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Abstract

Using single-cell RNA-seq (scRNA-seq), the full transcriptome of individual cells can be acquired,
enabling a quantitative characterisation of cell-type based on expression profiles. Due to the large
variability in gene expression, assigning cells into groups based on the transcriptome remains
challenging. We present Single-Cell Consensus Clustering (SC3), a tool for unsupervised
clustering of scRNA-seq data. SC3 integrates many different clustering solutions through a
consensus approach, thereby increasing its accuracy and robustness against noise. Tests on
nine published datasets show that SC3 outperforms existing methods, yet SC3 remains scalable
for large datasets, as shown by the analysis of a dataset containing ~45,000 cells. To enhance the
accessibility to users with limited bioinformatics expertise, SC3 features an interactive graphical
implementation, which aids the biological interpretation by identifying marker genes, differentially
expressed genes and outlier cells. Finally, we apply SC3 to identify different subclones of
neoplastic cells in data collected from patients.
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Introduction

With the recent advent of single cell RNA-seq (scRNA-seq) technology, researchers are now able
to quantify the entire transcriptome of individual cells, opening up a wide spectrum of biological
applications. A key application of scRNA-seq is the ability to determine cell types based on the
transcriptome profile alone'=. The diversity of cell-types is a fundamental property of higher
eukaryotes. Traditionally, cell type was defined based on shape and morphological properties.
More recently, tools from molecular biology have enabled researchers to categorize cells based on
surface markers*®. However, morphology or a small number of marker proteins are not sufficient
to characterise complex cellular phenotypes. scRNA-seq makes it possible to group cells based
on their genome-wide transcriptome profiles, which is likely to provide a better representation of
the cellular phenotype. Indeed, several studies have already used scRNA-seq to identify novel
cell-types'3, demonstrating the potential to unravel and catalogue the full diversity of cells in the
human body.

Mathematically, the problem of de novo identification of cell-type from data may be seen as an
unsupervised clustering problem, i.e., how to separate cells into non-overlapping groups without a
priori information as to the number of groups or group labels. However, the lack of training data
renders this unsupervised clustering a hard problem, and for scRNA-seq the challenge is further
compounded by the fact that there are few reliable benchmarks for validation.

Although scRNA-seq is a relatively new technology, several groups have already developed
custom clustering methods for single cell data®®-'°. However, these clustering methods have
various shortcomings: (i) they have not been thoroughly benchmarked against one another or
against standard algorithms; (ii) it is not clear how they can be scaled to large datasets; (iii) there
is no interactive, user-friendly implementation that includes support to facilitate the biological
interpretation of the clusters; and (iv) the number of clusters, k, has to be fixed a priori by the user
and there is no support to explore different hierarchies of clusters. The last point is particularly
relevant when studying complex biological tissues as previous studies have found biologically
meaningful cell populations at several levels of granularity®'"'2. Thus, a clustering method should
enable the user to explore how the clusters change with k.

We present a novel interactive clustering tool for scRNA-seq data, SC3 (Single Cell Consensus
Clustering). SC3 obtains robust results by combining several well-established techniques using a
consensus clustering approach. We demonstrate the performance of SC3 by applying it to nine
published datasets and thoroughly benchmarking the method against four other methods. We
showcase the scalability of SC3 to very large datasets by analysing a dataset with ~45,000 cells®.
SC3 is implemented as an R-package with a graphical user interface, thus making it possible for
users with limited bioinformatics training to explore different clusterings in an interactive and
intuitive manner. In addition to providing cell clusters, SC3 facilitates their biological interpretation
by identifying marker genes, differentially expressed genes, outlier cells, and by providing an
integrated link to Gene Ontology analysis. To demonstrate how SC3 can be used to provide novel
biological insights, we analyse scRNA-seq data from two patients with a myeloproliferative
neoplasm. Strikingly, the clusters that we identify can be directly linked to subclonal populations
that were characterised through independent experiments.
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Results

