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Abstract

Using single-cell RNA-seq (scRNA-seq), the full transcriptome of individual cells can be
acquired, enabling a quantitative cell-type characterisation based on expression
profiles. However, due to the large variability in gene expression, identifying cell types
based on the transcriptome remains challenging. We present Single-Cell Consensus
Clustering (SC3), a tool for unsupervised clustering of scRNA-seq data. SC3 achieves
high accuracy and robustness by consistently integrating different clustering solutions
through a consensus approach. Tests on twelve published datasets show that SC3
outperforms five existing methods while remaining scalable, as shown by the analysis of
a large dataset containing 44,808 cells. Moreover, an interactive graphical
implementation makes SC3 accessible to a wide audience of users, and SC3 aids
biological interpretation by identifying marker genes, differentially expressed genes and
outlier cells. We illustrate the capabilities of SC3 by characterising newly obtained
transcriptomes from subclones of neoplastic cells collected from patients.


https://doi.org/10.1101/036558
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/036558; this version posted September 2, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

Introduction

With the recent advent of single cell RNA-seq (scRNA-seq) technology, researchers are
now able to quantify the entire transcriptome of individual cells, opening up a wide
spectrum of biological applications. One key application of sScCRNA-seq is the ability to
determine cell types based on their transcriptome profile alone’>. The diversity of
cell-types is a fundamental property of higher eukaryotes. Traditionally, cell type was
defined based on shape and morphological properties, but tools from molecular biology
have enabled researchers to categorise cells based on surface markers*®. However,
morphology or a small number of marker proteins are not sufficient to characterise
complex cellular phenotypes. scRNA-seq opens up the possibility to group cells based
on their genome-wide transcriptome profiles, which is likely to provide a better
representation of the cellular phenotype. Indeed, several studies have already used
scRNA-seq to identify novel cell-types'=, demonstrating its potential to unravel and
catalogue the full diversity of cells in the human body.

A full characterisation of the transcriptional landscape of individual cells holds an
enormous potential, both for basic biology and clinical applications. An important
medical application is to study cancer, widely known to be a heterogeneous disease
with multiple subclones coexisting within the same tumor. Until recently, tumor
heterogeneity has mainly been assessed at the DNA level by genome sequencing®®.
The use of scRNA-seq makes it possible to characterise the transcriptional landscape of
different subclones within the same tumour. A better understanding of the transcriptome
in the different subclones could thus yield important insights about drug resistance,
thereby informing the development of novel therapies. However, due to the large
variability in gene expression, identifying subclones from patient transcriptomes remains
challenging®°.

Mathematically, the problem of de novo identification of cell-types from data may be
seen as an unsupervised clustering problem, i.e., how to separate cells into
non-overlapping groups without a priori information as to the number of groups and
group labels. However, the lack of training data and reliable benchmarks for validation
renders this unsupervised clustering a hard problem. For scRNA-seq the challenge is
further compounded by technical errors and biases that remain incompletely
understood, a high degree of biological variability in gene expression', and the high
dimensionality of the transcriptome.
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Although scRNA-seq is a relatively new technology, several groups have developed
custom clustering methods for single cell data?'%'6, Yet, these clustering methods have
one or more of the following shortcomings: (i) they have not been thoroughly
benchmarked against each other and standard algorithms; (ii) it is not clear how they
can be scaled to large datasets; (iii) there is no interactive, user-friendly implementation
that includes support to facilitate the biological interpretation of the clusters; and (iv) the
number of clusters, k, has to be fixed a priori by the user and there is no support to
explore different hierarchies of clusters. The last point is particularly relevant when
studying complex biological tissues as previous studies have found biologically
meaningful cell populations at several levels of granularity''7:18,

We present a novel interactive clustering tool for scRNA-seq data, SC3 (Single Cell
Consensus Clustering) a user-friendly R-package with a graphical interface. The main
innovations of SC3 is the demonstration that accurate and robust results can be
obtained by combining several well-established techniques using a consensus
clustering approach. The latter aspect is particularly important in this context, as it
facilitates reproducible analyses from inherently noisy scRNAseq data. In addition, SC3
has several features to facilitate the evaluation of the clustering quality, and to aid the
user in determining the appropriate number of clusters. We demonstrate the
performance of SC3 by applying it to twelve published datasets and thoroughly
benchmarking the method against five other methods. Furthermore, we showcase the
scalability of SC3 to very large datasets by analysing a dataset with ~45,000 cells.
Crucially, in addition to providing cell clusters, SC3 includes several features for
integration into bioinformatics analysis pipelines and for facilitating biological
interpretation. These features include tSNE plots, identifying marker genes and
differentially expressed genes, detection of outlier cells, and an integrated link to Gene
Ontology analysis.

We apply SC3 to the first single cell RNA-Seq data from haematopoietic stem cells
isolated directly from patients with myeloproliferative neoplasm. Myeloproliferative
neoplasms are a heterogeneous disease, with each patient typically harbouring multiple
neoplastic subclones that coexist for long periods of time'®. Therefore, transcriptome
data from patients are hard to interpret due to its inherent heterogeneity within these
cells. Here, we identify and validate clusters corresponding to different subclones within
two patients with different mutational landscapes. We also characterise the differences
between their expression profiles.
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Results

Consensus clustering as a robust methodology

The output of a scRNA-seq experiment is typically represented as an expression matrix
consisting of g rows (corresponding to genes or transcripts) and N columns
(corresponding to cells). SC3 takes this expression matrix as its input. Note that SC3
does not carry out quality control, normalisation or batch correction internally, and it is
important that the user has filtered the input data appropriately to ensure that the
clustering is not confounded by technical artifacts. The SC3 algorithm consists of five
steps: (i) a gene filter, (ii) distance calculations, (iii) transformations combined with (iv)
k-means clustering, followed by (v) the consensus step (Fig. 1a, Methods). Note, in
particular, that the distance calculations reflect a change of coordinate space, as we go
from the expression matrix (g x N) to a cell-to-cell matrix (N x N). In the transformation
step we modify this cell by cell matrix by keeping only the first d principal components of
the distance matrix (or eigenvectors of the associated graph Laplacian) for the final
clustering. Each of the above steps requires, in principle, the specification of a number
of parameters, e.g. different metrics to calculate distances between the cells, or the
particular type of transformation. Choosing such optimal parameter values is difficult
and time-consuming, in general. To avoid this problem, SC3 utilizes a parallelisation
approach, whereby a significant subset of the parameter space is evaluated
simultaneously to obtain a set of clusterings. Instead of trying to pick the optimal
solution from this set, we combine all the different clustering outcomes into a consensus
matrix that summarises how often each pair of cells is located in the same cluster. The
final result provided by SC3 is determined by complete-linkage hierarchical clustering of
the consensus matrix into k groups. Using this approach, we can leverage the power of
a plentitude of well-established methods, while additionally gaining robustness against
the particularities of any single method.

