.5 (Knezic et al., 2004), and recent experiments and extrapolations show a likely limit
in the range of ca. 0.600 to 0.650 for growth of various xerophilic and halophilic
eukaryotes and prokaryotes (Stevenson et al., 2015), but cytoplasmic water activity is
probably not greatly different from aqueous growth media, at 0.95 to 1 (Cayley et al.,
2000). The theoretically computed transitions in relative stabilities between proteins
from cancer and healthy tissues occur at much lower values of aH2O (ca. 10−6; Fig. 6e)
or at values approaching 1, depending on the oxygen fugacity (Figs. 6d,f).

Despite the difficulties in a quantitative interpretation, theoretical predictions of
stabilization of cancer-related proteins by a decrease in log fO2 (Fig. 6a-c,g) or increase
in logaH2O (Fig. 6d-f,h) can both be interpreted qualitatively as corresponding with a
decrease in redox potential (Fig. 6i).
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5 CONCLUSION
Conventional methods for interpreting proteomic and microbial data sets emphasize
protein function and mechanistic descriptions of the normal operation of cells as well as
abnormal signaling and growth in cancer. However, an integrated picture of proteomic
remodeling in cancer may benefit from accounting for the stoichiometric and energetic
requirements of protein formation. This study has identified a strong shift toward more
reduced proteins in colorectal cancer. Importantly, this pattern is identified across
multiple data sets, increasing confidence in its systematic nature. In some other data
sets, a smaller but still systematic change can be identified indicating greater water
demand of human proteins in cancer compared to normal tissue.

The findings from this exploration of data unmask biochemical patterns that are
consistent with observations of hypoxia (possibly associated with reduced oxidation
state) and higher hydration state in cancer cells and tumors. As noted by others, such
chemical shifts may favor cellular proliferation and reversion to an embryological mode
of growth. The proteomic data can be explicitly linked to microenvironmental
conditions using thermodynamic models, which give estimates of the oxidation- and
hydration-potential limits for relative stability of groups of proteins. These calculations
outline a path connecting the dynamic compositions of proteomes to biochemical
measurements such as Eh. In conjunction with growing and more targeted proteomic
data sets, future studies can take advantage of this approach in order to characterize and
understand in more detail the microenvironmental requirements for the initiation,
progression and metastasis of CRC and other cancers.
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