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Abstract

Inferring the ancestral dynamics of effective population size is a long-standing
question in population genetics, which can now be tackled much more
accurately thanks to the massive genomic data available in many species.
Several promising methods that take advantage of whole-genome sequences
have been recently developed in this context. However, they can only be
applied to rather small samples, which limits their ability to estimate recent
population size history. Besides, they can be very sensitive to sequencing or
phasing errors. Here we introduce a new approximate Bayesian computation
approach named PopSizeABC that allows estimating the evolution of the
effective population size through time, using a large sample of complete
genomes. This sample is summarized using the folded allele frequency
spectrum and the average zygotic linkage disequilibrium at different bins of
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physical distance, two classes of statistics that are widely used in population
genetics and can be easily computed from unphased and unpolarized SNP
data. Our approach provides accurate estimations of past population sizes,
from the very first generations before present back to the expected time to
the most recent common ancestor of the sample, as shown by simulations
under a wide range of demographic scenarios. When applied to samples of
15 or 25 complete genomes in four cattle breeds (Angus, Fleckvieh, Holstein
and Jersey), PopSizeABC revealed a series of population declines, related
to historical events such as domestication or modern breed creation. We
further highlight that our approach is robust to sequencing errors, provided
summary statistics are computed from SNPs with common alleles.

Introduction

Reconstructing the ancestral dynamics of effective population size is im-
portant in several contexts. From a long term evolutionary perspective,
the history of population size changes can be related to various climatic or
geological events, and reconstructing this history allows studying the impact
of such events on natural species [1]. This demographic history also provides
a statistical null model of neutral evolution that can subsequently be used
for detecting loci under selection [2,[3]. In conservation biology, the recent
dynamics of effective population size in endangered species, as reconstructed
from genetic data, can efficiently be used to decipher the time frame of a
population decline, hence allowing to separate anthropogenic from natural
factors [4].

Until recently, methods allowing to infer the history of population size
changes from genetic data were designed for data sets consisting of a limited
number of independent markers or non recombining DNA sequences [5-8].
However, the spectacular progress of genotyping and sequencing technolo-
gies during the last decade has enabled the production of high density
genome-wide data in many species. New statistical methods accounting for
recombination and scalable to the analysis of whole genome sequences are
thus needed, in order to take advantage of this very rich source of information.

In this context, several promising approaches allowing to infer complex
histories, including several tens of stepwise population size changes, have
recently been proposed [9H13]. Some of them, called PSMC [9], MSMC [10]
and diCal [11], are based on the Sequentially Markovian Coalescent (SMC
or SMC’) models |14,[15], an approximation of the classical coalescent with
recombination [16], where coalescent trees are assumed to be Markovian
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along the genome. Thanks to this Markovian assumption, maximum like-
lihood estimates of past population sizes can be efficiently obtained from
the observation of one (for PSMC) or several (for MSMC and diCal) diploid
genomes. Another approach [12] is based on the length of Identity By State
(IBS) segments shared between two chromosomes along the genome. Using
an iterative search, it aims at finding a history of past population size changes
for which the expected distribution of IBS segment lengths matches that
observed in one diploid genome.

While the above methods take advantage of whole-genome data, they are
so far restricted to the analysis of small sample sizes. In the case of SMC
based methods, this implies a limited resolution for the estimation of recent
population sizes. Indeed, the most recent time at which these methods can
infer population size is determined by the time to the most recent coalescence
event occurring in the sample, which is older for small samples. For instance
in humans, PSMC cannot estimate population sizes more recently than 400
generations (10,000 years) before present (BP), and MSMC cannot estimate
these sizes more recently than 40 generations (1,000 years) BP. The most
recent time for which an inference is possible will differ between species. In
populations with small recent population sizes, coalescence events will occur
at a higher rate than in larger populations, so the inference of recent history
will be more accurate. Inference approaches based on the distribution of IBS
segment length may be less affected by the use of small samples. Using this
approach, estimations of population size in the Holstein cattle breed were
obtained from a single genome even for the first few generations BP [12], and
were in good agreement with estimations obtained from pedigree information
in this breed [17-19]. However, the accuracy of the IBS approach used in
this study has not been formally validated using simulations.

Another concern of the above methods is their sensitivity to sequencing
errors. False positive SNPs can lead to a strong overestimation of population
sizes in the recent past, i.e. in the first few hundred generations BP, both with
PSMC [9,12] and with the distribution of IBS segment length [12]. In contrast,
false negative SNPs lead to underestimate population size at all time scales,
but the magnitude of this effect is much weaker |12]. Efficient strategies
for estimating these error rates and correcting the data accordingly have
been proposed in [12]. However, the estimation step typically requires other
sources of information than the sampled sequences, such as independent SNP
chip data for the same individuals, which in many cases are not available.
Phasing errors may also be an issue when inference is based on phased
haplotype data, which is typically the case for MSMC [10] or diCal [11].
MSMUC inference can also be based on unphased data, but this reduces the
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estimation accuracy [10].

Here we introduce a new statistical method named PopSizeABC, allowing
estimating population size history from a sample of whole-genome sequences.
One of the main motivations for developing this method is to take advantage
of large sample sizes in order to reconstruct the recent history as well. Since
statistical approaches based on the full likelihood of such samples seem
currently out of reach, even with approximated models such as the SMC,
we followed an Approximate Bayesian Computation (ABC) [20] approach,
which simplifies the problem in two ways. First, this approach does not focus
on the full likelihood of sampled genomes, but on the likelihood of a small
set of summary statistics computed from this sample. Second, population
size histories that are consistent with these observed summary statistics
are inferred by intensive simulations rather than by complex (and generally
intractable) mathematical derivations.

ABC is a popular approach in population genetics, which has already
been applied to the analysis of large-scale population genetic data sets [21-25].
However, none of these previous studies tried to estimate complex population
size histories involving a large number of population size changes. To address
this question, we considered two classes of summary statistics: the folded
allele frequency spectrum (AFS) and the average linkage disequilibrium
(LD) at different physical distances. These two classes of statistics are very
informative about past population size, and each of them is the basis of
several inference approaches in population genetics |13]26H31]. Therefore,
combining them within an ABC framework seems very promising.

Applying our ABC approach to samples of 25 diploid genomes, simulated
under a large number of random population size histories, we show that it
provides, on average, accurate estimations of population sizes from the first
few generations BP back to the expected time to the most recent common
ancestor (TMRCA) of the sample. This result is confirmed by the study of
several specific demographic scenarios, where our method is generally able
to reconstruct the population size history from present time back to the
expected TMRCA, while PSMC or MSMC reconstruct it only for a limited
time window.

We then apply this method to samples of 15 or 25 genomes in four
different cattle breeds, which reveals interesting aspects of cattle history,
from domestication to modern breed creation. Through this application to a
real data set, we also illustrate how sequencing and phasing errors, if not taken
into account, can have a dramatic influence on the estimated past population
sizes. Our method is actually insensitive to phasing errors, because it uses
unphased data. In addition, we show that a simple modification in the choice
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of summary statistics makes it robust to sequencing errors.

Results

Overview of the approximate Bayesian computation (ABC)
estimation procedure

Following several recent studies [9+12], we modeled population size history
as a stepwise constant process with a fixed number of time windows, where
population size was constant within each window but was allowed to change
from one window to the next. Time windows were defined in generations,
for instance the most recent window went from one to ten generations before
present (BP), and the most ancient window started 130,000 generations BP.
This model allows approximating all simple demographic scenarios generally
considered in population genetics studies (constant size, linear or exponential
growth or decline, bottleneck ...), as well as a large range of more complex
demographic scenarios, provided population size changes occurred more
recently than 130,000 generations BP.

Our estimation procedure was based on the observation of n diploid
genomes sampled from the same population. We summarized this data
set using two classes of summary statistics: (i) the folded allele frequency
spectrum (AFS) of the sample, which includes the overall proportion of poly-
morphic sites in the genome and the relative proportion of those polymorphic
sites with ¢ copies of the minor allele, for all values of ¢ between 1 and n, and
(ii) the average linkage disequilibrium (LD) for 18 bins of physical distance
between SNPs, from approximately 500 bp to 1.5Mb. We generated a very
large number of population size histories, by drawing the population size in
each time window from a prior distribution. For each history, we simulated a
sample of n diploid genomes and computed a distance between the summary
statistics obtained from this simulated sample and those obtained from the
observed sample. A given proportion (called tolerance) of the most likely
histories was accepted based on this distance. Finally, the joint posterior
distribution of population sizes was estimated from the population sizes of
accepted histories. Different statistical approaches were compared for this
last estimation step.

A detailed description of the model and of the ABC procedure described
above is provided in the Methods.
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Accuracy of ABC estimation and relative importance of sum-
mary statistics

In order to optimize our ABC estimation procedure and to evaluate its
average performance, we first applied it to a large number of genomic samples
simulated under random population size histories. These pseudo-observed
datasets (PODs) included 25 diploid genomes and 100 independent 2Mb-long
regions. For each POD, population sizes were estimated by ABC, using
450,000 simulated datasets of the same size. These estimated values were
compared with their true values for different tolerance rates and different
ABC adjustment approaches to process the accepted histories. We found
that the best procedure was to accept simulated histories with a tolerance
rate of 0.005, to adjust their parameter values using a non linear neural
network regression [32], and to summarize the resulting posterior distribution
by its median. Indeed, point estimations of population sizes obtained by
this procedure showed very small bias and the lowest prediction errors (PE)
(Fig. . Moreover, the posterior distributions of population sizes in each
time window were correctly estimated, as shown by the accuracy of the
90% credible interval left), while the size of this credible interval
was much lower than that obtained by the other adjustment approaches
considered right). We used this procedure throughout the remaining
of this study.