The SC3 pipeline contains several parameters, whose ranges can be flexibly adjusted
by the user in a simple manner. Note that in principle, additional clustering approaches
could be included in the pipeline to be considered within the consensus step. To
constrain the parameter values for our analysis here, we first considered six publicly
available scRNA-Seq datasets'’?>>* (Fig. 1b). The datasets were selected on the basis
that one can be highly confident in the cell-labels as they represent cells from different
developmental stages (Biase, Deng, Yan and Goolam), stem cells grown in different
conditions (Kolodziejczyk) or cell lines (Pollen), and thus we consider them as ‘gold
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standard’. According to the authors, the Pollen dataset contains two distinct hierarchies
and the cells can be grouped either into 4 or 11 clusters.

To quantify the similarity between the reference labels and the clusters obtained by
SC3, we used the Adjusted Rand Index (ARI, see Methods) which ranges from 1, when
the clusterings are identical, to 0 when the similarity is what one would expect by
chance. For the gold standard datasets, we found that clustering performance was
largely unaffected by different choices of gene filter, distance metrics and
transformations (Fig. 1c, S1-S7). Additionally, we investigated the impact of dropouts by
considering a modified distance metric that ignores dropouts, but we found that this did
not improve the performance (Fig. S9, Methods). In contrast, we found that the quality
of the outcome as measured by the ARI was sensitive to the number of eigenvectors, d,
retained after the spectral transformation: the ARI is low for small values of d, and then
increases to its maximum before dropping close to 0 as d approaches N/2. For each of
the gold standard datasets we identified the values of d where an ARI >95% of the
maximum was obtained. For all six datasets we find that the best clusterings were
typically achieved when d is between 4-7% of the number of cells, N (Fig. 1d, Methods).
The robustness of the 4-7% region was supported by a simulation experiment where the
six gold standard datasets were downsampled by a factor of ten (Methods and Fig.
S10). We further tested the SC3 pipeline on six other published datasets, where the cell
labels can only be considered ‘silver standard’ since they were assigned using
computational methods and the authors’ knowledge of the underlying biology. Again, we
find that SC3 performs well when using d in the 4-7% of N interval (Fig. S8). The silver
standard results demonstrate the SC3 is consistent with the authors’ methods, but the
results could be affected by the fact that the labels were assigned using a procedure
that also relied on a similar dimensionality reduction. The final step, consensus
clustering improves the stability of the solution. k-means based methods will typically
provide different outcomes depending on the initial conditions. We find that this
variability is significantly reduced with the consensus approach. In some cases we even
find that the consensus solution is better than any of the individual solutions (Fig. 1e).

To benchmark SC3, we considered five other methods: tSNE? followed by k-means
clustering (a method similar to the one used by Griin et al'), pcaReduce®, SNN-Cliq"?,
SINCERA'™ and SEURAT™. As Fig. 2a shows, SC3 performs better than the five tested
methods across all datasets (Wilcoxon signed-rank test p-value < 0.01), with the
exception of the Pollen1, Biase (where ARIs of other methods are similar to SC3 but
slightly higher) and Yan dataset (where pcaReduce performed better). In addition to
considering accuracy, we also compared the stability of SC3 with other stochastic
methods (pcaReduce and tSNE+kmeans, but not SEURAT) by running them 100 times.
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The different outcomes are shown as black dots in Fig. 2a and in contrast to the other
methods that rely on different initializations, SC3 is highly stable. Usually a single
solution is obtained as indicated by our stability measure (Methods) in Fig. 2b.

SC3 can be scaled to large datasets

Although SC3’s consensus strategy provides a high accuracy, it comes at a moderate
computational cost: the run time for N=2,000 is ~20 mins (Fig. 2c). The main bottleneck
is the k-means clustering and by reducing how many different runs are considered it is
possible to cluster 5,000 cells in ~20 mins with only a slight reduction in accuracy (Fig.
2d). Unfortunately, the scaling of the run time with N makes it impractical to use the
version of SC3 described above for datasets with >5,000 cells. To apply SC3 to larger
datasets, we have implemented a hybrid approach that combines unsupervised and
supervised methodologies. When the number of cells is large (N>5,000), SC3 selects a
subset of 5,000 cells uniformly at random, and obtains clusters from this subset as
described above. Subsequently, the inferred labels are used to train a support vector
machine (SVM, Methods), which is employed to assign labels to the remaining cells.
Training the SVM typically takes only a few minutes, thus allowing SC3 to be applied to
very large datasets.

To test the SVM based approach in isolation, we used the gold standard datasets from
Fig. 1c with the authors’ reference labels to train the SVM. Our results demonstrate that
using <20% of the cells for training it is possible to accurately predict the labels of the
remaining cells (Fig. S11). For the situation where labels are assigned using the
unsupervised clustering described above, we find that it is still possible to achieve an
ARI>0.8 with only 20% of the training cells for five out of seven datasets (Fig. 3a).
Taken together, the result shows that the use of an SVM to predict cell labels works well
- the loss of accuracy is mainly due to the use of fewer cells in the training set.

To specifically evaluate the sensitivity of SC3 for identifying rare cell-types, we carried
out a synthetic experiment, whereby cells from one cell-type were removed iteratively
from the Kolodziejczyk and Pollen datasets (Methods). For the Pollen dataset, SC3 can
detect clusters containing ~1% of the cells, whereas for the Kolodziejczyk dataset ~10%
of the cells are required (Fig. 3b). Note that the ARl is not a useful metric here since the
penalty for misclassifying only a few cells is very small, so instead we ask whether all of
the rare cells are identified together in a separate cluster (Methods). We hypothesize
that the ability to identify rare cells reflects the origins of the two datasets; the Pollen
data is more diverse as it represents 11 different cell lines while the Kolodziejczyk data
comes from one cell-type grown in three different conditions.
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The main drawback of the sampling strategy is that we may fail to identify rare
cell-types, and when N>>5,000 there is a substantial risk that the sampled distribution
will differ significantly from the full distribution. When the hybrid SC3 approach is used, it
is possible to exactly calculate the probability of missing out on a cell-type using the
hypergeometric distribution if the proportion of sampled cells and the number of rare
cells is known (Methods and Fig. S12). If the user is trying to identify a rare
subpopulation (e.g. cancer stem cells), then the hybrid strategy is not recommended,
and methods specifically designed to identify rare cell-types such as RacelD' or
GiniClust?® may be more appropriate.

