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I. Abstract 

Background: Gene-gene and gene-environment interactions are known to contribute significantly to 

variation of complex phenotypes in model organisms. However, their identification in human 

associations studies remains challenging for myriad reasons. In the case of gene-gene interactions, 

the large number of potential interacting pairs presents computational, multiple hypothesis 

correction, and other statistical power issues. In the case of gene-environment interactions, the lack 

of consistently measured environmental covariates in most disease studies precludes searching for 

interactions and creates difficulties for replicating studies.  

 

Results: In this work, we develop a new statistical approach to address these issues that leverages 

genetic ancestry (θ) in admixed populations. We applied our method to gene expression and 

methylation data from African American and Latino admixed individuals, identifying nine 

interactions that were significant at a threshold of � � 5 � 10��. We replicate two of these 

interactions and show that a third has previously been identified in a genetic interaction screen for 

rheumatoid arthritis.   

 

Conclusion: We show that genetic ancestry can be a useful proxy for unknown and unmeasured 

environmental exposures with which it is correlated 

 

Keywords: Gene-environment Interaction, gene-gene interactions, admixture 
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II. Background 

Genetic association studies in humans have focused primarily on the identification of 

additive SNP effects through marginal tests of association. There is growing evidence that both gene-

gene �� � �	 and gene-environment �� � �	 interactions contribute significantly to phenotypic 

variation in humans and model organisms[1-5]. In addition to explaining additional components of 

missing heritability, interactions lend insights into biological pathways that regulate phenotypes and 

improve our understanding of their genetic architectures. However, identification of interactions in 

human studies has been complicated by the multiple testing burden in the case of � � � interactions, 

and the lack of consistently measured environmental covariates in the case of � � � 

interactions[6,7]. 

To overcome these challenges, we leverage the unique nature of genomes from recently 

admixed populations such as African Americans, Latinos, and Pacific Islanders. Admixed genomes are 

mosaics of different ancestral segments[8] and for each admixed individual it is possible to 

accurately estimate �, the proportion of ancestry derived from each ancestral population (e.g. the 

fraction of European/African ancestry in African Americans)[9]. Studies have demonstrated that an 

array of environmental and biomedical covariates are correlated with �[10-13], and we therefore 

consider its use as a surrogate for unmeasured and unknown environmental exposures. � is also 

correlated with the genotypes of SNPs that are highly differentiated between the ancestral 

populations. Thus � may also be used as a proxy for detecting epistatic interactions. Therefore, we 

propose a new SNP by � test of interaction (AITL) in order to detect evidence of interaction in 

admixed populations.  

We first investigate the properties of our method through simulated genotypes and 

phenotypes of admixed populations. In our simulations we demonstrate that differential linkage-

disequilibrium (LD) between ancestral populations can produce false positive SNP by θ interactions 

when local ancestry is ignored. To accommodate differential LD, we include local ancestry in our 

statistical model and demonstrate that this properly controls this confounding factor. We also show 
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that AITL is well powered to detect gene-environment interactions when θ is correlated with the 

environmental covariates of interest. However, the power for detecting pairwise � � � interactions 

at highly differentiated SNPs is lower than direct interaction tests even after accounting for the 

additional multiple testing burden. 

 We applied our method to gene expression data from African Americans and DNA methylation 

data from Latinos. We identified one genome-wide significant interaction�� � 5 � 10��	 associated 

with gene expression in the African Americans and eight significant interactions �� � 5 �
10��	 associated with methylation in the Latinos. We replicated three of the eight interactions 

associated with DNA methylation in the Latinos and show that the interaction associated with gene 

expression has also been previously been found to have epistatic effects in the Welcome Trust Case 

Control Consortium (WTCCC) rheumatoid arthritis case/control dataset[14]. Together, these results 

provide evidence for the existence of interactions regulating expression and methylation. 

III. Results 

Simulated Data 

To determine the utility of using � as a proxy for unmeasured and unknown environmental 

covariates, we applied the AITL to simulated 2-way admixed individuals. We tested ��, the 

proportion of ancestry from ancestral population 1, for interaction with simulated SNPs (see 

Simulation Framework). Power was computed over 1,000 simulations, assuming 10,000 SNPS being 

tested, and using a Bonferroni correction p-value cutoff of 5 � 10��. We calculated the power using 

assumed interaction effect sizes (either 
��� or 
���) of 0.1, 0.2, 0.3, and 0.4 (see Simulation 

Framework). Although the few interactions reported for human traits and diseases show much 

smaller effect sizes, we simulated large effects because genetic and environmental effect sizes in 

omics data, such as the expression and methylation data considered here, are known to be of larger 

magnitude. For example, some cis-eQTL SNPs explain up to 50% of the variance of gene 

expression[15].   