ABC provided accurate estimations of population sizes for a large range
of times in the past (Fig. [I). The best results were obtained from 10 to
5,000 generations BP, where the prediction error was below 0.1: this means
that the average distance between true and estimated population sizes for
this period of time was more than 10 times smaller than if the population
sizes were estimated from the prior distribution. In the very recent past
(from 0 to 10 generations BP), this prediction error was slightly larger but
remained below 0.2. The prediction error also increased for times more
ancient than 5,000 generations BP, while remaining quite low (PE < 0.3)
until approximately 20,000 generations BP. This increase in prediction error
above 5,000 generations BP can be related to a coalescence argument. At this
time, the observed samples have coalesced to their common ancestor at most
of the genomic regions, so the influence of demography on the current sample
is reduced. Indeed, when rescaling time from generations to coalescent units
(as described in Methods), we observed that the prediction error averaged
over PODs started to increase shortly after the expected TMRCA .

Our simulation study also highlighted the contribution of the different
summary statistics. First, we found that population size history can be
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estimated quite well using either the AFS statistics alone or the LD statistics
alone, but that combining the two classes of statistics clearly leads to the
lowest PE for all time windows (Fig. [2| left). As some demographic histories
were more difficult to estimate than others, the PE differed between histories,
but we observed that combining AFS and LD statistics allowed to reduce
these differences (Fig. [2} right). It also led to a reduction of the width of the
90% credible interval, as compared with the interval obtained using either
class of statistics alone . Another important advantage of combining
AFS and LD statistics is to enable estimating the per site recombination rate.
Indeed, the PE of this parameter was equal to 0.2 when using all statistics,
versus 0.96 and 0.75 when using, respectively, AF'S or LD statistics alone.
Second, we found that using the polymorphic site AFS, i.e. the AFS without
the overall proportion of SNPs, resulted in much higher PEs than using the
full AFS (Fig. . Third, we observed that computing LD at each SNP
pair as a correlation between two vectors of n genotypes or as a correlation
between two vectors of 2n alleles was equivalent in terms of PE (S4 Fig]).
This result implies that, with our approach, using unphased data rather than
phased data will not decrease the estimation accuracy. Besides, computing
LD from SNPs with relatively frequent alleles (MAF > 5-20 %) resulted in
lower PEs than computing it from all SNPs . In the following, LD
statistics were always computed from genotype data at SNPs with a MAF
above 20%, unless otherwise specified.

Influence of the amount of data on ABC estimation

Another important question was to assess the amount of data that needs to
be simulated and observed in order to achieve optimal accuracy. We first
studied the influence of the number of simulated samples and found that
increasing this number above 450,000 would not improve the estimation.
Indeed, equally low PE and equally small (and accurate) confidence intervals
could be obtained using 200,000 simulated samples (S5 Fig)).

We then considered the influence of the genome length of observed and
simulated samples . As expected, PEs and the width of credible
intervals decreased when the genome length increased. However, only small
differences were observed between the performances obtained with 50 and 100
2Mb-long segments, and generating simulated data sets with much more than
100 2Mb-long segments (the default setup considered here) would become very
challenging from a computational point of view (see the Methods for more
details). For the analysis of observed data sets with a genome length above
200Mb, we thus considered the alternative strategy consisting in comparing
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observed statistics computed from the full genome (which is computationally
very easy) with simulated statistics computed from a subset of the genome.
We may think about these simulated summary statistics as an approximation
of the genome-wide simulated statistics. To evaluate this strategy, we assumed
that the genome length was 100 2Mb-long segments in the observed sample
and 10 2Mb-long segments in the simulated samples . Credible
intervals were only slightly improved compared to using a genome length of
10 2Mb-long segments in both simulated and observed datasets, but PEs and
their variance between scenarios were reduced, especially for the most recent
and the oldest time windows, reaching values almost as low as those obtained
when using 100 2Mb-long segments in both simulated and observed datasets.
This strategy was thus applied in the further sections of the manuscript,
where simulated statistics used for ABC estimation were computed from
genomes made of 100 2Mb-long segments, independently of the genome
length in the observed data.

We also studied the influence of sample size on population size estimations
(S8 Figl). Comparing several sample sizes from n = 10 to n = 50, we observed
that using large samples resulted in a more accurate estimation of population
sizes in the first 100 generations BP. For instance, in the most recent time
window, PE was equal to 0.153 for n = 50 versus 0.212 for n = 10, and the
90% credible interval was narrower (ratio between upper and lower bound of
36 versus 74). These improvements resulted from the fact that low frequency
alleles, which are better captured from large samples, are very informative
about recent population history. In contrast, population sizes at times more
ancient than 10,000 generations BP were more accurately estimated from
small samples, although the magnitude of this effect was lower than for
recent population sizes (PE of 0.66 for n = 50 versus 0.63 for n = 10 in the
most ancient window). This is likely due to statistical overfitting: increasing
the sample size leads to increasing the number of AFS statistics, so if these
additional statistics are not sufficiently informative they may introduce some
noise and reduce the prediction ability of the model.

Finally, we found that computing AFS statistics only from SNPs exceeding
a given minor allele frequency (MAF) threshold (from 5 to 20%) resulted in
larger PEs and confidence intervals, except for the most ancient population
sizes . Again, this comes from the fact that low frequency alleles are
very informative about recent population history. However, as we discuss
later, introducing a MAF threshold might be necessary for the analysis of
real data sets, so it is interesting to note that even with a MAF threshold of
20% the PE was not much larger than with all SNPs (0.24 versus 0.17 in the
worst case).
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Estimation of specific demographic scenarios using ABC

To illustrate the performance of our ABC approach, we then considered
six specific demographic scenarios: a constant population size of 500, a
constant population size of 50,000, a population size declining from 40,000
to 300 individuals between 3,600 and 100 generations BP, a population
size increasing from 2,500 to 60,000 individuals between 1,500 and 250
generations BP, a population size experiencing one expansion from 6,000 to
60,000 individuals followed by a bottleneck of the same magnitude, between
34,000 and 900 generations BP, and a “zigzag” scenario similar to the previous
one but including one additional bottleneck between 520 and 50 generations
BP (see Fig. 3| for more details). The decline scenario was chosen to mimic
the estimated population size history in Holstein cattle |12], the expansion
scenario was chosen to mimic the estimated population size history in CEU
humans [10], and the “zigzag” scenario has been proposed in [10] as a typical
example of very complex history. For each scenario, we simulated 20 PODs
of 25 diploid genomes, each genome consisting in 500 independent 2Mb-long
segments.

We observed that all PODs from a same scenario provided very similar
ABC estimations (Fig. |3). This suggests that increasing the observed genome
length would not improve the obtained estimations, at least with the levels of
mutation (le-8 per bp) and recombination (5e-9 per bp) and the population
sizes considered here. Besides, as expected from our previous simulation
results, population size history could be reconstructed for all scenarios from
a few generations BP back to at least the expected TMRCA of the sample,
with the only two exceptions described below.

First, population size estimations in the most recent time window (less
than 10 generations BP) often showed a slight bias towards intermediate
values, as can be seen in the large constant size scenario, the decline scenario
and the expansion scenario. This partly comes from the fact that we estimated
population size by the median of the posterior distribution, which tends
to shrink it away from our prior boundaries. When estimating population
sizes from the mode of the posterior distribution, we were able to better
reconstruct the very recent population size in these three scenarios
. Nevertheless, using the mode also brought other issues: it led to less
smooth population size histories and, on average, to larger PEs
than using the median (Fig. . Second, the zigzag scenario was incompletely
reconstructed: the initial increase of population size and the subsequent first
bottleneck could be recovered, but the second bottleneck was replaced by a
slow decline.
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In order to explore why ABC failed to fully reconstruct this zigzag history,
we considered five variants of this scenario . For a zigzag scenario
with smaller population sizes than the original one (ten times lower in all
time windows), we observed that ABC could recover the full sequence of
expansions and contractions top right). This was also the case when
only one of the two bottlenecks of this “zigzag small” history was simulated
(S11 Figl bottom). In contrast, when only the most recent bottleneck of the
“zigzag large” scenario was simulated, ABC could still not reconstruct it
middle left). Actually, the decline wrongly estimated by ABC in this
case led to very similar summary statistics as the true bottleneck ,
and the population size trajectory corresponding to the true bottleneck was
included in the 90% credible interval inferred by ABC middle left).
We also observed that PODs simulated under the wrong decline history would
lead to very similar ABC estimations that those simulated under the true
bottleneck history middle, left vs right). These results suggest that
the accuracy of our ABC approach is not strongly affected by the complexity
(i.e. the number of expansions and declines) of the true history, but that some
specific demographic events, in particular those implying recent population
size changes in large populations, can be difficult to identify using this
approach. This conclusion was supported by the study of four additional
complex scenarios, implying similar expansions and declines as in
but in a different order, i.e. the first event was a bottleneck and it was
followed by a population decline (S13 Fig)). Except the recent part of the
“bottleneck2 recent large” scenario top left), all aspects of these
histories occurring more recently than the expeted TMRCA were accurately
reconstructed by ABC.

Because one of our objectives was to estimate the population size history
in taurine cattle, we studied more precisely the continuous decline scenario
that is expected in this species [12], and evaluated if variations from this
scenario could be detected by ABC . We found that a decline of
the same magnitude (from 40,000 to 300), but occurring suddenly either
200 generations BP (top right) or 1,000 generations BP (middle left), would
lead to a clearly distinct ABC estimation, although ABC had a tendancy
to smooth population size changes. We also considered two scenarios where
population size increased again after the sudden decline occuring 1,000
generations BP, either quickly to a relatively high value (5,000, middle right)
or more recently to a lower value (1,000, bottom left). In the two scenarios,
both the bottleneck phase and the recovery phase could be inferred by ABC.
Finally, we studied an alternative scenario where the initial continuous decline
was followed by a sudden decline to 100 between 230 and 140 generations BP
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and by a later recovery to 1,000 (bottom right). Assuming generation time
in cattle is about 5 years, the time frame of this bottleneck (between 1,150
and 700 years BP) would correspond to the Middle Age period, where cattle
population sizes may have decreased drastically because of wars, famines and
cattle plagues [34]. Again, we found that ABC should be able to distinguish
this scenario from a simple continuous decline.