SC3 features an interactive and user-friendly interface

SC3 is implemented in R and as it is part of BioConductor?, it is easy to download,
install and integrate into existing bioinformatics pipelines. To increase its usability, SC3
features a graphical user interface displayed through a web browser, thus minimizing
the need for bioinformatics expertise. The user is only required to provide the input
expression matrix and a range for the number of clusters, k. SC3 will then calculate the
possible clusterings for this range. To help the user identify a good choice of k, we have
implemented a method based on Random Matrix Theory (RMT)?2° for determining the
number of clusters. Briefly, the number of clusters is given by the number of
eigenvalues of the normalized covariance matrix that differ significantly from the
Tracy-Widom distribution (Methods). Overall, we find good agreement between these
estimates, k, and the numbers suggested by the original authors (Fig. 2b). Furthermore,
to aid the selection of a good clustering, SC3 also calculates the silhouette index®, a
measure of how tightly grouped the cells in the clusters are. Since the clustering is
performed during startup, the user can explore different choices of k in real time. The
outcome is presented graphically as a consensus matrix to facilitate visual assessment
of the clustering quality (Fig. 4a). The elements of the consensus matrix represent a
score, normalised between 0 and 1, indicating the fraction of SC3 parameter
combinations that assigned the two cells to the same cluster. By considering the
consensus scores within and between clusters, one may quickly assess the clustering
quality by visual inspection.

SC3 assists with biological interpretation

A key aspect to evaluate the quality of the clustering, which cannot be captured by
traditional mathematical consistency criteria, is the biological interpretation of the
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clusters. To help the user characterise the biology of the clusters, SC3 identifies
differentially expressed genes, marker genes, and outlier cells. By definition,
differentially expressed genes vary between two or more clusters. To detect such
genes, SC3 employs the Kruskal-Wallis®' test (Methods) and reports the differentially
expressed genes across all clusters, sorted by p-value. The Kruskal-Wallis test has the
advantage of being non-parametric, but as a consequence, it is not well suited for
situations where many genes have the same expression value. Marker genes are highly
expressed in only one of the clusters and are selected based on their ability to
distinguish one cluster from all the remaining ones (Fig. 4b). To select marker genes,
SC3 uses a binary classifier based on the gene expression to distinguish one cluster
from all the others'32. For each gene, a receiver operator characteristic (ROC) curve is
calculated and the area under the ROC curve is used to rank the genes. The area under
the ROC curve provides a quantitative measure of how well the gene can distinguish
one cluster from the rest. The most significant candidates are then reported as marker
genes (Methods). Cell outliers are also identified by SC3 through the calculation of a
score for each cell using the Minimum Covariance Determinant®. Cells that fit well into
their clusters receive an outlier score of 0, whereas high values indicate that the cell
should be considered an outlier (Fig. 4c). The outlier score helps to identify cells that
could correspond to, e.g., rare cell-types or technical artefacts. In addition, SC3
facilitates obtaining a gene ontology and pathway enrichment analysis for each cluster
by directly exporting the list of marker genes to g:Profiler**. All results from SC3 can be
saved to text files for further downstream analyses.

SC3 can provide novel insights for published datasets

To illustrate the above features, we analysed the Deng dataset tracing embryonic
developmental stages, including zygote, 2-cell, 4-cell, 8-cell, 16-cell and blastomere.
Based on the silhouette index, a clustering into either k=2 groups or k=10 appears
favorable, while the Random Matrix Theory based method recommends k=9 (Fig. 2b).
The solution for k=2 identifies one cluster with the blastocyst and one with the remaining
cells. The most stable result for k=10 is shown in Fig. 4a, and our clusters largely agree
with the known sampling timepoints. However, our results suggest that the difference
between the 8-cell and 16-cell stages is quite small. The latter stages of development
are labelled “early”, “mid” and “late” blastomeres, although it is well known that these
stages consist primarily of trophoblasts and inner cell mass. Interestingly, SC3 suggests
that the mid-blastocyst stage could be split into two groups, which most likely
correspond to trophoblasts and the inner cell mass (clusters 3 and 4). This conclusion is
supported by the fact that Sox2 and Tdgf1 (inner cell mass markers) are listed as

marker genes in cluster 4% (Table S2). In total, we identified ~3000 marker genes
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(Table S2), many of which had been previously reported as specific to the different
developmental stages®*°. Furthermore, the analysis reveals several genes specific to
each developmental stage which had previously not been reported (Table S2).
Importantly, when using the reference labels reported by the authors®, nine cells have
high outlier scores (red cells in Fig. 4c). As it turns out, these were prepared using the
Smart-Seq2 protocol instead of the Smart-Seq protocol'??3, thus demonstrating the
ability of our algorithm to identify outliers, which are introduced here ‘artificially’ due to
the different technique used. Indeed, when we use SC3 to cluster the Deng data, the
nine Smart-Seq2 cells form a separate cluster (#9 in Fig. 4a).

Using the hybrid approach, we are able to analyse a large Drop-Seq dataset with N =
44,808 cells and k = 39 clusters' (Methods). The ARI between the SC3 clustering and
the computationally-derived labels obtained by the original authors is 0.52. This result is
largely driven by the fact that Macosko et al. lumped a large number of cells into a
single “Rods” cluster. This Rods cluster contains 29,400 cells, but using SC3 a finer split
of the Rods cluster is revealed with the majority of cells being assigned to 2 large
clusters (clusters 4 and 8 on Fig 5). Interestingly, several genes related to
photoreceptors (e.g. Gngt1, Pde6g, Rho, Rcvrn, Pdc, Gnat1, Nrl, Slc24a1, Rs1 and Sag
for cluster 4; Rpgrip1 and Rp1 for cluster 8) are identified as markers distinguishing the
two subclusters (Table S3), implying that there is likely a higher degree of heterogeneity
amongst those cells than originally reported. We note that 94% of the 29,400 rod cells
were lowly expressed (<900 genes detected), and this explains why so few marker
genes were identified by SC3. Moreover, 31 of the clusters that were identified by SC3
can be matched with clusters identified by Macosko et al. (Fig 5 and Methods),
suggesting that the subsampling employed in our hybrid strategy works well for larger
datasets.