Consensus clustering as a robust methodology underpinning SC3

The output of a scRNA-seq experiment is typically represented as an expression matrix (M)
consisting of g rows (corresponding to genes or transcripts) and N columns (corresponding to
cells). SC3 takes this expression matrix as its input. The SC3 algorithm consists of several steps:
a cell filter, a gene filter, distance calculations, nonlinear spectral transformations and k-means
clustering, followed by the consensus step (Fig. 1a, Methods). Note, in particular, that the distance
calculation reflects a change of coordinate space, as we go from the expression matrix (g x N) to
a cell-to-cell matrix (N x N). The nonlinear spectral transformation step of the distance matrix
retains the first d eigenvectors for clustering. Each of the above steps requires the specification of
a number of parameters, e.g. different metrics to calculate distances between the cells or the type
of nonlinear transformation. However, choosing optimal parameter values is difficult. To avoid this
problem, SC3 utilizes a parallelisation approach, whereby a significant subset of the parameter
space is evaluated simultaneously. The outcome of this strategy is a set of clusterings. Instead of
trying to pick one optimal solution from within this set, we combine all the different clustering
outcomes into a consensus matrix which summarises how often each pair of cells is located in the
same cluster. The final result provided by SC3 is a consensus cluster determined by
complete-linkage hierarchical clustering of the consensus matrix into k groups (Fig. 1b). Using this
approach, we can leverage the power of a plenitude of well-established methods, while
additionally gaining robustness against the particularities of any single method.

We first validated SC3 using eight publicly available scRNA-Seq datasets®''~"’, ranging from N =
80 to N = 3,005 cells (Fig. 1c). For each dataset, we used the clustering provided by the authors of
the original study as reference labels against which we compared the clusters obtained by SC3.
To quantify the discrepancy of clusterings, we use the Adjusted Rand Index (ARI, see Methods), a
normalised similarity index, ranging from 1 when the clusterings are identical to 0 when the
similarity is what one would expect by chance. In this study, we take 0.8 to indicate a good score.
A suitable set of methods and parameters to include within our consensus approach was obtained
by analysing four of the eight datasets (Fig. 1d). Interestingly, we found that clustering
performance was largely unaffected by the cell filter, and for different choices of gene filter,
distance metrics and spectral transformations, i.e., the ARI values were largely similar (Fig. 1d,
S1-S4). In contrast, we found that ARI was most sensitive to the number of eigenvectors, d,
retained after the spectral transformation: the ARI is low for small values of d, and then increases
to its maximum before dropping close to 0 as d approaches N/2. In particular, we find that the best
clusterings were achieved when d is between 4-7% of the number of cells, N (Methods). We
hypothesise that this range represents an optimal dimensionality reduction such that the technical
noise is minimized, and use this range of parameters within our consensus approach to narrow
down the parameter space to be explored. Strikingly, consensus clustering™ of the solutions
obtained in this range further improves the ARI (Fig. S5).

To benchmark SC3, we considered four other methods: tSNE followed by k-means clustering (a
method similar to those used by Griin et al' and Macosko et al®), pcaReduce’, SNN-CIlig® and
SINCERA'™. SC3 performs better than all of the other methods across all datasets, with the
exception of the Pollen1 dataset (Fig. 2). Furthermore, the higher ARI attained by SC3 comes at a
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moderate computational cost (Fig. S6): the run time for N = 1,000 is ~10 min, compared to ~1 min
for the other methods.

SC3 can be scaled to large datasets

The main computational bottleneck of SC3 is the calculation of the eigenvectors of the distance
matrix (which scales as O(N®))%. This scaling makes it impractical to use the original, simpler
version of SC3 described above for datasets with >10,000 cells.To allow SC3 to be applied to very
large datasets, we have implemented a hybrid approach which combines unsupervised and
supervised methodologies. When the number of cells is large (N > 1,000), SC3 selects 1,000 cells
uniformly at random, and clusters this subset as described above. Subsequently, the inferred
labels are used to train a support vector machine (SVM, Methods), which is used to assign labels
to the remaining cells. Training the SVM is fast, thus allowing SC3 to be applied to very large
datasets.