Comparison with MSMC

For each scenario of Fig. |3 we also analyzed five simulated samples with
MSMC |10], using two, four or eight of the haplotypes from each sample.
When applied to two haplotypes, MSMC is an improved version of PSMC [9],
a software that has been used to estimate population size history in many
different species within the last few years [35-38]. In our simulations, MSMC
based on two haplotypes provided a very accurate estimation of the population
size history within a time window starting between a few hundreds and a
few thousands generations BP, depending on the scenario, and finishing
after the expected TMRCA of 50 haplotypes (Fig. |4). Within this time
window, estimations obtained by MSMC from the five replicates were all
very close to the true history, even more than ABC estimations. Outside
this window however, population size histories estimated by MSMC often
had a totally different trend than the true history, (see for instance the
small constant size or the decline scenario), with large differences observed
between samples (see for instance the expansion scenario). Similar results
were obtained when using MSMC with four or eight
haplotypes, except that the time window where accurate population sizes
could be obtained was shifted towards recent past, as already shown in [10].
This comes from the fact that MSMC inference is based on the time to
the most recent coalescence event, which decreases when the sample size
increases. Thus, reconstructing the entire population size history is generally
not possible from a single MSMC analysis. This would require concatenating
different parts of the history estimated independently using different sample
sizes, which might be quite challenging in a real data analysis, because the
bounds to consider for such a concatenation are unknown. Besides, for four
out of the six scenarios (the small constant size, the expansion, the bottleneck
and the zigzag), population sizes at times more recent than approximately
100 generations BP could not be estimated by any MSMC analysis. Indeed,
the analysis with eight haplotypes, which is expected to be the most accurate
for reconstructing recent demography, provided unstable results for these
scenarios. Several other cases where MSMC failed to reconstruct properly
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the recent history were observed among the additional scenarios tested with
ABC, as for instance in the “bottleneck cattle middle age* scenario
and for which the recent bottleneck was not detected.

Finally, it is important to note that the simulated data that we used in
these MSMC analyzes were assumed to be perfectly phased. However, real
data consist generally in statistically inferred haplotypes, which can typically
include from 1 to 10 switch errors per Mb and individual, even when using
recent phasing algorithms and large sample sizes [39]. In our simulations,
analyzing phased data with such switch error rates often biased MSMC
estimations, especially for the most recent part of the demographic history
(S19 Fig). To avoid this issue, MSMC can in principle be run from unphased
data, but we found that this would also affect the estimation accuracy

right column).

Application to NGS samples in cattle

We applied our ABC approach to estimate the population size history in
four cattle breeds, using large samples of diploid genomes recently published
by the 1,000 bull genomes project [40]. An important issue when analyzing
NGS data is the potential influence of sequencing and phasing errors on
the estimations. To investigate this question, we first evaluated how these
errors affect the summary statistics considered in our ABC approach. We
considered a set of 12 Holstein animals for which the haplotypes inferred
from NGS data within the 1,000 bull genomes project could be compared
with those inferred from 800K SNP chip data obtained independently from
another project. Assuming that 800K data are free of genotyping errors,
we computed the summary statistics from these data and checked whether
similar values could be obtained from NGS data at the same positions
. We found that the average gametic LD (i.e. the LD computed from
haplotype data) was significantly smaller with NGS data than with 800K
data at long physical distances, but not at short ones. This likely comes from
an increased level of phasing errors in NGS data as compared to 800K data.
Indeed, such errors tend to artificially break the correlation between SNPs
within each individual, which reduces LD. Besides, as they are relatively
rare, we expect their influence to be significant only when comparing SNPs
at large physical distance.

In contrast, the average zygotic LD (i.e. the LD computed directly from
genotype data) was identical for the NGS and the 800K data. We also
observed a perfect match between the polymorphic site AFS obtained from
the NGS data subsampled at 800K positions, and from 800K data. Finally,
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the overall proportion of SNPs was similar in the two types of data. More
precisely, based on the 800K positions and the sample of 12 individuals, we
found approximately 0.5% of false positive SNPs, i.e. positions that were
found polymorphic when using NGS data but not when using 800K data
left), and approximately 5% of false negative SNPs, i.e. positions that
were found polymorphic when using 800K data but not when using NGS
data right). Besides, the proportion of false negative SNPs did not
depend on the true allele frequency (i.e. the allele frequency in the 800K
data), so it should not distort the AFS. Overall, these results suggest that
our summary statistics, when computed from genome wide unphased NGS
data, should not be affected by sequencing and phasing errors. However,
the above comparison does not really allow to evaluate the influence of false
positive SNPs when analyzing genome wide NGS data, because the 800,000
positions of the SNP chip are strongly enriched in true SNPs compared to
the three billions of positions of the entire genome.

To overcome this limitation, we studied directly the influence of sequenc-
ing and phasing errors on ABC estimations, by analyzing one sample of 25
Holstein genomes with slightly different combinations of summary statistics
(Fig. . When LD was computed from haplotypic data, the estimated recent
population size was above 20,000 individuals, which seems quite unrealistic
given that the estimated current effective size of this breed is generally of an
order of 100 [17H19,41]. This discrepancy likely resulted from the average
LD at large physical distances, which was artificially reduced by phasing
errors, as discussed above. Computing LD from genotypic data, we obtained
more realistic results, with a recent population size of 7,000. However, there
was a great difference between the estimation obtained when computing AFS
statistics from all SNPs, and that obtained when computing these statistics
only from SNPs with a MAF above 10% (Fig. . Such a large difference
was not expected from simulations, neither on average over multiple ran-
dom histories middle) nor in the particular cases of a constant or
declining population (Fig. [3| vs . Thus, it must result from the
influence of false positive SNPs, which are much more likely to produce
low frequency alleles left). In contrast, there was little difference
between the estimations obtained when computing AFS statistics with a
MAF threshold of 10 or 20%, which strongly suggests that these strategies
are both robust against sequencing errors, at least for this particular dataset.
To be conservative, we used a MAF threshold of 20% for the final analysis
of the four breeds.

This analysis outlined several interesting features of cattle demographic
history (Fig. @ Before 10,000 years BP, the population sizes estimated
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in the four breeds were very similar, in agreement with the fact that all
four breeds descend from a same ancestral population, i.e. the initial Bos
taurus population which resulted from the domestication of the wild au-
rochs, Bos primigenius, approximately 10,000 years BP [42]. This common
estimated history is characterized by a population decline starting approxi-
mately 50,000 years BP. In particular, a sharper decrease was observed from
approximately 20,000 years BP, which could correspond to the intensification
of anthropogenic effects like hunting or later herding [42]. Shortly after
domestication, the inferred population size histories could be divided into
two groups, Holstein and Fleckvieh on one hand, Angus and Jersey on the
other hand. This is consistent with the origin of these breeds: Holstein and
Fleckvieh ancestors were brought into Europe through the Danubian route
approximately between 7,500 and 6,000 years BP, while Angus and Jersey
have more diverse origins and partly descend from animals that were brought
into Europe through the Mediterranean route approximately between 9,000
and 7,300 years BP [43,/44]. Population size histories in the four breeds finally
diverged during the last 500 years, which is consistent with the progressive
divergence of these breeds induced by geographic isolation and, from the
18th century, by the creation of modern breeds [45]. This lead to recent
effective population sizes of 290 in Angus, 390 in Jersey, 790 in Holstein and
2,220 in Fleckvieh.

The 90% credible intervals associated to these estimated population size
histories are shown in [S23 Figl We performed posterior predictive checks
by sampling population size histories from the posterior distributions and
simulating new genomic samples from these histories [46]. The summary
statistics obtained from these samples were similar to those observed in the
real data . We also checked that the best simulated histories pro-
vided summary statistics that were indeed similar to the observed summary
statistics . Finally, we note that point estimations of the average
per site per generation recombination rate were quite similar between breeds:
it was equal to 3.66e-9 in Holstein, 3.89e-9 in Fleckvieh, 4.58e-9 in Jersey
and 5.00e-9 in Angus.

Discussion

Methodological contribution

Applying our ABC approach to genomic samples simulated under a large
number of random population size histories, we showed that it provides, on
average, accurate estimations of population sizes from the first few generations
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BP back to the expected TMRCA of the sample. Because the estimation
accuracy depends on the true population size history, we also analyzed
genomic samples simulated under 20 specific demographic scenarios with
various levels of complexity: a constant population size (2 scenarios), a
monotonic decrease (3 scenarios) or expansion (1 scenario), a single bottleneck
(3 scenarios), a single bottleneck plus an additional expansion or decrease
(9 scenarios) or two bottlenecks plus an additional expansion (2 scenarios).
For most of these scenarios, PopSizeABC could reconstruct the population
size history from present time back to the expected TMRCA of the sample.
Within this time limits, the only situations where the ABC point estimates
were very different from the true history were those implying a decline or
expansion occurring in a large population (more than 5,000 individuals)
within the last few hundreds generations. Indeed, when large population
sizes are combined with frequent population size changes (in our model,
recent time windows are also the shortest ones), each time window represents
a very small part of the coalescent history, which explains why these scenarios
are particularly difficult to reconstruct. However, in these situations, the true
history was still included within the 90% credible interval, and the increased
width of this interval compared to other time windows suggested that the
point estimate was less reliable. Similarly, in all scenarios, the width of the
credible interval increased rapidly for times that were more ancient than the
expected TMRCA, which corresponds thus to the upper bound of the time
period where ABC estimation could be trusted.

Interestingly, we observed that PopSize ABC behaved quite differently
from MSMC [10], a recent full-likelihood SMC-based method allowing to an-
alyze multiple diploid genomes. On one hand, for the 20 scenarios considered
here, MSMC estimated more accurately than PopSize ABC the population
sizes at several time points. This was expected because ABC inference
implies a much larger degree of approximation than MSMC inference. On
the other hand, the total time period for which each demographic history
could be correctly reconstructed with a single MSMC analysis was much
smaller than with ABC. Besides, in most scenarios, recent population sizes
(in the first 100 generations BP or even more) could not be inferred by any
MSMC analysis, while they could be inferred by ABC. In our study of cattle
demography, reconstructing the population size history for this recent period
allowed to highlight the specificity of each breed. In many other situations,
and especially in a conservation perspective, estimating recent demography
is actually crucial.