SC3 characterises subclones in myeloproliferative neoplasm

Myeloproliferative neoplasms, a group of diseases characterised by the overproduction
of terminally differentiated cells of the myeloid lineage, reflect an early stage of
tumorigenesis where multiple subclones are known to coexist in the same patient'®.
From exome sequencing data, we previously identified TET2 and JAK2V61F as the only
driver mutations in a large patient cohort #'. In this paper, we use two patients out of this
cohort which harbour TET2 and JAK2V617F mutations in their stem cell compartment.
Haematopoietic stem cells (HSCs) are thought to be the cell of origin in
myeloproliferative neoplasms. However, little is known about the transcriptional
consequences of driver mutations on the stem cells. To gain more insight into the
transcriptional landscape of patient derived HSCs, we obtained scRNA-seq data from
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the two patients (Methods). For patient 1 (N = 51), both the silhouette index of SC3 and
our RMT method suggested that kK = 3, provides the best clustering, revealing three
clusters of similar size (Fig. S17). For patient 2 (N = 89) SC3 indicated k=1, in
agreement with the RMT algorithm, suggesting that one single cluster might best reflect
the underlying transcriptional changes.

Since known driver mutations in these patients are the TET2 and JAK2V617F loci*? we
hypothesized that the different clusters correspond to different combinations of
mutations within different clones. Unfortunately, the coverage of the JAK2V617F and
TET2 loci was insufficient to reliably determine the genotype of each cell directly from
the scRNA-seq data. Instead the genotype composition for each HSC clone was
determined by  growing individual haematopoietic  stem cells into
granulocyte/macrophage colonies, followed by Sanger sequencing of the TET2 and
JAK2V617F loci (Fig. 6a). In agreement with the clustering defined by SC3, patient 1
(k=3) was found to harbor three different subclones: (i) cells with both TET2 and
JAK2V617F mutations, (ii) cells with a TET2 mutation and (iii) wild-type cells (Fig. 6b).
Strikingly, the SC3-clusters contain 22%, 29% and 49% of the cells, in excellent
agreement with the proportions of each genotype found in the patient, namely 20%,
30% and 50%. By contrast, none of the other clustering methods was able to clearly
identify clusters which could readily be related to the genotype information
(Supplementary Notes 3 and 4). Thus, we hypothesize that cluster 1 corresponds to the
double mutant, cluster 2 corresponds to cells with only a TET2 mutation, and cluster 3
corresponds to wild-type cells. The HSC compartment of patient 2 was 100% mutant for
TET2 and JAK2V617F, which again was consistent with clustering of k=1 suggested by
SC3 (Fig. S18).

Four additional lines of evidence support the assumption that SC3 can help to define
subclonal composition. Firstly, we analysed data from patient 2, with a dominant double
mutant clone, together with all cells from patient 1, harbouring three different clones.
SC3 clustering again suggested k = 3 (Fig. 5b, S19), in agreement with the RMT
algorithm. Most importantly, all of the putative double mutant cells from patient 1 were
grouped with the double mutant cells from patient 2. SC3 reported 33 marker genes for
the putative TET2 mutant and 202 marker genes for the putative double mutant clone
(Fig. 5¢c, Table S5).

Secondly, we used microarray data from erythroid burst-forming units colonies available
for patient 1*" where the genotype of each clone was linked to a specific transcriptional
signature. When comparing differentially expressed genes for the double mutant clone
from erythroid burst-forming unit colonies and the marker genes obtained from the
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pooled putative TET2/JAK2 mutant clone, we found 13 genes in common. This overlap
was significant (p-value=0.048, hypergeometric test) and we also found a weak
correlation (Spearman’s rho = 0.15, p-value=0.031) between the fold changes from the
microarray and the scRNA-seq data.

Thirdly, we performed Gene and Pathway Enrichment Analysis using the marker genes
(Methods). We found several categories related to haematopoiesis (selected with
green color in Table S5). Among the enriched pathways were ‘Jak-STAT signalling
pathway’, ‘estrogen signalling pathway*® and ‘GPVI-mediated activation cascade’ (the
latter plays a role in activation and aggregation of platelets). Furthermore, Gene
Ontology analysis showed enrichment for the ‘Regulation of cytokine production’ term.
Cytokines play an important role in haematopoiesis by initiating intracellular signals that
govern cell fate choices such as proliferation and differentiation’. This confirms that
ligands and receptors involved in JAK/STAT pathway activation are highly enriched in
our marker genes for the putative double mutant cluster. For the putative TET2 only
mutant subclones, none of the above pathways were specifically misregulated. Instead,
we hypothesized that since TETZ2 is involved in DNA de-methylation there would be a
global impact on the transcriptome. Loss of TET enzymes has been reported to impact
on the variability in gene expression in mouse embryos®’. Comparing the genome-wide
distribution of the normalized variances revealed that the putative TET2 mutants have
more variable transcriptomes than putative wild-type cells (Mann-Whitney test p-value
<2.2e-16, Methods and Fig. S20).

Fourth, SC3 identified several surface receptors from the list of marker genes
corresponding to the different putative clusters. In particular, CD82 (corresponding to
the putative double mutant), CD83 (WT clone) and CD127 or CD244 (Tet2 mutant
clone) are surface markers that can be targeted by readily available, well-characterized
commercial antibodies. We therefore carried out cell-sorting using such antibodies, and
as predicted, only CD82 antigen, predicted to isolate cells with a double mutant nature,
was expressed on the surface of CD34*CD38%cells from patient 2 (Fig. S21). In
contrast, CD127 and CD83 antibodies were unable to isolate distinct cell populations
from the same patient, strengthening the assumption that SC3 can predict clonal
composition by providing specific marker genes. Due to limited material availability, we
were only able to test one surface marker for patient 1. We chose CD244 since it was
highly expressed in the putative Tet2 only mutant clone. (Fig. S21). Again, we were able
to isolate a CD244 positive population in a subset of CD34"CD38"cells. This result
demonstrates that SC3 is capable of characterising clusters defined by mutations rather
than by patient batch.
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Discussion

We have presented SC3, an interactive tool for unsupervised clustering of scRNA-seq
data. The central contribution of our work is the identification of a highly favorable
regime for the number of dimensions to use for the clustering and the observation that a
consensus strategy can improve both the stability and the accuracy of the clustering at
a moderate increase of the computational cost. Interestingly, the favourable regime
appears to be insensitive to reduced sequencing depth, and it is independent of how the
data was normalized since it is similar for FPKM, TPM and UMI counts. It is likely that
for samples with a different technical noise profile, or from a different genome size, this
range might no longer be optimal. We hypothesize that the optimal range of d is related
to the number of clusters, k. Assuming that the distance matrix can be writtenas A = X
+ Y, where Xis a random matrix of rank N, and Y, representing the underlying biological
signal, has rank r<<N, then we expect a gap in the eigenvalue spectrum of A after the "
largest eigenvalue**. Consequently, we expect that using more than r eigenvectors will
be suboptimal as the additional dimensions will represent the noise in X. Similarly, if too
few eigenvectors are used, then we will be unable to capture the structure of Y. Thus, a
sensible rule of thumb is to choose an interval of d values close to the ratio of k/N.
Interestingly, except for the Kolodziejczyk dataset, the k/N ratio is in the range 3.7-7.8%
of N for the gold standard datasets.