To test the SVM in isolation, we used all the validation datasets from Fig. 1c with the original
reference labels provided by the authors to train the SVM. Our results demonstrate that using
<20% of the cells for training it is possible to accurately predict the labels of the remaining cells
(Fig. 3a). Overall, the performance improves with higher N, and for the larger datasets, an ARI of
0.8 can be achieved with <10% of training cells. Using this approach enables us to analyse a large
Drop-Seq dataset that would otherwise be intractable (Macosko, N = 44,808, k = 39)°. For this
dataset we found that an ARI of 0.8 can be achieved by the SVM with only 3% of the cells used for
training.

Using the hybrid approach it is still possible to achieve an ARI > 0.8 with only 20% of the training
cells for the larger datasets (Klein and Zeisel, Fig. 3b). Interestingly, in the case of the Macosko
dataset our consensus clustering produces a result that is drastically different from the authors’.
Closer inspection of our results shows that SC3 does not identify cluster 24 (labelled as “Rods”)
with 29,400 cells®. This implies that the original large cluster 24 may be more heterogeneous than
suggested by the authors.

SC3 is implemented through an interactive and user-friendly interface

To increase its usability, SC3 features a graphical user interface displayed through a web browser,
thus minimising the need for bioinformatics expertise. The user is only required to provide the
input expression matrix and a range for the number of clusters, k, and SC3 will calculate the
possible clusterings for this range. Since the clustering is performed during startup, the user can
thus explore different choices of k in real-time. The outcome is presented graphically as a
consensus matrix to facilitate visual assessment of the clustering quality (Fig. 4b). The elements of
the consensus matrix represent a score, normalised between 0 and 1, indicating the fraction of
SC3 parameter combinations that assigned the two cells to the same cluster. By considering the
consensus scores within and between clusters, one may quickly assess the clustering quality by
visual inspection. Furthermore, to aid the user in the selection of k, SC3 also calculates the
silhouette index?', a measure of how tightly grouped the cells in the cluster are.
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SC3 assists with biological interpretation

A key aspect for evaluating the quality of the clustering, which cannot be captured by traditional
mathematical consistency criteria, is the biological interpretation of the clusters. To help the user
characterise the clusters, SC3 identifies differentially expressed genes, marker genes, and outlier
cells. By definition, differentially expressed genes differ between two or more clusters. To detect
such genes, SC3 employs the Kruskal-Wallis??> test (Methods) and reports the differentially
expressed genes across all clusters, sorted by p-value. In contrast, marker genes are highly
expressed in only one of the clusters and are selected based on their ability to distinguish one
cluster from the remaining ones (Fig. 4a). To select marker genes, SC3 uses a binary classifier
based on the ranked gene expressions to distinguish one cluster from all the others. For each
gene, a receiver operator characteristic (ROC) curve is then calculated to evaluate how well the
classifier identifies the cluster, and the genes are ranked by the area under the ROC curve. The
most significant candidates are then reported as marker genes. Cell outliers are identified by
calculating a score for each cell using the Minimum Covariance Determinant®3. Cells that fit well
into their clusters receive an outlier score of 0, whereas high values indicate that the cell should
be considered an outlier (Fig. 4d). The outlier score helps to identify cells that could correspond to,
e.g. rare cell-types or technical artifacts. Moreover, SC3 also makes it possible to obtain a gene
ontology analysis for each cluster by directly exporting the list of marker genes to WebGestalt?*. All
the results from SC3 can be saved to text files for further downstream analyses.

To illustrate the above features, we analysed the Deng dataset tracing embryonic developmental
stages, and clustered it into 10 groups as suggested in the original study'®. As shown in Fig. 4b,
our clusters largely agree with those obtained by the authors. We identified ~3000 marker genes
(Fig. 4c, Table S2). Characteristic genes for the zygote and 2-cell stages include Xpr1, EIf3, Cux2,
KIf6, Emp2, Krt8, Serpinb6a/6b, Fn1 and Pecam1. From 8-cell to blastocyst developmental
transition we found several Zscan subunits (Zscand4a, Zscandb, Zscan4c Zscan4dd, Zscan4f and
Zscan5f — 16-cell stage), Mad2l2, Krt28, Anxa2, Cyb5, Dppa1, Egfr, Eomes, 1d2, Lcp1, Mbnl3,
Snai1, Tcfap2a, Tspan8, KIf2, Hand1, Gdf9, Tcl1, Pabpc1l, Cryl1, Ddx4, 1110rb and lI6st (receptor
for 116, Lif, Osm, Cntf, 111, Ctf1 for blastocyst stages). In addition, we investigated several other
highly ranked marker genes by comparing to public repositories and publications®>2°, The analysis
revealed several genes specific to a developmental stage which had previously not been reported
(Table S2). Using the reference labels reported by the authors's, we identified nine cells with high
outlier scores (green cells in Fig. 4d). Further examination revealed that these nine cells were
prepared using the Smart-Seq2 protocol instead of the Smart-Seq protocol®'®, thus demonstrating
the ability of SC3 to identify technical outliers.