The better performance of ABC to reconstruct recent population size
history is partly explained by the possibility of using larger samples. We
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generally considered samples of 25 diploid genomes, which resulted in more
accurate estimations of population sizes in the last 30 generations than using
only 10 diploid genomes . Indeed, large samples contain rare alleles.
Since these alleles result from mutations that occurred in the most recent
part of the coalescent tree, their relative proportion in the AFS is informative
about the recent variations of population size. Interestingly, gaining accuracy
for recent time periods by increasing the sample size had no strong negative
impact on the reconstruction of the older demographic history (except for
times older than the TMRCA), contrary to what was observed with MSMC.
The use of LD statistics must also contribute to the reconstruction of recent
demography because, in our simulations, predictions of population sizes at
times more recent than 100 generations BP were still acurate when rare
alleles were removed . As discussed below, the average LD at long
physical distances is expected to reflect the recent population size [26].

Following previous studies [26,130,/47], we used in our ABC approach the
average LD over different bins of physical distance in order to get information
about population sizes at different times in the past. In a finite population,
LD results from a balance between drift and recombination. This implies
that LD between markers at long recombination distance mostly reflects
recent population sizes, while LD at short recombination distance also reflects
ancient population sizes [48]. To illustrate this, we computed our LD statistics
for several simulation scenarios consisting in a sudden expansion with fixed
magnitude but occurring at different times in the past left). As
expected, we observed that LD statistics at long distance were similar to
those of a large population, thus reflecting the recent population size, while
LD statistics at small distance were similar to those of a small population,
thus reflecting the ancient population size. Besides, the more recent the
expansion, the larger the distance required to observe a LD level reflecting
the large (recent) population size. Similarly, for decline scenarios, markers
at long (resp. short) distance were most of the time found to reflect the LD
level in a small (resp. large) population right; see the legend for
more details)).

This relation between the recombination distance and the time horizon
can even be described more precisely. If population size is assumed to change
linearly over time, it can be shown that the expected 72 between SNPs at
recombination distance c is approximately equal to

1
E[r?] ~ P (1)

where N is the effective population size at time 1/(2¢) BP and a is a constant
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depending on the mutation model [26]. The evolution of population size
through time can thus be reconstructed by computing the average 2 for
different bins of recombination distance, and then inverting the formula in Eq.
[26,147]. However, several authors pointed out that this approximation is
unsatisfactory, especially for non constant demography [49,50], and could lead
to wrong estimations of past population sizes [50,/51]. Our ABC approach
overcomes this issue, because r? values estimated from the data are not
compared to approximate theoretical predictions, but to simulated r? values.
Using this approach, we could demonstrate that these statistics contain
useful information about the population size history (Fig. . We further
demonstrated two important properties of LD statistics in the context of
population size inference . First, computing 72 from genotypes is as
informative as computing it from haplotypes, in the sense that it leads to
similar PEs. Second, removing rare SNPs (at least those with MAF below
5%) when computing this LD measure reduces PE.

In our simulations, ABC inferences based on AFS statistics alone also
provided accurate estimations of population sizes at different times in the past
(Fig. . Theoretical studies have demonstrated that complex population
size histories can be estimated from AFS statistics [52], and these statistics
are already the basis of several inferential approaches in population genetics
[13,27-29,31]. In particular, two recent studies implemented composite-
likelihood approaches to estimate population size through time in a single
population [13,131], and obtained convincing results on simulated data. We
do not expect that our ABC approach based on AFS statistics alone would
improve the point estimations obtained by these approaches, and analyzing
very large samples (i.e. hundreds or thousands of individuals) would certainly
be much more challenging with ABC due to the simulation step. However,
one advantage of ABC is to provide credible intervals, which allow to quantify
the degree of confidence associated to a given point estimation.

Moreover, one important conclusion of our work is that combining AFS
and LD clearly improves, on average, the estimation of population sizes
(Fig. [2). This stems from the fact that these two classes of statistics are
not informative for the same demographic scenarios. While prediction errors
obtained from AFS or LD statistics were quite similar for scenarios with
little population size variations top panels), better predictions
were obtained from AFS (resp. LD) statistics when the main trend of the
population size history was an expansion (resp. a decline) bottom
panels). These differences were mainly due to the predictions obtained from
AFS statistics, which were much better for expansion scenarios than for
decline scenarios. Indeed, population declines accelerate the rate of recent
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coalescence events compared to old ones. Combined with the fact that the
time intervals between recent coalescence events are intrinsically shorter
than between old ones (because coalescence rates are proportional to the
square of the sample size), this tends to produce coalescence trees where
only the few oldest branches have a substantial length. In other words,
the recent topology of coalescence trees in decline scenarios is very hard to
infer based on observed data, making it difficult to estimate population size
variations from the AFS. These results are consistent with those from a recent
study [53], which showed that, for the inference of single bottleneck events,
including some linkage information was more efficient than using the AFS
alone. Actually, one interesting conclusion of is that combining LD
and AFS statistics always improves the prediction compared to using either
one or the other class of statistics alone, whatever the family of scenarios we
considered.

This conclusion was also supported by the study of several specific
scenarios: some could be accurately reconstructed from AFS statistics alone
but not from LD statistics alone (Figure 7] top), and vice versa (Figure
middle), but the prediction obtained when combining AFS and LD statistics
was always close to the best of the two. In other scenarios, neither AFS or
LD statistics alone allowed to correctly estimate the demographic history,
and using them jointly was therefore essential (Figure [7} bottom). Finally, in
many scenarios, ABC estimation based either on LD statistics alone or AFS
statistics alone performed already very well, but the advantage of combining
AFS and LD statistics clearly appeared when using a MAF threshold that
reduced the information brought by AFS statistics . Besides these
effects on population size estimation, note that combining AFS and LD
statistics allowed to estimate the average per site recombination rate, which
was not possible using either one or the other class of statistics alone.

The genome wide distribution of the length of IBS segments shared
between two chromosomes could provide another interesting class of summary
statistics for ABC, because several recent studies showed that it is very
informative about population demography [12,54]. However, we found that
applying ABC from a set of statistics related to this distribution, rather than
from AFS and LD statistics, resulted in larger PEs of population sizes more
recent than 100 generations BP (S29 Fig). This is likely due to the much
smaller number of individuals simultaneously considered in IBS statistics.
When IBS statistics were used in addition to AFS and LD statistics, no
significant improvement was observed compared to the combination of AFS
and LD statistics. Besides, the estimation of recent population demography
is mainly influenced by the frequency of long IBS segments, which might be
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difficult to estimate in practice due to sequencing errors [12,/54]. Thus, we
did not further investigate the inclusion of these statistics in our approach.

Several previous studies implemented ABC approaches based on genome-
wide data to infer population genetics models [21-25]. However, none of
these studies focused on the estimation of population size through time using
complex step-wise models, as we did here. In a Bayesian perspective, this
specific question had, so far, only been adressed using a small number of
independent non-recombining loci [5-8]. Another originality of our study is
to use LD summary statistics that can only be computed from relatively long
DNA sequences (at least 2Mb) with recombination, while almost all previous
genome-wide ABC studies (but see [23]) considered short loci (< 20kb long).
Even with modern computer facilities, simulating hundreds of thousands of
long DNA sequences required some optimization adjustments. One of them
was to reduce the space of possible simulated histories to the most realistic
ones by setting constraints on the prior distributions of population sizes (see
Methods). Another one was to allow simulated and observed samples to differ
in two different ways. First, the total genome length was generally smaller
in simulated samples than in the observed sample, which resulted in lower
prediction errors than reducing the genome length in the observed sample
down to the one that could be efficiently achieved in simulated samples
(S7 Fig). Second, when analyzing the cattle data, the simulated summary
statistics were computed from independent 2Mb-long segments, although the
observed ones were computed from contiguous 2Mb-long segments. Indeed,
simulating data under the coalescent with recombination becomes extremely
difficult for long sequences. This second approximation cannot bias the
estimations, because the correlation structure between segments has no
impact on the expected value of summary statistics. Similar to the genome
length, the correlation structure of the genome only affects the precision (i.e.
the estimation variance) of summary statistics. Despite of the additional
correlation, computing summary statistics in cattle using the entire genome
(=~ 1,250 contiguous 2Mb-long segments) likely resulted in a higher precision,
and thus in a more acurate estimation, than using a subset of 100 independent
2Mb-long segments.

Analyzing real data sets with our approach presents several important
advantages. First, our approach is designed to be applied to totally unphased
data. Indeed, AFS statistics are deduced from the allele frequencies at all
SNPs, which can be computed directly from genotypes. LD statistics are
also computed from genotypes, although the common practice in population
genetics is to compute them from haplotypes. LD statistics computed from
genotypes are not identical to LD statistics computed from haplotypes, but
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they lead to similar estimations of population sizes. As observed in the
analysis of the cattle data (Fig. , phasing errors can have dramatic effects
on the estimated histories, and they would certainly affect the inference for
all populations where the experimental design prevents from phasing the
data with high accuracy. Moreover, the SNP data handled by our method
can be unpolarized, i.e. it is not necessary to know which of the alleles at
a given SNP is ancestral. Using polarized data would probably improve
the estimations, as this would allow computing the unfolded rather than
folded AFS. However, inferring ancestral alleles is not always possible and is
prone to errors, so we chose to focus on statistics computable for all datasets.
Finally, based on the analysis of NGS data in cattle, we showed that our
approach can easily be made robust to sequencing errors by computing
summary statistics only from SNPs with common alleles (MAF > 10 or
20%, Fig. . This modification is expected to increase the population size
prediction errors and the width of credible intervals if the dataset contains
no sequencing errors , but this seems by far preferable to the large
biases caused by sequencing errors, as illustrated by our study and several
previous ones [9}/12].