By comparing to several other methods, we demonstrate that SC3 provides a highly
accurate clustering for published datasets. For large datasets, SC3 employs a hybrid
approach, which makes it possible to scale the method to very large experiments, e.g.
Drop-seq'®. Importantly, SC3 features a graphical user interface, making it interactive
and user-friendly. SC3 also aids biological interpretation by identifying outlier cells,
differentially expressed genes and marker genes. Identification of differentially
expressed genes for scRNA-seq data is currently an active area of research®4°4¢, put
these methods all require pairwise comparisons. Since the number of comparisons
required is equal to k(k-1)/2, these methods are computationally costly to apply. Thus,
developing methods for comparing more than two groups of cells is an important future
direction of research.

A major challenge when developing unsupervised clustering algorithms for scRNA-seq
is the lack of good mathematical models that can be used to generate realistic, synthetic
surrogate datasets to benchmark the methods. Instead, we must rely on published
datasets where the labels have been provided by the original authors. For some of the
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datasets (Biase, Yam, Goolam, Deng, Pollen and Kolodziejczyk), the labels are likely to
be accurate since they correspond to cells taken from different tissues, conditions or
time-points. For the other datasets, however, the labelling was based on a combination
of the authors’ clustering methods and their biological knowledge. In these latter cases,
the labelling is less reliable, and we cannot be certain that the original clustering
represents a meaningful ground truth.

Although significant progress has been made on understanding the mutations leading to
cancer', much less is known about the differences between subclones within the
tumour at the transcriptional level. We applied SC3 to scRNA-seq data from two
patients diagnosed with myeloproliferative neoplasms. We found strong evidence in
support of the hypothesis that the clusters revealed by SC3 directly correspond to
subclones identified by independent experiments*'. Moreover, we used the marker
genes identified by SC3 to provide a biological characterisation of the different
subclones (Fig. 6b, c). Amongst the marker genes reported by SC3 were several cell
surface receptors which we were able to test using flow cytometry (Fig. S21). Our
results demonstrate that it is possible to identify subclones using scRNA-seq with a high
degree of confidence, and that the analysis of the transcriptome can provide important
insights regarding the functional consequences of different mutations.

As sequencing costs decrease, larger scRNA-seq datasets will become increasingly
common, furthering their potential to advance our understanding of biology. An exciting
aspect of scRNA-seq is the possibility to address fundamental questions that were
previously inaccessible, e.g. de novo identification of cell-types. However, the current
lack of computational methods for analysing scRNA-seq has made it difficult to exploit
fully the information contained in such datasets. We have shown that SC3 is a
versatile, accurate and user-friendly tool, which will facilitate the analysis of complex
scRNA-seq datasets. We believe that SC3 can provide experimentalists with a
hands-on tool that will help extract novel biological insights from such rich datasets.

Methods

Gold standard datasets

All gold standard datasets (Fig. 1c), except the Pollen dataset, were acquired from the
accessions provided in the original publications. The Pollen dataset'” was acquired from
personal communication with Alex A Pollen.
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SC3 clustering

SC3 takes as input an expression matrix M where columns correspond to cells and
rows correspond to genes/transcripts. Each element of M corresponds to the expression
of a genel/transcript in a given cell. By default SC3 does not carry out any form of
normalization or correction for batch effects. SC3 is based on five elementary steps.
The parameters in each of these steps can be easily adjusted by the user, but are set to
sensible default values, determined via the Biase, Deng, Yan, Goolam, Pollen and
Kolodziejczyk datasets.

1. Gene filter

The gene filter removes genes/transcripts that are either expressed (expression value is
more than 2) in less than X% of cells (rare genes/transcripts) or expressed (expression
value is more than 0) in at least (100-X)% of cells (ubiquitous genes/transcripts). By
default X is 6. The motivation for the gene filter is that ubiquitous and rare genes are
most often not informative for the clustering. We also explored all three parameters
defined in the gene filter (expression thresholds of rare and ubiquitous genes/transcripts
and the percentage X) and found that in general the gene filter did not affect the
accuracy of clustering (Fig. S7). However, the gene filter significantly reduced the
dimensionality of the data, thereby speeding up the method.

For further analysis the filtered expression matrix M is log-transformed after adding a
pseudo-count of 1: M’ = log2(M + 1).

2. Distance calculations
Distance between the cells, i.e. columns, in M’ are calculated using the Euclidean,
Pearson and Spearman metrics to construct distance matrices.

We investigated the impact of dropouts on distance calculations by considering a
modified distance metric that ignores dropouts. This was done by excluding genes that
were not expressed in at least one cell from the distance calculation. We found that this
did not improve the performance (Fig. S9).

3. Transformations

All distance matrices are then transformed using either principal component analysis
(PCA) or by calculating the eigenvectors of the associated graph Laplacian (L = I -
D'"?AD "2, where I is the identity matrix, A is a similarity matrix (A = exp(-A’/max(A’))),
where A’ is a distance matrix) and D is the degree matrix of A, a diagonal matrix which
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contains the row-sums of A on the diagonal (D; = 3; A;). The columns of the resulting
matrices are then sorted in descending order by their corresponding eigenvalues.

4. k-means

k-means clustering is performed on the first d eigenvectors of the transformed distance
matrices (Fig. 1a) by using the default kmeans() R function with the Hartigan and Wong
algorithm*’. By default, the maximum number of iterations is set to 10° and the number
of starts is set to 1,000.

5. Consensus clustering

SC3 computes a consensus matrix using the Cluster-based Similarity Partitioning
Algorithm (CSPA)*. For each individual clustering result a binary similarity matrix is
constructed from the corresponding cell labels: if two cells belong to the same cluster,
their similarity is 1, otherwise the similarity is 0 (Fig. 1a). A consensus matrix is
calculated by averaging all similarity matrices of individual clusterings. To reduce
computational time, if the length of the d range (D on Fig. 1a) is more than 15, a random
subset of 15 values selected uniformly from the d range is used.

The resulting consensus matrix is clustered using hierarchical clustering with complete
agglomeration and the clusters are inferred at the k level of hierarchy, where k is
defined by a user (Fig. 1a). In principle, the k used for the hierarchical clustering need
not be the same as the k used in step 5. However, for simplicity in SC3 the two
parameters are constrained to have the same value.

Fig. 1e shows how the quality and the stability of clustering improves after consensus
clustering.