SC3 provides biological insights to clinically relevant patient sub-clones

Next, we applied SC3 to scRNA-seq data from two patients diagnosed with myeloproliferative
neoplasm (MPN), a group of diseases which reflects an early stage of tumorigenesis. MPNs are
predisposed to acute myeloid leukemia due to overproduction of cells from the myeloid lineage.
This chronic myeloid nature of MPNs is a result of mutations in haematopoietic stem cells (HSC).
MPNs are a clonal disease where several clones are able to coexist for long periods of time®.
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Each patient typically harbours multiple neoplastic subclones intermingled with normal blood cells,
thus presenting a severe challenge for data analysis.

We collected HSCs from both patients and for patient 1 we obtained scRNA-seq data for N = 85
cells and for patient 2 for N = 96. To characterise the samples, we first performed a separate
clustering of the single HSCs from the two patients. For patient 1, 35 of the cells showed little or
no expression for all genes and we thus hypothesise that they represent technical artifacts. Even
though these cells had enough reads to pass the quality control (Methods), closer inspection
revealed low diversity evidenced by the number of expressed genes (Fig. S16). The remaining 50
HSCs separated into three biologically meaningful distinct clusters (clusters 1-3 in Figs. 5a and
Methods). In contrast, SC3 found only one cluster for the 96 cells from patient 2 (Methods).

To gain further insight into the clusters, we used previously published information derived from
exome sequencing data®' to determine driver mutations for both patients. This analysis identified
one driver mutation in the Tet2 gene and one driver mutation in the Jak2V617F gene (Table S3).
To assess the clonal composition of each patient, single HSCs were cultured to give rise to
individual granulocyte/macrophage colonies, to which Sanger sequencing was applied to quantify
the prevalence of both driver mutations. Interestingly, we identified three genotypes for patient 1:
30% of the clones had no mutation, 50% of the clones harboured a Tet2 mutation, and 20% of the
clones carried both a Tet2 and a Jak2V617F mutation (Fig. 5b). This ratio is reflected in the
number of cells contributing to each of the three clusters identified by SC3 for patient 1 (Fig. 5a).
Moreover, all clones grown up for patient 2 carried both a Tet2 and a Jak2V617F mutation (Fig.
5b). Again, this is reflected in the single cluster obtained for this patient from the scRNA-seq data.
To compare both patients, we clustered all cells simultaneously (Fig. 5c). Strikingly, 10/11 cells
from cluster 3 in patient 1 are grouped with the cells from patient 2, whereas clusters 1 and 2 from
patient 1 remain separate. Thus, we hypothesise that cells in cluster 3 from patient 1 correspond
to the double mutant clone. Taken together, these results demonstrate that SC3 is capable of
extracting biologically relevant data from primary patient samples.
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Discussion

We have presented SC3, an interactive tool for unsupervised clustering of scRNA-seq data. By
comparing to existing methods, we demonstrate that SC3 provides a highly accurate clustering for
published datasets. For large datasets, SC3 employs a hybrid approach, which makes it possible
to apply the method to very large experiments, e.g. Drop-seq®. Importantly, SC3 features a
graphical user interface, making it interactive and user-friendly. SC3 also aids biological
interpretation by identifying differentially expressed genes, marker genes, and outlier cells.