One consequence of sequencing errors is to create wrong SNP calls
in the data, at genomic positions where the observed sample is actually
not polymorphic. Because these wrong SNPs are generally associated to
low frequency alleles, focusing on SNPs with common alleles reduces the
proportion of wrong SNPs in the data, and consequently their influence on
summary statistics. In our application to cattle NGS data, this strategy
was efficient because wrong SNP calls were the only detectable effect of
sequencing errors on the data. In particular, genotyping errors at true SNP
calls had no impact on the summary statistics, as shown by the perfect
match between summary statistics computed from NGS data or genotyping
data at the 800K chip positions . Indeed, NGS genotypes had been
corrected by imputation, taking advantage of the large sample size and / or
sequencing depth within each breed [40]. As this might not be the case in all
data sets, other strategies could be applied to correct for sequencing errors,
while keeping the main idea of an ABC approach based on AFS and LD
statistics. For instance, one could simulate NGS data with the same coverage
and error rates as the observed data, rather than perfect genotype data,
and compute observed and summary statistics directly from raw NGS data,
using dedicated algorithms that account for the uncertainty of genotype calls.
Such algorithms are available both for AFS [55] and LD statistics [56], which
is another advantage of using these standard summary statistics. However,
this strategy would be much more computationally demanding than the one
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we used here.

Contribution to the demographic history of cattle

Until recently, effective population size estimations in cattle, and more gen-
erally in all livestock species, were mostly based on two approaches. The
first approach focuses on the few most recent generations and estimates pop-
ulation size from the increase of inbreeding or coancestry along generations,
based on pedigree or molecular information [17-19]. Using this approach,
population size estimations from around 50 animals in Holstein to around 150
animals in Simental (closely related to Fleckvieh) were obtained |19]. These
estimated populations sizes are qualitatively consistent with ours, as we
estimated that the recent population size in Fleckvieh was about three fold
larger than in Holstein, but the actual values obtained with these approaches
were substantially lower than our estimates (790 in Holstein and 2,220 in
Fleckvieh). This may partly be due to the small bias observed with our
approach in the simulated decline scenario, using either the median (Fig. [3))
or the mode (S10 Fig) of the posterior distribution as point estimation. But
it is also important to mention that the animals sequenced in the 1,000 bull
genomes project were chosen among key ancestors of the breed, so the most
recent population size estimated in our study might reflect the population
size a few generations ago rather than the current one. This could partly
explain the discrepancy between the estimates, because artificial selection
has been particularly intensive within the few last generations, leading to a
further decline of effective population size.

The second approach is based on the average 72 over different bins of
genetical distance [26,47], which has been already mentioned earlier in the
discussion. It aims at estimating population size on a much larger time scale
and has been extensively applied in cattle [41,/57,58] and other livestock
species [59]. Indeed, a very large number of animals have been genotyped
using SNP chips in these species, sometimes for other purposes, such as QTL
detection, and used for LD estimation. In addition to the methodological
issues related to this approach, the use of SNP chip data for population size
estimation presents its own limitations. The ascertainment bias associated to
SNP chip data does not only influence AFS statistics but also LD statistics,
which in turn affects population size estimation. This is outlined by the fact
that our ABC approach based only on LD summary statistics infers different
population size histories when these statistics are computed from all the
SNPs found by NGS, or only from those that overlap with the 800K chip
. Regrettably, this influence of ascertainment bias on population size
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estimations obtained from LD statistics is generally not accounted for by the
studies using LD. Besides, considering LD alone leads to a different prediction
than considering LD and AFS together , and our simulation results
suggest that the former prediction is less reliable. Overall, the use of NGS
data, and of dedicated inference approaches taking advantage of these data,
should thus considerably improve our understanding of livestock evolutionary
history, at least above 600 generations (3,000 years in cattle) BP (S30 Fig)).

To our knowledge, the first (and so far the only) estimation of population
size history in cattle based on NGS data was obtained by [12]. This result was
based on the distribution of IBS segment length in one Australian Holstein
bull sequenced at 13X coverage. The overall histories found in this study
and in ours are quite consistent, as they both exhibit a strong decline of
population size from about 20,000 years BP to the very recent past, but
our estimations of population size are generally larger. For instance the
population size before this decrease was around 20,000 in their study and
around 50,000 in ours, and the population size 1,000 years ago was around
2,000 in their study and around 4,000 in ours. Although the most obvious
difference between the two approaches is that they use different summary
statistics, ABC estimations obtained from IBS statistics rather lead to larger
or equal population sizes than those obtained from AFS and LD statistics
(S31 Fig). Thus, we think that the difference between our estimation and that
in [12] more likely comes from a difference in the recombination rate. This
rate is set to le-8 per generation and per bp in [12], while our approach would
rather provide an estimation around 4e-9. Assuming that our estimation
is correct, the overestimation of r by a factor two in [12] could lead to an
underestimation of N by the same factor, because one essential parameter
determining the IBS segment length distribution is the scaled recombination
rate 2Nr. Further work will be needed to better understand the difference
between the two estimations.

Perspectives

Our ABC approach, as well as other SMC [9,/10] or IBS based methods [12],
assumes that the considered population has evolved forever as an isolated
population. This is obviously a strong hypothesis: for instance the cattle
breeds considered here have actually diverged from a common ancestral
population. Several studies have demonstrated that population structure can
leave genomic signatures similar to those of population size changes, even if
each of the subpopulations is actually of constant size [60-64]. Consequently,
population size histories estimated by single population approaches should
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be interpreted with caution. However, we anticipate that our study will
pave the way for future approaches inferring population size histories jointly
in multiple populations, while accounting for the history of divergences
and migrations in these populations. ABC represents a perfect framework
for developing such approaches, because of the flexibility offered by the
simulation procedure. It is already widely used in population genetics for
estimating parameters in multiple population models including for instance
admixture events and some population size changes [65]. Besides, previous
studies showed that structured models and population size change models
can be distinguished using ABC [61].

In this study, the flexibility offered by ABC allowed us to infer parameters
under the true coalescent with mutation and recombination, rather than
under the SMC approximation as in [9}/10,/54]. One could actually go much
further and relax also the hypotheses of the Kingman’s (1982) coalescent.
For instance in cattle, genealogies in the most recent generations are highly
unbalanced, because a few bulls with outstanding genetic values have been
used to produce thousands of offsprings through artificial insemination. Such
genealogies are not consistent with the Kingman’s coalescent, but specific
algorithms combining the Kingman’s coalescent with a few generations of
forward-in-time simulations could certainly be implemented and used to
perform ABC estimations in this context.

Methods

The ABC approach

Assume we observe a dataset D, from which we want to estimate the param-
eters 0 of a given model. In a Bayesian framework, this involves computing
the posterior probability P(6 | D) for any possible parameter value. In many
situations, and in particular in population genetics, this posterior cannot
be derived because of the model complexity and even numerical evaluations
are impossible due to the high dimensionality of the observed data space.
The idea of ABC [20] is to replace in this context the full dataset D by a
vector of summary statistics S capturing most information contained in the
data and to estimate model parameters based on the approximate posterior
P(0 | S). The estimating procedure consists in sampling a very large number
of parameter values from a prior distribution, simulating datasets from these
parameter values, and accepting the parameter values leading to summary
statistics that are sufficiently similar to those of the observed dataset.
Several strategies can then be used to estimate the posterior distribution.
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The easiest one, called rejection, is to compute the empirical distribution of
the accepted parameter values. To account for the imperfect match between
accepted and observed summary statistics, accepted parameter values can
also be adjusted by various regression methods, using the associated summary
statistics as explanatory variables. The general idea of these methods is to
assume a local regression model in the vicinity of S, with an equation of the
form

O = m(Sk) + e (2)

where 0}, is the value of parameter 6 in the kth simulated sample, Sy is the
vector of summary statistics in this sample, m() is a regression function
varying between approaches, and ¢ is a random noise. This model is fitted
using all accepted samples. Adjusted parameter values are then obtained by

O = m(S) + é

where m is the estimated regression function and € is the empirical noise, and
the posterior distribution is finally computed as the empirical distribution
of these adjusted values. A general review on these aspects can be found
in [46].

Model and priors

Here the observed data D is a set of n diploid genomes sampled from a single
panmictic population, and the model assumed to have generated these data
is the coalescent with mutation and recombination [16]. We assume that
effective population size varied according to a piecewise constant process.
Following [9,/10], we considered a fixed number of time windows, whose size
increased exponentially from recent to old periods. More precisely, we used
I = 21 windows of the form [t;, t;11[, where t; = exp(log(1 +aT)i/(I — 1)) —
1)/a generations BP for i from 0 to I — 1, with 7" = 130,000 and a = 0.06,
and t; = 4+o0o. These specific values of T and a were chosen to capture
important periods of cattle history. Modifying T" would allow population size
changes to occur on a longer or shorter period in the past, and modifying a
would allow to describe more precisely one specific part of the history, playing
on the ratio between the length of recent versus old time windows. With our
parametrization, the most recent time window ranged from present to 10
generations BP, the second most recent ranged from 10 to 25 generations
BP, ... the second oldest ranged from 83,000 to 130,000 generations BP and
the oldest included all generations above 130,000 generations BP.

The parameters of this model are the population sizes IN; for ¢ from 0 to
I —1, the per generation per site recombination rate r and the per generation
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per site mutation rate p. Prior distributions for the population sizes were
taken uniform in the log 10 scale, from 10 to 100,000. In order to avoid
unrealistic trajectories, we also set that the ratio of population sizes between
two consecutive time windows could not exceed 10. In practice, we thus
sampled log;,(Np) uniformly between 1 and 5, and iteratively computed
logo(N;) = max(min(logo(N;—1) + «@,5),1), with a sampled uniformly
between -1 and 1. For the recombination rate, we used an uniform prior
between le-9 and le-8, consistent with recent estimations in cattle [66]. For
the mutation rate we considered a fixed value, in order to compare our
estimation approach with other recent ones making the same hypothesis
19,/10,|12], but it would be straightforward to use a prior distribution instead.
This value was taken equal to le-8, as in [12].