Adjusted Rand Index

If cell-labels are available (e.g. from a published dataset) the Adjusted Rand Index
(ARI* can be used to calculate similarity between the SC3 clustering and the published
clustering. ARI is defined as follows. Given a set of n elements, and two clusterings of
these elements the overlap between the two clusterings can be summarised in a
contingency table, where each entry denotes the number of objects in common between
the two clusterings. The ARI can then be calculated as:
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where n; are values from the contingency table, q; is the sum of the ™ row of the
contingency table, b;is the sum of the /" column of the contingency table and () denotes
a binomial coefficient.

Since the reference labels are known for all published datasets, ARI is used for all
comparisons throughout the paper.

Downsampling of the gold standard datasets

For each gene i and each cell j, the downsampled expression value was generated by
drawing from a binomial distribution with parameters p = .1 and n = round(M,).

Identification of a suitable number of groups k

Matrix Z is obtained from M’ by subtracting the mean and dividing by the standard
deviation for each column (z-score). Next, the eigenvalues of X =Z™Z are calculated.
The number of clusters k is determined by the number of eigenvalues that are
significantly different with a p-value <.001 from the Tracy-Widom distribution®2° with
mean(Vn—1++pp)> and standard deviation (\/er\/ﬁ)-(ﬁ +711§)%, where n is the

number of genes/transcripts and p is the number of cells.
Benchmarking

For each dataset we used the expression units provided by the authors. The gene filter
was applied to all the datasets. For tSNE+k-means, SNN-Cliqg and pcaReduce the same
log-transformation as in SC3 (M’ = log2(M + 1)) was applied. For SINCERA we used the
original z-score normalisation'® instead of the log-transformation. For tSNE the Rtsne R
package was used with the default parameters. For SEURAT we used the original
Seurat R package: we performed tSNE embedding with the default parameters once
(following the authors’ tutorial at http://www.satijalab.org/clustertutorial1.html) and then
clustered the data using DBSCAN algorithm multiple times, where we varied the density
parameter G in the range 10°-10° to find a maximal ARI (this ARl is presented in Fig. 2).
SEURAT was not able to find more than one cluster for the smallest datasets (Biase,
Yan, Goolam, Treutlein and Ting) leading to very small ARI scores.
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Support Vector Machines (SVM)

When using SVM a specific fraction of the cells is selected at random with uniform
probability. Next, a support vector machine® model with a linear kernel is constructed
based on the obtained clustering. We used the svm function of the e7077 R-package
with default parameters. The cluster IDs for the remaining cells are then predicted by
the SVM model.

Identification of rare cell-types

For the Pollen dataset, all but 1-7 of the cells in one of the 11 clusters were removed.
The limit of 7 cells corresponds to the size of the smallest cluster in the original data.
Subsequently, SC3 was run using k=11, and we asked whether or not the cells of the
rare cell-type were located in a separate cluster. This was repeated 100 times for each
cell-type and Fig. 3b reports the percentage of runs when the rare cells were found
together in a cluster with no other cells. Note that the ARI is a poor indicator of the
ability to identify rare cells since this measure is relatively insensitive to the behavior of
a small fraction of the cells. For the Kolodziejczyk dataset, we used a similar strategy,
but we allowed for 1-101 cells in the rare group.

For the hybrid SC3 approach with 30% of cells used to train the SVM we were able to
calculate the probability of including the rare cell-types in the training set analytically by
multiplying the data from Fig. 3b by the probability of all rare cells to be included in the
drawn sample (30% of all cells). This probability was calculated using the
hypergeometric distribution R function: phyper(n.rare.cells - 1, n.rare.cells, n.other.cells,
0.3*(n.other.cells + n.rare.cells), lower.tail=F), where n.rare.cells is the number of
rare.cells and n.other.cells is the number of other cells in the dataset.

Biological insights
Identification of differential expression

Differential expression is calculated using the non-parametric Kruskal-Wallis test*', an
extension of the Mann-Whitney test for the scenario when there are more than two
groups. A significant p-value indicates that gene expression in at least one cluster
stochastically dominates one other cluster. SC3 provides a list of all differentially
expressed genes with p-values<0.01, corrected for multiple testing (using the default
“holm” method of p.adjust() R function) and plots gene expression profiles of the 50
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most significant differentially expressed genes. Note that the calculation of differential
expression after clustering can introduce a bias in the distribution of p-values, and thus
we advise to use the p-values for ranking the genes only.

Identification of marker genes

For each gene a binary classifier is constructed based on the mean cluster expression
values. The area under the receiver operating characteristic (ROC) curve is used to
quantify the accuracy of the prediction. A p-value is assigned to each gene by using the
Wilcoxon signed rank test comparing gene ranks in the cluster with the highest mean
expression with all others (p-values are adjusted by using the default “holm” method of
p.adjust() R function). The genes with the area under the ROC curve (AUROC) >0.85
and with the p-value<0.01 are defined as marker genes. The AUROC threshold
corresponds to the 99% quantile of the AUROC distributions obtained from 100 random
permutations of cluster labels for all datasets (Table S1 and Fig. S13). SC3 provides a
visualization of the gene expression profiles for the top 10 marker genes of each
obtained cluster.

Cell outlier detection

Ouitlier cells are detected by first taking an expression matrix of each individual cluster
(all cells with the same labels) and reducing its dimensionality using the robust method
for PCA (ROBPCA)®'. This method outputs a matrix with N rows (number of cells in the
cluster) and P columns (retained number of principal components after running
ROBPCA). SC3 then uses p=min(P, 3) first principal components for further analysis. If
ROBPCA fails to perform or P=0, SC3 shows a warning message. We found (results not
shown) that this usually happens when the distribution of gene expression in cells is too
skewed towards 0. Second, robust distances (Mahalanobis) between the cells in each
cluster are calculated from the reduced expression matrix using the minimum
covariance determinant (MCD)3. We then used a threshold based on the Q% quantile
of the chi-squared distribution (with p degrees of freedom) to define outliers. By default
Q=99.99, but can be manually adjusted by a user. Finally, we define an outlier score as
the difference between the square root of the robust distance and the square root of the
Q% quantile of the chi-squared distribution (with p degrees of freedom). The outlier
score is plotted as a barplot (Fig. 4c).