 

Power When Using � as a Proxy for Highly Differentiated SNPs  
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To determine whether using � as a proxy for a highly differentiated SNPs is more powerful 

than testing all pairs of potentially interacting SNPs directly, we simulated two interacting SNPS in 

1000 admixed individuals (see Simulation Framework). We then tested for an interaction using AITL 

by replacing the genotypes at the highly differentiated SNP with ��. We observed that even with 

moderate effect sizes, using � in place of the actual genotypes does not provide any increase in power 

even after accounting for multiple corrections (see Figure 1a). This is in agreement with recent work 

showing the limited utility of local ancestry by local ancestry interaction test to identify underlying 

SNP by SNP interaction when genotype data is available28. For the larger effect sizes we simulated, 

we do see power increasing as the delta between ancestral frequencies increase. The plots show that 

AITL would be unable to detect anything unless the effect was very strong. Figure 1b reveals that 

even with the multiple correction penalty, testing all pairwise SNPS directly is always more powerful. 

We note that when testing the interacting SNPs directly, we used a cutoff p-value of 1 � 10�� since in 

theory we were testing all unique pairs of 10,000 SNPs. Based on these results, we would 

recommend testing for pairs of interacting SNPs directly if pairwise � � � interactions are a subject 

of interest in the study. However, when multi-way interactions are considered, AITL may become 

more powerful (see Discussion). 

 

Power When Using � as a Proxy Environmental Covariate  

When assessing the utility of � as a proxy for an environmental covariate E, we simulated 

3000 individuals. E was simulated such that it was correlated with the individuals’ global ancestries 

in varying degrees (see Simulation Framework). Figure 2 shows the power of the AITL as a function 

of the Pearson correlation between �� and E. The power of testing E directly is exactly the power of 

the AITL when the correlation is equal to 1. As expected, as the correlation increases, the power 

increases as well.  When the effect size is 0.1, the power to detect a gene-environment interaction is 

low whether one uses �� or E. However, both tests are much better powered for effect sizes greater 

or equal to 0.2, with the AITL’s power being dependent on the level of correlation. 

 

Differential LD 
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To demonstrate that differential LD has the potential to cause inflated test statistics, we ran 

10,000 simulations of 1000 admixed individuals. For each individual we simulated 2 SNPs, a causal 

SNP and a tag SNP.  The LD between the tag SNP and causal SNP was different based on the ancestral 

background the SNPs were on (see Simulation Framework). Over 10,000 simulations, we computed 

the mean ��
	 test-statistic for the AIT and the AITL. We note that the phenotypes for these 

simulations were generated under a model that assumed no interaction. We observed a mean 

��
	 � 0.996 with a standard deviation of 1.53 for AITL. AIT, which does not condition on local 

ancestry, had a mean ��
	 � 3.59 with a standard deviation of 3.60. We also looked at ��
or genomic 

control, as another indicator of test-statistic inflation[16]. ��
 compares the median observed �	 

test-statistic versus the true median under the null. In our simulations, we observed ��
 � 5.81 for 

AIT and ��
 � 0.980 for AITL (see Supplementary Figure S1). Last, we computed the proportion of 

test-statistics that passed a p-value threshold of .05 and .01 in our simulations. The AIT had 3687 

statistics passing a p-value of .05 and 1687 at a threshold of .01, whereas AITL had 464 and 96 at the 

same p-value thresholds. The results for AITL are as expected under a true null. The results from our 

simulations show that not accounting for local ancestry can result in inflated test-statistics and can 

potentially lead to false positive findings. 

 

Real Data 

Coriell Gene Expression Results 

We first applied our method to the Coriell gene expression dataset[17]. The Coriell cohort is 

composed of 94 African-American individuals and the gene expression values of ~8800 genes in 

lymphoblastoid cell lines (LCLs). Since African Americans derive their genomes from African and 

European ancestral backgrounds, we tested for interaction between a given SNP and the proportion 

of European ancestry, ����. Each SNP by ���� term was tested once for association with the 

expression of the gene closest to the SNP. We observed well-calibrated statistics with a ��
 equal to 