Summary statistics

We summarized each sample of n diploid genomes using a combination of
statistics related to the allele frequency spectrum (AFS) and the average
linkage disequilibrium (LD) over the genome. AFS statistics included the
overall proportion of polymorphic sites over the genome (one statistic) and,
among these polymorphic sites, the proportion of those with 7 copies of
the minor allele, for ¢ from 1 to n (n statistics). LD statistics included the
average 72 over 18 different sets of SNP pairs (18 statistics), where each set
was characterized by a different physical distance between SNPs. Indeed, the
expected value of r? between two SNPs at genetic distance c is related to the
population size 1/2¢ generations BP [26]. Thus, for each of the time windows
of our model, we computed 72 for SNP pairs whose physical distance would
approximately correspond to a genetic distance of 1/2t (£ 5%), where ¢t was
the middle of the window, assuming a recombination rate of 1.0 cM/Mb
. For the two most recent windows, the physical distance between SNPs
derived from this formula was larger than 2Mb, which could not be achieved
in our simulations (see below). We thus considered only 19 statistics out of
21 windows, corresponding to distances between SNPs going from 282 bp to
1.4 Mb. We further dropped the LD statistic corresponding to a distance of
282 bp, both in the simulation study and in the real data analysis, because
with our cattle data (described below) it had a strikingly low value, which
was likely due to a technical problem related to the sequencing, the calling
or the accuracy of the assembly. Consequently, the smallest distance bin
used in our study was finally equal to 470 bp. This is specific to our study
and smaller distances might be used in future studies. By default, the r?
computed between two SNPs was the zygotic LD, i.e. the correlation between
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the vectors of n genotypes observed at the two SNPs [67]. But for some
comparative analyzes we also calculated the well-known gametic LD, where
the correlation is computed between the two vectors of 2n alleles observed
at the two SNPs. Note that this second option is only possible for haploid
or phased data.

In many situations, we computed these summary statistics only from SNPs
above a given minor allele frequency (MAF) threshold, whose value could
differ between AFS and LD statistics. For a MAF threshold corresponding
to ¢ copies of the minor allele, the overall proportion of SNPs was changed to
the overall proportion of SNPs with more than ¢ copies of the minor allele,
and all other proportions in the AFS were computed relative to SNPs with
more than ¢ copies of the minor allele. Overall, only n + 2 — ¢ statistics were
available in this case, instead of n + 1 without MAF threshold. In contrast,
the number of LD statistics was not affected by the MAF threshold.

In a few specific analyses, we also computed summary statistics related
to the distribution of IBS segment length. We summarized this distribution
by a set of 11 quantiles, from 0.0001 to 1 — 0.0001.

Implementation

We simulated 250,000 samples of 100 haploid genomes using ms [68], with
parameters sampled from the priors described above. We chose this soft-
ware because it allows simulating the exact coalescent with mutation and
recombination, but faster algorithms based on approximations of this model
could be used in future studies. For computational reasons, each haploid
genome included only 100 independent 2Mb-long long segments. From each
simulated sample of 100 haploid genomes, five different samples of n diploid
genomes were created, for n equal to 10, 15, 20, 25 and 50. Each of these
samples was created by choosing at random 2n haploid genomes among 100
(without replacement). In addition, 200,000 samples of 25 diploid genomes
were simulated directly from ms samples of 50 haploid genomes. Thus, ABC
analyses focusing on a sample size of 25 diploid genomes were based on
450,000 simulated samples (unless specified), while analyses involving other
sample sizes were based on 250,000 simulated samples.

For the real data set, a total of 234 phased bull genomes were obtained
from the 1,000 bull genomes project, Run II [40]. These included 129 Holstein
(125 Black and 4 Red), 43 Fleckvieh, 47 Angus and 15 Jersey animals.
Holstein animals came from various flocks with distinct geographical origins.
In order to study homogeneous groups, we thus focused on the 52 Holstein
animals from Australia (other geographical origins had significantly lower
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sample sizes). We further selected 25 unrelated animals within each breed
with the following procedure: first, we removed all animals that were either
extremely inbred or extremely related to another sampled animal, based
on the genomic relationship matrix computed from GCTA [69]. Then, we
sampled 25 animals at random among the remaining ones. For the Jersey
breed, as only 15 animals were available and as they were found to be all
unrelated to each other, we kept them all.

The summary statistics described above were computed using the same
python script for both simulated and cattle samples. Since the length of
cattle chromosomes was much larger than that of simulated segments (2Mb),
we first cut each cattle chromosome into consecutive but non-overlapping
2Mb-long segments. To keep the approach computationally efficient, the
average LD for a given distance bin was not evaluated from all SNP pairs
satisfying the distance condition, but from a random subset of these pairs.
This subset was selected by an iterative search along each 2Mb-long region,
so that intervals defined by all SNP pairs did not overlap.

With the default parameter values described above, simulating 100 ge-
nomic samples and computing all summary statistics for these samples took
approximately three hours on a standard computer, using a single core. Using
200 cores in parallel on a computing cluster, we could obtain 450,000 samples
of summary statistics in less than 48 hours.

The final ABC estimation, based on the comparison of the simulated and
observed summary statistics, was performed in R using the package abe [70].
By default, we accepted simulated samples with a tolerance rate of 0.005 and
adjusted accepted values by a neural network regression approach [32]. This
approach allows to reduce the dimension of the set of summary statistics and
accounts for the non-linearity of the regression function m linking parameters
and statistics (Eq. ) Neural network regression was applied with the
default parameter values of the function abe, except for the final analysis
of all cattle breeds where 100 (instead of 10) neural networks were fitted in
order to get more stable estimations. For each parameter, a point estimate
was obtained by taking the median of the posterior distribution. Variations
from this default strategy were also tried, as mentioned in the results section.
In particular, we also estimated posterior distributions using rejection or
ridge regression [33], using the default values implemented in the abe package.

Cross validation analyzes

We evaluated the performance of ABC using several subsets of summary
statistics and several choices of MAF threshold, sample size, estimation
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approach, or tolerance. For each specific combination of these parameters,
we conducted a cross validation study based on K = 2000 simulated samples,
using the R function cvabc. The prediction error (PE) associated to a given
parameter value 6 was computed as (1/K)( z(flo(ék —0%)?)/var(), where 07
is the true value of 0 in the kth simulated sample, ék. is the point estimation
of this value provided by ABC, and var(#) is the prior variance of . With
this scaling, estimating 0 from the prior distribution of § would result in a
PE of 1.

Similarly, the estimation bias for # was computed as (1/K) i(flo (0, —05),
and the empirical coverage of the 90% credible interval was evaluated by
(1/K) 32320 Uqro(0k) < 0f < goo(6r)), where qio(0)) and qoo(0x) are the
5% and 95% quantiles of the posterior distribution of i, and 1(C) is the
indicative function equal to 1 if condition C is satisfied and 0 otherwise.

When computing these metrics for the population size IV in a given time
window, we focused on parameter 6 = log;y(/V) rather than § = N. Without
this rescaling, PEs and biases would only reflect the estimation accuracy
for large populations, while estimation errors concerning small populations
would be masked.

Rescaling time from generations to coalescent units

Considering a population with variable population size, let N(t) be the
haploid population size at generation ¢ and 7 = % be a rescaling of time
in N(0) units. In this time scale, the history of population size changes is

summarized by the function :

It can be shown [71] that the genealogical process of a sample of size n from
this population, and in particular the joint distribution of all coalescence
times, is identical to the genealogical process of a sample of size n in a
constant size population where time would be rescaled by the function

T 1
A(T):/O Taz)dw

Consequently, all variable population size histories can be related to the
classical Kingman’s coalescent. In this process, the expected TMRCE in a
sample of size n is ﬁ and the expected TMRCA is 2(1 — 1/n).

In[S2 Fig| the PE obtained in time window [¢;, ;+1[ for a given population

size history was allocated to the rescaled interval [u;,u;+1][. Applying the
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equations above to the specific situation of a piecewise constant population
size process, u; was computed as

k=0

with 7, = ;Tko and fr = %—’g PE were then averaged over histories, for
several values of u between le-5 and 100. Note that Ny is the haploid
population size here, while the population sizes mentioned anywhere else in

this paper are always diploid population sizes. We used 1, = ;Tk(J’ instead of

the classical 7, = J%ko mentioned above, in order to get an expected TMRCA

approximately equal to 1 (rather than 2) for large samples, which facilitates

the reading of

Additional simulated datasets

Twenty scenarios with fixed population size history were considered for
validation, see Fig. [SI1 Figl [S13 Figl and [S14 Figl For each of these
scenarios, 20 PODs were simulated. Each of them included 25 diploid genomes
and 500 independent 2Mb-long segments. Population size parameters were
the same in all 20 replicates of each scenario, and the per site recombination
rate was also constant and equal to 5e-9.

Comparison of summary statistics obtained from NGS and
genotyping data

For 12 of the 129 Holstein bulls considered in this study, genotypes on the
800K Illumina bovine SNP chip were obtained from the Gembal project [72].
Among the 708,771 SNPs retained in this study after quality control, 562,746
were polymorphic among the 12 bulls considered here. These SNPs were
used to compute the polymorphic site AFS and the LD summary statistics
from genotyping data. The rate of false negative SNPs in the NGS data was
estimated by the proportion of these 562,746 positions for which no SNP
was called from the NGS data. Similarly, the rate of false positive SNPs in
these NGS data was estimated by considering the 145,978 SNP positions
that were found monomorphic with the 800K genotypes, and computing the
proportion of these positions where a SNP was called in the NGS data.
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Software and data availability