A major challenge when developing unsupervised clustering algorithms for scRNA-seq data is the
lack of good mathematical models that can be used to generate realistic, synthetic surrogate
datasets to benchmark the methods. Instead, we must rely on published datasets where the labels
have been provided by the original authors. For some of the datasets (Ting, Patel and Klein), the
labels are likely to be accurate since they correspond to cells taken from different tissues, patients
or time-points. For the others, however, the labelling was based on a combination of the authors’
clustering methods together with their biological knowledge. In these latter cases, the labelling is
less reliable, and we cannot be certain that the original clustering is more meaningful than ours.
Reassuringly, the degree of confidence in the original labels correlates well with the accuracy of
SC3; for the datasets where the labels are almost certainly correct (Ting, Patel and Klein) SC3
obtains ARIs close to 1, whereas for the remaining, less certain datasets, SC3 reaches ARIs of
~0.8.

Another central problem of unsupervised clustering relates to the choice of the number of clusters,
k. We investigated whether the internal measures of clustering quality, such as the Dunn® and
Davies-Bouldin®® indexes, can be used to choose k, but we did not find any correlation between
them and the external indexes (Rand, ARI and Jaccard®) (Fig. S12). In addition, for many
datasets (e.g. Pollen, Usoskin and Zeisel) there are at least two hierarchies present, and this is
likely to be the case for most samples from complex tissues. Rather than identifying a single k,
SC3 allows the user to interactively explore different options.

We applied SC3 to scRNA-seq data from two patients diagnosed with MPN. We found strong
evidence in support of the hypothesis that the clusters identified by SC3 directly correspond to
subclones that were previously characterised by independent experiments®. Importantly, SC3 can
identify marker genes (Fig. 5a), thus making it possible to determine the impact of different
mutations on the transcriptome. These analyses could aid in the development of novel therapies.

As sequencing costs decrease, larger scRNA-seq datasets will become increasingly available,
furthering their potential to advance our understanding of biology. An exciting aspect of
scRNA-seq is the possibility to address fundamental questions that were previously inaccessible,
e.g. de novo identification of cell-types. However, the current lack of computational methods for
analyzing scRNA-seq has made it difficult to exploit fully the information contained in such
datasets. We have shown that SC3 is a versatile, accurate and user-friendly tool, which will
facilitate the analysis of complex scRNA-seq datasets. We believe that SC3 can provide
experimentalists with a hands-on tool that will help extract novel biological insights from such rich
datasets.
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Methods

Validation datasets

All validation datasets (Fig. 1c), except the Pollen dataset, were acquired from the accessions
provided in the original publications. The Pollen dataset' was acquired from personal
communication with Alex A Pollen. When benchmarking against pcaReduce method (Fig. 2) we
used this version of the Pollen data. However, in the original pcaReduce paper’ an independent
alignment of the data was performed. SC3 benchmarking of this version of the Pollen data is
shown in Fig. S11.

SC3 clustering

SC3 takes as input an expression matrix M where columns correspond to cells and rows
correspond to genes. SC3 does not carry out any form of normalization or correction for batch
effects. SC3 is based on seven elementary steps. These parameters can be easily adjusted by the
user, but are set to sensible default values, determined via cross-validation on the Ting, Deng,
Pollen and Usoskin datasets.

1. Cell Filter

The cell filter should be used if the quality of data is low, i.e. if one suspects that some of the cells
may be technical outliers with poor coverage. The cell filter removes cells containing fewer than a
specified number of non-zero genes. In our calculations the minimum number of expressed genes
was set to 2,000. The Cell Filter was removed from the final algorithm since it only affected the
results for the Treutlein dataset.

2. Gene Filter

The gene filter removes genes that are either expressed or absent (expression value is less than
2) in at least 94% of cells. The motivation for the gene filter is that ubiquitous and rare genes most
often are not informative for the clustering.

3. Log-transformation
For further analysis the filtered expression matrix M is log-transformed after adding a
pseudo-count of 1: M’ = log2(M + 1).

4. Distance calculations
Distance between the cells, i.e. columns, in M’ are calculated using the Euclidean, Pearson and
Spearman metrics to construct distance matrices.