Analysis of the Macosko dataset
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To analyze the Drop-Seq dataset we followed the procedure used by Macosko et al'®
and selected the 11,040 cells where more than 900 genes were expressed. Moreover,
due to the low read depth, the gene filter was removed. We then sampled 5,000 cells
and clustered using SC3, including the SVM step, 100 times. All 100 solutions were
consistent between each other resulting in an average ARI of 0.6 and they were
sufficiently accurate compared to the reference authors’ clustering yielding an average
ARI of 0.54 (Fig. S14). Since each of the 100 solutions were different, we added an
additional consensus clustering step using the “best of k” consensus algorithm®2. This
approach provided a single solution based on the 100 different solutions and it was as
accurate as the individual solutions with an ARI of 0.52 (the actual labels are presented
in Table S3). The SC3 consensus solution splits the large original cluster (cluster 24
with 29,400 cells) hierarchically into 2 clusters of smaller sizes (18105 + 10558 = 28663
cells, clusters 4 and 8 in Fig. 5). Additional gene and pathway enrichment analysis for
the differentially expressed genes between the two clusters is presented in the
Supplementary Note 5. If more than 75% of the cells from the reference cluster are
shared with the SC3 cluster we defined these two clusters as matched. In total 31
reference clusters were matched to the SC3 clusters.

Patients

Both patients provided written informed consent. Diagnoses were made in accordance
with the guidelines of the British Committee for Standards in Haematology.

Isolation of haematopoietic stem and progenitor cells

Cell populations were derived from peripheral blood enriched for haematopoietic stem
and progenitor cells (CD34+, CD38-, CD45RA-, CD90+), hereafter referred to as HSCs.
For single cell cultures, individual HSCs were sorted into 96-well plates (Fig. S15) and
grown in a cytokine cocktail designed to promote progenitor expansion as previously
described®. For scRNA-seq studies, single HSCs were directly sorted into lysis buffer
as described in Picelli et al**.

Determination of mutation load
Colonies of granulocyte/macrophage composition were picked and DNA isolated for
Sanger sequencing for JAK2V617F and TET2 mutations as previously described by

Ortmann et al*".

Single cell RNA-Sequencing
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Single HSCs were sorted into 96-well plates and cDNA generated as described
previously®*. The Nextera XT library making kit was used for library generation as
described by Picelli et al**.

Processing of scRNA-seq data from HSCs

96 single cell samples per patient with 2 sequencing lanes per sample were sequenced
yielding a variable number of reads (mean = 2,180,357, std dev = 1,342,541). FastQC®®
was used to assess the sequence quality. Foreign sequences from the Nextera
Transposase agent were discovered and subsequently removed with Trimmomatic®®
using the parameters HEADCROP:19 ILLUMINACLIP:NexteraPE-PE.fa:2:30:10 TRAILING:28
CROP:90 MINLEN:60 to trim the reads to 90 bases before being mapped with TopHat®’ to
the Ensembl®® reference genome version GRCh38.77 augmented with the spike-in
controls downloaded from the ERCC consortium®. Counts of uniquely mapped reads in
each protein coding gene and each ERCC spike-in were calculated using SeqMonk
(http://www.bioinformatics.bbsrc.ac.uk/projects/segmonk) and were used for further
downstream analysis. Quality control of the cells contained two steps: 1. filtering of cells
based on the number of expressed genes; 2. filtering of cells based on the ratio of the
total number of ERCC spike-in reads to the total number of reads in protein coding
genes. Filtering threshold were manually chosen by visual exploration of the quality
control features (Fig. S16). After filtering, 51 and 89 cells were retained from patient 1
and patient 2, correspondingly. The expression values in each dataset were then
normalised by first using a size-factor normalisation (from DESeq2 package®®) to
account for sequencing depth variability. Secondly, to account for technical variability, a
normalisation based on ERCC spike-ins was performed using the RUVSeq package®’
(RUVg() function with parameter k = 1). For combined patient data, normalisation steps
were performed after pooling the cells. The resulting filtered and normalised datasets
were clustered by SC3. Potential biases of cell filtering on the proportions of cells in the
clusters of patient 1 are considered in the Supplementary Note 1. It shows that the
cluster of lower cell quality is separated from the other biologically meaningful clusters
of patient 1 and it does not change the total proportion of the biologically meaningful
clusters. Supplementary Note 2 shows that SC3 results of clustering of patient 1 do not
depend on the normalization procedure.

Clustering of patient scRNA-seq data by SC3

We clustered scRNA-seq data from patient 1 and patient 2 separately as well as a
combined dataset containing data from patient 1 + patient 2. For patient 1, in agreement


https://paperpile.com/c/TbBEPo/xywUZ
https://paperpile.com/c/TbBEPo/xywUZ
https://paperpile.com/c/TbBEPo/76JE2
https://paperpile.com/c/TbBEPo/euUla
https://paperpile.com/c/TbBEPo/DQMD1
https://paperpile.com/c/TbBEPo/n5kMP
https://paperpile.com/c/TbBEPo/xBtrM
http://www.bioinformatics.bbsrc.ac.uk/projects/seqmonk
https://paperpile.com/c/TbBEPo/NTTDM
https://paperpile.com/c/TbBEPo/4dXkW
https://doi.org/10.1101/036558
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/036558; this version posted September 2, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

with the RMT algorithm, the best clustering was achieved for k = 3 (Fig. S17). Data from
patient 2 was homogeneous and SC3 was unable to identify more than one meaningful
cluster (Fig. S18), again in agreement with the RMT algorithm. For the combined
dataset for patient 1 + patient 2 the best values of the silhouette index were obtained
when k was 2 or 3 (Fig. S19). In both cases all of the cells from cluster 1 in patient 1
were grouped with the cells from patient 2. For k = 3 clusters 1 and 3 of patient 1 were
also resolved. The RMT algorithm also provided k = 3 for the merged patient 1 + patient
2 dataset.

Comparison of clustering of patient 1 scRNA-seq data

Results of the clustering of the patient 1 data by other methods and their comparison to
SC3 is presented in the Supplementary Notes 3 and 4.

Identification of differentially expressed genes from microarray data

The microarray data of patient 1 (EE50) was obtained from Array Express accession
number E-MTAB-3086*'. One replicate (2B) was identified as an outlier and removed.
The limma R package® was used to identify 932 differentially expressed genes between
WT and TET2/JAK2V617F double mutant using an adjusted (by false discovery rate)
p-value threshold of 0.1.

Marker genes analysis for patients

For both patients, to increase the number of marker genes, the AUROC threshold was
set to 0.7 instead of the default value of 0.85 and the 0.1 p-value threshold was chosen.