Python and R scripts for the PopSize ABC method can be found at https://forge-
dga.jouy.inra.fr/projects/popsizeabc/. Simulated and observed summary
statistics used in this study are also provided on this web page.
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Figure 1: Optimization of ABC procedure: Prediction error (left
panel) and bias (right panel) for the estimated population size in each
time window, evaluated from 2,000 random population size histories (see
Methods). Summary statistics considered in the ABC analysis were (i) the
AFS and (ii) the average zygotic LD for several distance bins. These statistics
were computed from n = 25 diploid individuals, using all SNPs for AFS
statistics and SNPs with a MAF above 20% for LD statistics. The posterior
distribution of each parameter was obtained by rejection, ridge regression [33]
or neural network regression [32]. The tolerance rate used for each of these
approaches was the one providing the lowest prediction errors, for different
values from 0.001 to 0.05. Population size point estimates were obtained
from the median or the mode of the posterior distribution. The prediction
errors were scaled in order that point estimates obtained from the prior
distribution would result in a prediction error of 1.
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Figure 2: Accuracy of ABC estimation and relative importance of
the summary statistics: Prediction error for the estimated population
size in each time window (left) and standard deviation of this error (right),
evaluated from 2,000 random population size histories. Summary statistics
considered in the ABC analysis included different combinations of (i) the
AFS (possibly without the overall proportion of SNPs) and (ii) the average
zygotic LD for several distance bins. These statistics were computed from
n = 25 diploid individuals, using all SNPs for AFS statistics and only those
with a MAF above 20% for LD statistics. The posterior distribution of each
parameter was obtained by neural network regression [32], with a tolerance
rate of 0.005. Population size point estimates correspond to the median
of the posterior distribution. The prediction errors were scaled in order
that point estimates obtained from the prior distribution would result in a
prediction error of 1.
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Figure 3: Estimation of population size history using ABC in six
different simulated scenarios: a small constant population size (N = 500,
top left), a large constant population size (N = 50,000, top right), a decline
scenario mimicking the population size history in Holstein cattle (middle left),
an expansion scenario mimicking the population size history in CEU human
(middle right), a scenario with one expansion followed by one bottleneck
(bottom left) and a zigzag scenario similar to that used in [10] (bottom
right), with one expansion followed by two bottlenecks. For each scenario,
the true population size history is shown by the dotted black line, the average
estimated history over 20 PODs is shown by the solid black line, the estimated
histories for five random PODs are shown by solid colored lines, and the
90% credible interval for one of these PODs is shown by the dotted red lines.
The expected time to the most recent common ancestor (TMRCA) of the
sample, E[T'M RC A], is indicated by the vertical dotted black line. Summary
statistics considered in the ABC analysis were (i) the AFS and (ii) the average
zygotic LD for several distance bins. These statistics were computed from
n = 25 diploid individuals, using all GNPs for AFS statistics and SNPs with
a MAF above 20% for LD statistics. The posterior distribution of each
parameter was obtained by neural network regression [32], with a tolerance
rate of 0.005. Population size point estimates were obtained from the median
of the posterior distribution.
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Figure 4: Estimation of population size history using MSMC with
two haplotypes in five different simulated scenarios: For each sce-
nario, the five PODs considered for MSMC estimation were the same as in
Fig. Bl The expected TMRCA shown here is also the same as in Fig. [3 it
corresponds to samples of 50 haploid sequences.
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Figure 5: Influence of phasing and sequencing errors on ABC esti-
mation: Estimation of population size history in the Holstein cattle breed
using ABC, based on whole genome NGS data from n = 25 animals. Sum-
mary statistics considered in the ABC analysis were (i) the AFS and (ii) the
average LD for several distance bins. LD statistics were computed either from
haplotypes or from genotypes, using SNPs with a MAF above 20%. AFS
statistics were computed using either all SNPs or SNPs with a MAF above
10 or 20%. The posterior distribution of each parameter was obtained by
neural network regression [32], with a tolerance rate of 0.005. Population size
point estimates were obtained from the median of the posterior distribution.
Generation time was assumed to be five years.
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Figure 6: Estimation of population size history in four cattle breeds
using ABC: Angus (n = 25 animals), Fleckvieh (n = 25), Holstein (n = 25)
and Jersey (n = 15). Estimations were obtained independently in each breed,
based on whole genome NGS data from sampled animals. Summary statistics
considered in the ABC analysis were (i) the AFS and (ii) the average zygotic
LD for several distance bins. These statistics were computed using SNPs
with a MAF above 20%. Other parameter settings are the same as in Fig.
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Figure 7: Comparison of summary statistics for the estimation of
population size history in three scenarios: “bottleneckl recent small*
(top), “bottleneck cattle middle age* (middle) and “zigzag small“ (bottom).
Summary statistics considered in the ABC analysis were either the AFS
statistics alone (left column), the LD statistics alone (middle column), or
the AFS and LD statistics together (right column). All other settings are
similar to Fig. [3] as well as the legend.
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Supporting Information

S1 Fig

Accuracy of credible intervals obtained by ABC: Empirical coverage
(left) and width (right) of the 90% credible interval for the population
size in each time window. The empirical coverage is the proportion of
simulated histories for which the true population size was included in the
90% credible interval of the posterior distribution. If the posterior distribution
was correctly estimated, this proportion should have been 90%, as shown by
the black horizontal solid line. Parameter settings were the same as in Fig.

otk

S2 Fig

Accuracy of ABC estimation along the coalescent process: Predic-
tion error for the estimated population size when time is measured in units
of the expected time to the most recent common ancestor (TMRCA) of the
sample. Prediction errors were evaluated from 2,000 random population
size histories. Black vertical dotted lines indicate the expected time to the
most recent coalescence event, E[T'M RCE], and the expected TMRCA,
E[TMRCA]. Summary statistics considered in the ABC analysis were (i)
the AFS and (ii) the average zygotic LD for several distance bins. These
statistics were computed from n = 25 diploid individuals, using all SNPs
for AFS statistics and SNPs with a MAF above 20% for LD statistics. The
posterior distribution of each parameter was obtained by neural network
regression |32], with a tolerance rate of 0.005. Population size point estimates
correspond to the median of the posterior distribution.

S3 Fig

Accuracy of credible intervals obtained by ABC and relative im-
portance of the summary statistics: Empirical coverage (left) and width
(right) of the 90% credible interval for the population size in each time win-
dow. Parameter settings were the same as in Fig. 2. The very large credible
intervals obtained on average with AFS statistics, in some time windows, are
due to a retalively small number of PODs with extreme values.
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S4 Fig

Accuracy of ABC estimation based on LD summary statistics: Pre-
diction error for the estimated population size in each time window, evaluated
from 2,000 random population size histories. Summary statistics considered
in the ABC analysis were the average gametic LD (triangles) or the average
zygotic LD (circles) for several distance bins. These statistics were computed
from n = 25 diploid individuals, using different MAF thresholds. Other
parameter settings were the same as in Fig.

S5 Fig

Influence of the number of simulated data sets on ABC estima-
tion: Top: Prediction error for the estimated population size in each time
window (left) and standard deviation of this error (right). Bottom : Em-
pirical coverage (left) and width (right) of the 90% credible interval for the
population size in each time window. These quantiles were evaluated from
2,000 random population size histories. For each of these histories, one POD
of n = 25 diploid genomes was simulated, where each genome consisted in 100
independent 2Mb-long segments. Population size history was estimated from
this POD by ABC, for various numbers of simulated datasets (see the legend)
with the same sample size (n = 25) and genome length (100 independent
2MB segments). Summary statistics considered in the ABC analysis were
(i) the AFS and (ii) the average zygotic LD for several distance bins. AFS
statistics were computed using all SNPs and LD statistics were computed
using SNPs with a MAF above 20%. The posterior distribution of each
parameter was obtained by neural network regression, with the tolerance
rate leading to the smallest prediction error. Population size point estimates
were obtained from the median of the posterior distribution.

S6 Fig

Influence of the genome length of simulated and observed data sets
on ABC estimation: Top: Prediction error for the estimated population
size in each time window (left) and standard deviation of this error (right).
Bottom : Empirical coverage (left) and width (right) of the 90% credible
interval for the population size in each time window. These quantiles were
evaluated from 2,000 random population size histories. For each of these
histories, one POD of n = 25 diploid genomes was simulated, where each
genome consisted in 10, 50 or 100 independent 2Mb-long segments (see the
legend). Population size history was estimated from this POD by ABC, using
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450,000 simulated datasets with the same sample size (n = 25) and genome
length. The posterior distribution of each parameter was obtained by neural
network regression, with a tolerance rate of 0.005. All other settings are

similar to

S7 Fig

Using different genome lengths for simulated and observed data
sets: Top: Prediction error for the estimated population size in each time
window (left) and standard deviation of this error (right). Bottom : Em-
pirical coverage (left) and width (right) of the 90% credible interval for the
population size in each time window. These quantiles were evaluated from
2,000 random population size histories. For each of these histories, one POD
of n = 25 diploid genomes was simulated, where each genome consisted
in 10 or 100 independent 2Mb-long segments (see the legend). Population
size history was estimated from this POD by ABC, using 450,000 simulated
datasets with the same sample size (n = 25) but a possibly different genome
length (see the legend). The posterior distribution of each parameter was
obtained by neural network regression, with a tolerance rate of 0.005. All

other settings are similar to

S8 Fig

Influence of the sample size on ABC estimation: Top: Prediction
error for the estimated population size in each time window (left) and
standard deviation of this error (right). Bottom : Empirical coverage (left)
and width (right) of the 90% credible interval for the population size in each
time window. These quantiles were evaluated from 2,000 random population
size histories. For each of these histories, one POD of n diploid genomes
was simulated, for different values of n between 10 and 50 (see the legend).
Each genome consisted in 100 independent 2Mb-long segments. Population
size history was estimated from this POD by ABC, using 450,000 simulated
datasets with the same sample size and genome length. All other settings

are similar to

S9 Fig

Influence of MAF threshold on ABC estimation: Top: Prediction
error for the estimated population size in each time window (left) and
standard deviation of this error (right). Middle : Bias for the estimated
population size in each time window. Bottom : Empirical coverage (left) and
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width (right) of the 90% credible interval for the population size in each time
window. These quantiles were evaluated from 2,000 random population size
histories. For each of these histories, one POD of n = 25 diploid genomes
was simulated, where each genome consisted in 100 independent 2Mb-long
segments. Population size history was estimated from this POD by ABC,
using 450,000 simulated datasets with the same sample size and genome
length. Summary statistics considered in the ABC analysis were (i) the AFS
and (ii) the average zygotic LD for several distance bins. AFS statistics
were computed using different MAF thresholds, LD statistics were computed
from SNPs with a MAF above 20%. The posterior distribution of each
parameter was obtained by neural network regression, with a tolerance rate
of 0.005. Population size point estimates were obtained from the median of
the posterior distribution.

S10 Fig

Estimation of population size history from the mode of the poste-
rior distribution in six different simulated scenarios: All settings are
similar to Fig. [3| except that population size point estimates were obtained
from the mode of the posterior distribution.