5. Transformations

All distance matrices are transformed using either principal component analysis (PCA),
multidimensional scaling (MDS) or by calculating the eigenvectors of the graph Laplacian
(Spectral). The columns of the resulting matrices are then sorted in descending order by their
corresponding eigenvalues. MDS method was removed from the final algorithm because of poor
performance.
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6. k-means

k-means clustering is performed on the first d eigenvectors of the transformed distance matrices
(Fig. 1a) by using the default kmeans() R function with the Hartigan and Wong algorithm?. The
maximum number of iterations was set to 10° and the number of starts was set to 1,000 (see Fig.
S7 for details on different parameter settings).

7. Consensus clustering

SC3 computes a consensus matrix using the Cluster-based Similarity Partitioning Algorithm
(CSPA)™. For each clustering result (e.g. Labels(i,d,) in Fig. 1a) a binary similarity matrix is
constructed from the corresponding cell labels: if two cells belong to the same cluster, their
similarity is 1, otherwise the similarity is 0. A consensus matrix is calculated by averaging all
similarity matrices. This can be split in 2 steps:

7a. Consensus over the d range (Consensus1)

SC3 calculates the consensus matrix over a range of d from 4% to 7% of N. Consensus over the d
range is performed for each combination of distance measures and transformations (Fig. 1a). To
reduce computational times, if the length of the d range (D on Fig. 1a) is more than 15, a random
subset of 15 values selected uniformly from the d range is used. Note that consensus over the d
range does not provide a single solution and further averaging is required.

7b. Consensus over the parameter set (Consensus2)

Consensus over the parameter set takes multiple results of Consensus1 and includes additional
averaging of similarity matrices over the distance measures and transformations.

7c. Consensus clustering

The resulting consensus matrix (after Consensus1 and Consensus2) is clustered using
hierarchical clustering with complete agglomeration and the clusters are inferred at the k level of
hierarchy, where k is defined by a user (Fig. 1b).

Fig. S5 shows that the quality of clustering after Consensus2 is generally better than only after
Consensus1.

Adjusted Rand Index

If cell-labels are available (e.g. from a published dataset) the Adjusted Rand Index (ARI)*" can be
used to calculate similarity between the SC3 clustering and the published clustering. Since the
reference labels are known for all validation datasets, ARI is used for all comparisons throughout
the paper. We also investigated the correlation between external (Rand index and Jaccard index*)
and internal (Dunn index® and Davies-Bouldin index®) (Fig. S12) measures of clustering. An
external index evaluates the clustering based on an external reference, whereas an internal index
does not require any additional information. Even though external indexes were in a good
agreement with each other, there was little or no correlation between external and internal
indexes.
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Benchmarking

Before benchmarking we applied the Gene Filter to all the datasets for tSNE+k-means, SNN-Cliq
and SINCERA. For pcaReduce no Gene Filter was used. For tSNE+k-means, SNN-Cliq and
pcaReduce we additionally applied Log-transformation as described above (M’ = log2(M + 1)). For
SINCERA we used the original z-score normalisation'® instead of the Log-transformation.

Biological insights
Identification of differential expression

Differential expression is calculated using the non-parametric Kruskal-Wallis test??, an extension of
the Mann-Whitney test for the scenario when there are more than two groups. A significant p-value
indicates that gene expression in at least one cluster stochastically dominates one other cluster.
SC3 provides a list of all differentially expressed genes with adjusted (using the default “holm”
method of p.adjust() R function) p-values < 0.01 and plots gene expression profiles of the 70 most
significant differentially expressed genes. Note that the calculation of differential expression after
clustering can introduce a bias in the distribution of p-values, and thus we advice to use the
p-values for ranking genes only.

Identification of marker genes

For each gene a binary classifier is constructed based on the mean cluster expression values. A
classifier prediction is then calculated using the gene expression ranks and its ability to distinguish
the cluster with the most highly ranked cells from the remaining clusters is assessed. The area
under the receiver operating characteristic (ROC) curve is used to quantify the accuracy of the
prediction. A p-value is assigned to each gene by using the Wilcoxon signed rank test comparing
gene ranks in the cluster with the highest mean expression with all others (p-values are adjusted
by using the default “holm” method of p.adjust() R function). The genes with the area under the
ROC curve (AUROC) > 0.85 and with the p-value < 0.01 are defined as marker genes. The
AUROC threshold was derived from 99% quantile of the AUROC distributions obtained from 100
random permutations of cluster labels for all datasets (Table S1 and Fig. S13). SC3 provides a
visualization of the gene expression profiles for the top 10 marker genes of each obtained cluster.