Pathway enrichment analysis

We utilized g:Profiler web tool** to perform gene and pathway enrichment analysis in
obtained set of marker genes. The results are presented in Table S5.
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Figure 1. The SC3 framework for consensus clustering. (a) Overview of clustering with SC3
framework (see Methods). A total of 6D clusterings are obtained, where D is the total number of
dimensions d,, ..., d, considered. These clusterings are then combined through a consensus
step to increase accuracy and robustness. Here, the consensus step is exemplified using the
Treutlein data: the binary matrices (Methods) corresponding to each clustering are averaged,
and the resulting matrix is segmented using hierarchical clustering up to the k-th hierarchical
level (k = 5 in this example). (b) Published datasets used to set SC3 parameters. N is the
number of cells in a dataset; k is the number of clusters originally identified by the authors
9.14.17.18,20-2363-66. njts: RPKM is Reads Per Kilobase of transcript per Million mapped reads,
RPM is Reads Per Million mapped reads, FPKM is Fragments Per Kilobase of transcript per
Million mapped reads, TPM is Transcripts Per Million mapped reads. (c) Testing the distances,
nonlinear transformations and d range. Median of ARl over 100 realizations of the SC3
clustering for six gold standard datasets (Biase, Yan, Goolam, Kolodziejczyk, Deng and Pollen,
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colours as in (b)). The x-axis shows the number of eigenvectors d (see (a)) as a percentage of
the total number of cells, N. The black vertical lines indicate the interval d = 4-7% of the total
number of cells N, showing high accuracy in the classification. (d) Histogram of the d values
where ARI>.95 is achieved for the gold standard datasets. The black vertical lines indicate the
same as in (c). (e) 100 realizations of the SC3 clustering of the datasets shown in (b).
Individual corresponds to clustering without consensus step. Consensus corresponds to the
consensus clustering over the parameter set (Methods). The black line corresponds to ARI=0.8.
Dots represent individual clustering runs. The dashed black line separates gold and silver
standard datasets.
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Figure 2. Benchmarking of SC3 against existing methods. (a) SC3, tSNE+kmeans and
pcaReduce were applied 100 times to each dataset to evaluate accuracy and stability. SNN-Cliq
and SINCERA are deterministic and were thus run only once. SEURAT was also run once,
however was optimised over different values of the density parameter G (Methods). Each panel
shows the similarity between the inferred clusterings and the reference labels. The similarity is
quantified by the Adjusted Rand Index (ARI, see Methods) which ranges from 1, when the
clusterings are identical, to 0 when the similarity is what one would expect by chance. The ARI
was calculated for each run of the respective method (black dots). The top of each bar
corresponds to the median of the distribution of the black dots. For the Pollen and Usoskin
datasets we considered all the different hierarchies reported in the original papers (Pollen1 k =
4, Pollen2 k = 11, Usoskin1 k = 4, Usoskin2 k = 8, Usoskin3 k = 11). The black line indicates
ARI = 0.8. The dashed black line separates gold and silver standard datasets. (b) Number of
clusters predicted by SC3, SINCERA and SNN-Clig for all datasets. Ref is the reference

clustering reported by the authors. (¢) Run times for different clustering methods as a function of
the number of cells (N). All methods were run on a MacBook Pro (Mid 2014), OS X Yosemite
10.10.5 with 2.8 GHz Intel Core i7 processor, 16 GB 1600 MHz DDR3 of RAM. Two results
shown for SC3 correspond to nstart=1000 and nstart=50, where nstart is the number of starting
points for k-means clustering. (d) Reducing the number of k-means runs (nstart) from 1,000 to
50 results only in a slightly worse performance for SC3, yet with significant computational
savings, as shown in (c). The black line indicates ARI = 0.8. The dashed black line separates
gold and silver standard datasets.
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Figure 3. SC3 can be scaled to large datasets using a hybrid approach. (a) The
performance of the hybrid SC3, as measured by the ARI, improves as the % of subsampled
cells increases. The results indicate that accurate clustering can be achieved with only a small
percentage of all cells used to obtain SC3 labels, which are then used as inputs by a linear
kernel support vector machine (SVM). Dots represent outliers higher (lower) than the highest
(lowest) value within 1.5 x IQR, where IQR is the interquartile range. The black line indicates
ARI = 0.8. The dashed black line in the legend separates gold and silver standard datasets. (b)
Robustness of SC3 for the detection of rare cell-types. For two of the datasets, we remove
different percentages of the cells in the rare cell-types. The figure shows the mean fraction of
SC3 runs in which all the rare cells were clustered together as a function of the total number of
cells in the rare cell-type.
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Figure 4. Applying SC3 to the Deng dataset aids biological interpretation. (a) The
consensus matrix panel as generated by SC3. The matrix indicates how often each pair of cells
was assigned to the same cluster by the different parameter combinations as indicated by the
colorbar. Dark red (1) indicates that the cells were always assigned to the same cluster whereas
dark blue (0) indicates that they were never assigned to the same cluster. In this case, SC3
finds a clustering with k = 10 clusters, separated by the white lines as visual guides. The colors
at the top represent the reference labels, corresponding to different stages of development (see
colour guide). (b) lllustration of the difference between marker genes and differentially
expressed genes. In this small example, 20 cells containing 14 genes with binary expression
values (blue for ‘off’, red for ‘on’) are clustered. Only genes 1-4 can be considered as marker
genes, whereas all 14 genes are differentially expressed. (¢) Outlier scores for all N= 268 cells
as generated by SC3 (colors correspond to the 10 reference clusters provided by the authors -
Stage in (a)). The nine cells with high outlier score in the red cluster (black arrow) were
prepared using a different protocol (see text for details), and are thus assigned to a technical
artifact.


https://doi.org/10.1101/036558
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/036558; this version posted September 2, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

SEURAT SC3

Horizontal cells =4 -
Retinal ganglion cells

Amacrine cells

Rods

Cones

Bipolar cells

Muller glia

Astrocytes
Fibroblasts

Vascular endothelium
Pericytes

Microglia

Figure 5. Analysis of SC3 clustering of the Macosko dataset. Sankey diagram comparing the
39 clusters reported by Macosko et al ™® ° (left) and the 39 clusters obtained with SC3 (right).
The widths of the lines linking both sets of clusters correspond to the number of cells they have
in common. Colors and cell types as in '°.
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Figure 6. Using SC3 to define subclones from two patients with myeloproliferative
neoplasm. (a) Individual HSCs were placed into wells, grown into granulocyte/macrophage
colonies, and the JAK2V617F and the TETZ2 loci were characterised using Sanger sequencing.
(b) Clonal composition of patients 1, 2 obtained by independent sequencing experiments as
described in Fig 6a of the JAK2V617F and the TETZ2 loci (Methods). (¢) Marker gene expression
(after Gene Filter and Log-transformation, Methods) of the combined dataset (patient 1 + patient
2). Clusters (separated by white vertical lines) correspond to k = 3 (Methods). Cells
corresponding to patient 1 are indicated with the same colour as in panel (b). Cells from patient
2 are indicated in yellow. Only the top 10 marker genes are shown for each cluster.
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