S11 Fig

Estimation of population size history in the zigzag scenario and
five related scenarios: a scenario where all population sizes are divided
by ten compared to the original zigzag (“zigzag small“, top right), a scenario
where only the recent bottleneck of the original zigzag is simulated (“bot-
tleneckl recent large“, middle left), a scenario corresponding to the history
wrongly inferred by ABC based on data from the “bottleneckl recent large“
scenario (middle right), and two scenarios where only the recent (bottom
left) or the old (bottom right) bottleneck of the “zigzag small“ are simulated.
All settings are similar to Fig.

S12 Fig

Observed and best simulated summary statistics in the “bottle-
neckl recent large* scenario: For one of the five PODs analyzed in this
scenario, observed AFS (left) and LD (right) statistics are shown by green
full circles. The average value of these statistics over the five best simulated
data sets, i.e. the five simulated data sets leading to the smallest distance
between observed and simulated statistics, are shown by blue crosses. The
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variation of these statistics over the five best simulated data sets is also
indicated by blue dotted lines, which correspond to the average value plus
(or minus) twice the standard deviation of each statistic.

S13 Fig

Estimation of population size history in four scenarios including
a bottlenck followed by a population decline: Population size varied
between 60,000 and 6,000 individuals in the top panels, and between 6,000
and 600 individuals in the bottom panels. Population size changes occurred
between 2,300 and 50 generations BP in the left panels, and between 34,000
and 900 generations BP in the right panels. All settings are similar to Fig.
3]

S14 Fig

Estimation of population size history in the decline scenario and
five related scenarios: a sudden (rather than continuous) decline from
40,000 to 300 individuals occurring 200 generations BP (top right), a sud-
den decline from 40,000 to 300 individuals occurring 1,000 generations BP
(middle left), the same sudden decline followed by an expansion to 5,000
individuals occurring 580 generations BP (middle right) or an expansion to
1,000 individuals occurring 140 generations BP (bottom left), and a scenario
similar to the continuous decline (top left) but including a sudden decline
to 100 individuals between 230 and 140 generations BP, followed by an
expansion to 1,000 individuals (bottom right). All settings are similar to Fig.
Bl

S15 Fig

Estimation of past effective population size using MSMC with four
haplotypes in six different simulated scenarios: For each scenario, the
five PODs considered for MSMC estimation were the same as in Fig. [3} The
expected TMRCA shown here is also the same as in Fig. [3] it corresponds
to samples of 50 haploid sequences.

S16 Fig

Estimation of past effective population size using MSMC with
eight haplotypes in six different simulated scenarios: For each sce-
nario, the five PODs considered for MSMC estimation were the same as in
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Fig. Bl The expected TMRCA shown here is also the same as in Fig. [3] it
corresponds to samples of 50 haploid sequences.

S17 Fig

Estimation of past effective population size using MSMC with four
haplotypes in the decline scenario and five related scenarios: For
each scenario, the five PODs considered for MSMC estimation were the same

as in The expected TMRCA shown here is also the same as in
it corresponds to samples of 50 haploid sequences.

S18 Fig

Estimation of past effective population size using MSMC with
eight haplotypes in the decline scenario and five related scenarios:
For each scenario, the five PODs considered for MSMC estimation were the
same as in The expected TMRCA shown here is also the same as
in it corresponds to samples of 50 haploid sequences.

S19 Fig

Influence of phasing errors on MSMC estimation: Estimation of past
effective population size using MSMC with four haplotypes in the “small*
scenario (top), the “decline* scenario (middle) and the “expansion® scenario
(bottom). MSMC analyzes were run from perfectly phased data, phased data
with 1 or 10 switch errors per Mb and diploid individual, or unphased data
(i.e. two unphased diploid individuals). All other settings are similar to

S20 Fig

Comparison of summary statistics obtained from NGS and geno-
typing data: polymorphic site AFS, i.e. without the overall proportion of
SNPs (left), average gametic LD (middle) and average zygotic LD (right).
These statistics were computed from 12 Holstein animals for which both
NGS data and genotyping data were available, using only SNP positions
from the 800K chip (even for the NGS data statistics). No MAF threshold
was used.
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S21 Fig

False positive and false negative rates of SNP detection in the
1,000 bull genomes project: Error rates were computed from 12 Holstein
animals for which both NGS data and genotyping data were available. False
positive SNPs were positions that were found polymorphic in the NGS data
but not in the 800K data. Their minor allele count in the NGS data was
called the wrong minor allele count. False negative SNPs were positions that
were found polymorphic in the 800K data but not in the NGS data. Their
minor allele count in the 800K data was called the true minor allele count.

S22 Fig

Estimation of population size history using ABC without rare
SNPs in five different simulated scenarios: All settings are similar
to Fig. [ except that AFS statistics were computed only from SNPs with a
MAF above 20%.

S23 Fig

Ninety percent credible intervals of estimated population size his-
tory in four cattle breeds: Holstein (top left), Angus (top right), Fleckvieh
(bottom left) and Jersey (bottom right). Parameter settings are the same as

in Fig. [6]

S24 Fig

Predictive posterior check of the population size history estimated
in the Holstein cattle breed (Fig. @: Ten thousand genomic samples
were simulated under population size histories that were sampled from the
posterior distribution estimated in Fig. [6] Four combinations of summary
statistics were computed from each sample: AFS and LD statistics (top left),
AFS statistics alone (top right), LD statistics alone (bottom left) and IBS
statistics (bottom right, see the Methods for a detailed description of these
statistics). For each of these combinations, a principal component analysis
(PCA) of the 10,000 simulated samples was performed: the projection of
all samples on the two first dimensions of this PCA are plotted in black.
The vector of summary statistics observed in Holstein was then projected on
the same hyperplan. It always fell within the cloud of simulated summary
statistics, which shows that the estimated history is able to reproduce
summary statistics that are indeed similar to the observed ones. Interestingly,
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this also holds for IBS statistics, which were not used for the estimation.
Results are shown for the Holstein breed but they were similar for the other
breeds.

S25 Fig

Observed and best simulated summary statistics in the Holstein
cattle breed: Observed AFS (left) and LD (right) statistics are shown by
green full circles. The average value of these statistics over the five best
simulated data sets, i.e. the five simulated data sets leading to the smallest
distance between observed and simulated statistics, are shown by blue crosses.
The variation of these statistics over the five best simulated data sets is also
indicated by blue dotted lines, which correspond to the average value plus
(or minus) twice the standard deviation of each statistic.

S26 Fig

Influence of population size changes on LD statistics: LD statistics
for several scenarios inplying a sudden expansion from 500 to 50,000 individ-
uals (left) or a sudden decline from 50,000 to 500 individuals (right). Several
expansion or decline times were considered, as well as two scenarios with a
constant population size of 500 or 50,000 individuals (see the legend). For
each scenario, LD statistics were averaged over 20 PODs including 25 diploid
genomes and 100 2Mb-long regions. In contrast with expansion scenarios,
some decline scenarios lead to even larger LD statistics than those obtained
for a constant small population. Indeed, as these declines are very old com-
pared to the expected TMRCA of a population of 500 individuals, their main
effect is to increase, at some loci, the time during which the sample has only
two ancestral lineages. Because this increase is very large (backward in time,
population size, and thus expected coalescence time, are suddenly multiplied
by 100), mutations occuring in this part of the coalescence tree eventually
represent a large proportion of all oberved polymorphic sites. Besides, for
two linked loci with similar topologies of the coalescence tree, mutations
occuring in this part of the tree lead to very high 72 values, up to 1 if the
topologies are exactly the same.

S27 Fig

Accuracy of ABC and relative importance of LD and AFS in dif-
ferent families of scenarios: Prediction error for the estimated population
size in each time window, focusing on scenarios with a population size below
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1,000 (top left), above 10,000 (top right), below 1,000 in the last 200 genera-
tions and above 10,000 for times more ancient than 13,000 generations BP
(bottom left) or above 10,000 in the last 200 generations and below 1,000
for times more ancient than 13,000 generations BP (bottom left). For the
two latter scenarios, the time window where population size goes from above
10,000 to below 1,000 (or vice versa) is delimited by vertical dotted lines.
For each scenario category, PE were evaluated from 2,000 random histories.
Summary statistics considered in the ABC analysis were either the AFS
statistics alone, the LD statistics alone or the AFS and LD statistics together
(see the legend). All other settings are similar to Fig. 2.

S28 Fig

Estimation of population size history using different ABC settings
in the “bottleneckl old large‘ scenario: Summary statistics considered
in the ABC analysis were either the AFS statistics alone (left column), the
LD statistics alone (middle column), or the AFS and LD statistics together
(right column). AFS statistics were computed using either all SNPs (top
panels) or only those with a MAF above 20% (bottom panels). All other
settings are similar to Fig.

S29 Fig

Accuracy of ABC estimation based on the distribution of IBS
segment lengths: Prediction error for the population size in each time
window, evaluated from 2,000 random population size histories. Summary
statistics considered in the ABC analysis included several combinations of
(i) the AFS, (ii) the average zygotic LD for several distance bins and (iii)
the distribution of IBS segment lengths within one diploid individual. These
statistics were computed from n = 25 diploid individuals, using all SNPs for
AFS and IBS statistics and SNPs with a MAF above 20% for LD statistics.
Other parameter settings are the same as in Fig.

S30 Fig

Added value of NGS for population size history estimation: Esti-
mation of population size history in the Holstein cattle breed using ABC,
based on whole genome NGS data from n = 25 animals. Summary statistics
considered in the ABC analysis included different combinations of (i) the
AFS and (ii) the average zygotic LD for several distance bins. These statistics
were computed either from the SNPs that are included in the 800K SNP
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chip or from all SNPs found in the NGS data. A MAF threshold of 20% was
used for all curves and statistics. Other parameter settings are the same as

in Fig. [{

S31 Fig

Population size history in Holstein using IBS statistics: Estimation
of population size history in the Holstein cattle breed using ABC, based on
whole genome NGS data from n = 25 animals. Summary statistics considered
in the ABC analysis were either both the AFS and the average zygotic LD
for several distance bins, or the distribution of IBS segment lengths within
one diploid individual. These statistics were computed using SNPs with a
MAF above 20%. Other parameter settings are the same as in Fig.
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