Cell outlier detection

Ouitlier cells in each cluster are detected by first reducing the dimensionality of the cluster using
the robust method for principal component analysis®. Second, robust distances are calculated
using the minimum covariance determinant (MCD)?. We then used a threshold based on 99.99%
quantile of the chi-squared distribution to define outliers. Finally we define an outlier score as the
differences between the square root of the robust distance and the square root of the 99.99%
quantile of the chi-squared distribution. The outlier score is plotted as a barplot (Figs. 4d).
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Support Vector Machines (SVM)

When a dataset contains more than 1,000 cells, SC3 randomly selects and clusters 1,000 cells.
Next, a support vector machine (SVM)** model with a linear kernel (this kernel provided the best
clustering predictions, results from using other kernels - polynomial, radial and sigmoid - are
shown in Figs. S8-S10) is constructed based on the obtained clustering. We used the svm function
of the 71071 R-package with default parameters. The cluster IDs for the remaining cells are then
predicted by the SVM model.

Patients

Both patients provided written informed consent. Diagnoses were made in accordance with the
guidelines of the British Committee for Standards in Haematology.

Isolation of haematopoietic stem and progenitor cells

Cell populations were derived from peripheral blood enriched for haematopoietic stem and
progenitor cells (CD34+, CD38-, CD45RA-, CD90+), hereafter referred to as HSCs. For single cell
cultures, individual HSCs were sorted into 96-well plates (Fig. S14) and grown in a cytokine
cocktail designed to promote progenitor expansion as previously described*”. For scRNA-seq
studies, single HSCs were directly sorted into lysis buffer as described in Picelli et al*'.

Determination of mutation load

Colonies of granulocyte/macrophage composition were picked and DNA isolated for Sanger
sequencing for Jak2V617F and Tet2 mutations as previously described Ortmann et al*®.

Single cell RNA-Sequencing

Single HSCs were sorted into 96-well plates and cDNA generated as described*'. Nextera XT
library making kit was used for library generation as described in Picelli et al*'.

Processing of scRNA-seq data from HSCs

96 single cell samples per patient with 2 sequencing lanes per sample were sequenced yielding a
variable number of reads (mean=2,180,357, std dev=1,342,541). FastQC* was used to assess
the sequence quality. Foreign sequences from the Nextera Transposase agent were discovered
and subsequently removed with Trimmomatic**. The reads were trimmed to 90 bases to remove
low quality positions before being mapped with TopHat* to the Ensembl*® reference genome
version GRCh38.77 augmented with the spike-in controls downloaded from the ERCC
consortium*. Quality control of the cells was performed similarly to Roshan M et al.*’. TPM
(Transcripts per Million) values per gene per cell were calculated with RSEM* and compared with
the percentage of aligned reads in order to detect and remove outlier cells from the analysis.
Counts of the unigely mapped reads in each gene were calculated using SegMonk
(http://www.bioinformatics.bbsrc.ac.uk/projects/segmonk) and were used for further downstream
analysis (clustering).
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SC3 clustering of patient scRNA-seq data

We clustered scRNA-seq data from patient 1, patient 2 separately as well as a merged dataset
containing data from both patients. For patient 1 the best clustering was achieved for k = 5 (Fig.
S15a). In this case there are three meaningful clusters and two other clusters containing lowly
expressed cells (the two clusters to the right Fig. S15b, k = 5). Data from patient 2 was
homogeneous and we were not able to identify more than one meaningful cluster (Fig. S17). The
combined dataset (patient 1 + patient 2) was clustered for k in the range [2:5] (Fig. S18). For all
values of k the majority of the cells from cluster 3 in patient 1 clustered together with the cells from
patient 2. We selected k = 5 as a representative example (Fig. 5¢) because in this case two other
clusters (1 and 2) from patient 1 were also retrieved by SC3.
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Figure 1. Validation of the SC3 clustering. (a) Overview of SC3 clustering method (see Methods for the
details). D is the length of the d range. (b) Diagram of the consensus matrix construction for the Treutlein
data. Binary matrices (Methods) corresponding to each clustering solution in (a) are averaged and the
resulting matrix is then clustered by hierarchical clustering with k level of hierarchy (k = 5 in this example).
(c) Published datasets used to validate SC3. N is the number of cells in a dataset, k is the number of
clusters identified by the authors®''~"". RPKM is Reads Per Kilobase of transcript per Million mapped reads,
RPM is Reads Per Million mapped reads, FPKM is Fragments Per Kilobase of transcript per Million mapped
reads and TPM is Transcripts Per Million mapped reads. (d) Median of ARI over 100 realizations of the
SC3 clustering for four validation datasets - Ting, Deng, Pollen and Usoskin (colors correspond to the
colors in (c)). The x-axis shows the number of eigenvectors d (see (a)) as a percentage of the total number
of cells N in each dataset. The black vertical lines correspond to d = 4% and d = 7% of the total number of
cells N.
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Figure 2. Benchmarking of SC3 against existing methods. Each boxplot contains results of 100
realizations of a given method except for SINCERA which is based on hierarchical clustering and provides
a single solution. Pollen1, Pollen2, Usoskin1, Usoskin2, Usoskin3 correspond to different levels of
hierarchies as described by Zurauskiene and Yau’. The black horizontal line corresponds to ARI=0.8. Dots
represent outliers that are higher than the highest value (or lower than the lowest value) within 1.5 * IQR,
where IQR is the inter-quartile range, or distance between the first and third quartiles.
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Figure 3. Results for the hybrid clustering approach using a linear kernel. The black line corresponds
to ARI = 0.8. Numbers in grey boxes correspond to the number of training cells as % of N. (a) ARI levels for
SVM prediction when reference labels (provided by the authors) are used for training. (b) ARI levels for
SVM prediction when labels calculated by SC3 are used for training. Dots represent outliers that are higher
than the highest value (or lower than the lowest value) within 1.5 * IQR, where IQR is the inter-quartile
range, or distance between the first and third quartiles.
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Figure 4. Biological interpretation of the Deng dataset. (a) Toy example illustrating the difference
between marker genes and differentially expressed genes. 20 cells containing only 14 genes with binary
expression values (blue for off and red for on) are clustered. Only genes 1-4 can be considered as marker
genes, whereas all genes 1-14 are differentially expressed. (b) The consensus matrix panel from SC3. The
matrix indicates how often each pair of cells was assigned to the same cluster by the different parameter
combinations. Dark red indicates that the cells were often assigned to the same cluster whereas dark blue
indicates that they were assigned to different clusters most of the time. The colors at the top represent the
labels assigned by the authors and the white lines are visual guides to separate the clusters. (¢) The
marker genes panel from SC3. The heatmap shows expression profiles (after Gene Filter and
Log-transformation, Methods) of top 10 marker genes for each of the 10 clusters identified by SC3. The
colors of the clusters do not correspond to the ones at the top of (b). Note that for cluster 2 no marker
genes were found and for cluster 5 only four marker genes were found. (d) The outlier cells panel from
SC3. Cell outliers in the 10 reference clusters (provided by the authors) - nine adjacent cells in the green
cluster were prepared using a different protocol (see text for details).
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Figure 5. SC3 clustering of scRNA-seq data from patients. (a) Heatmap of the expression (after Gene
Filter and Log-transformation, Methods) of marker genes from clusters 1-3 from patient 1 (clusters 4 and 5
do not have any marker genes). Clusters correspond to k = 5 (Methods). (b) Clonal composition of patients
1 and 2 (Methods). (c) Heatmap of gene expression (after Gene Filter and Log-transformation, Methods) of
a combined dataset (patient 1 + patient 2). Clusters (separated by white vertical lines) correspond to k=5
(Methods). Cells corresponding to patient 1 are indicated with the same colour as in panel (a). Cells from
patient 2 are indicated in yellow. On the vertical axis, genes are clustered by k-means with k= 100 and the
heatmap represents the expression levels of the cluster centers.
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