1.04 (see Supplementary Figure S2). In the LCLs, we found that interaction of rs7585465 with ���� 

was associated with ERBB4 expression �AITL � � 2.95 � 10��, Marginal � � 0.404	 at a genome-

wide significant threshold �� $ 5 � 10��	.  
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Given that the gene expression values come from LCLs (all cultured according to the same 

standards), the SNPs are either interacting with epigenetic alterations due to environmental 

exposures that have persisted since transformation into LCLs or the signals are driven by epistatic 

interactions. In our simulations, we showed that using � as a proxy for a single highly differentiated 

SNP is underpowered compared to testing all pairs of potentially interacting SNPs directly. However, 

there are many SNPs that are highly differentiated across the genome with which � will be 

correlated. It is therefore possible that � is capturing the interaction between the aggregate of all 

differentiated trans-SNPs (i.e. global genetic background) and the candidate SNP. This is consistent 

with a recently reported finding, conducted in human iPS cell lines, that genetic background accounts 

for much of the transcriptional variation[2,18].  

 
 

GALA II Methylation Results 

We searched for interactions in methylation data derived from a study of asthmatic Latino 

individuals called the Genes-environments and Admixture in Latino Americans (GALA II)[19]. The 

methylation data is composed of 141 Mexicans and 184 Puerto Ricans. As the phenotype, we used 

DNA methylation measurements on ~300,000 markers from peripheral blood. As we had done with 

gene expression, we tested for interaction between a given SNP and ���� using AITL. All SNPs within 

a 1 MB window centered around the methylation probe were tested. We used the European 

component of ancestry because it is the component shared most between Mexicans and Puerto 

Ricans (see Table 1). We observed well-calibrated test statistics with ��
 equal to 1.06 in the 

Mexicans and 0.96 in the Puerto Ricans (see Supplementary Figure S3). We tested 128,794,325 

methylation-SNP pairs which results in a Bonferroni corrected p-value cutoff of 3.88 � 10��
. 

However, this cutoff is extremely conservative given the tests are not all independent. We therefore 

we report all results that are significant at 5 � 10�� in either set as an initial filter. We found 5 

interactions in the Mexicans and 3 in the Puerto Ricans that are significant at this threshold (see 

Table 2).  
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Unlike the Coriell individuals, who are 2-way admixed, the GALA II Latinos are 3-way 

admixed and derive their ancestries from European, African, and Native American ancestral groups. 

Consequently, to confirm that incomplete modeling or better tagging on one of the non-European 

ancestries was not driving the results, we retested all significant interactions including a second 

component of ancestry for AITL. In the case of the Mexicans, we included African and European 

ancestry, and in the case of the Puerto Ricans, we included European and Native American ancestry. 

Even after adjusting for the second ancestry the interactions between SNP and ���� remained highly 

significant (see Supplementary Table 1). 

We then performed a replication study of the significant Puerto Rican associations in the 

Mexican cohort and vice versa. To account for the fact that we are replicating eight total results 

across both populations, we used a Bonferroni corrected p-value threshold equal to . 05/8 � 6.25 �
10��. The interaction of rs4312379 and rs4312379 with ancestry in the Puerto Ricans replicated in 

the Mexicans. Furthermore, there was a highly significant overall trend of association in the 

replication study (permutation � � 1 � 10��). The lack of direct replication for other specific 

interactions might be driven in part by the fact that Mexicans and Puerto Ricans have distinct 

genetics and environmental exposures. Overall, our results from the GALA II cohort suggest there are 

both genetic and environmental interactions that have yet to be discovered in admixed individuals.  

 

IV. Discussion and Conclusions 

For many disease architectures, interactions are believed to be a major component of 

missing heritability[20]. Finding new interactions has proven to be difficult for logistical, statistical, 

biological, and computational reasons. In this study, we have demonstrated that in admixed 

populations, testing for gene by θ interactions can be leveraged to overcome some of the difficulties 

typically encountered when searching for interactions. Although our method does not provide details 

as to which covariate is interacting with a genetic locus, it can show whether an interaction effect 

exists in a given dataset. Furthermore, the drawback of not having consistently measured 

environmental covariates is addressed by our method. Genetic ancestry is nearly perfectly replicable, 

especially with respect to environmental measurements that can be influenced by a myriad of factors 
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between studies. Testing for the presence of interaction using a nearly perfectly reproducible 

covariate may enhance our understanding of the genetic basis of disease and other traits. Our 

method also provides the additional benefit of not being confounded by interactions between 

unaccounted-for covariates[21]. 

 

Our simulations showed that genetic ancestry can be a good proxy for an environmental 

covariate depending on the correlation between the two. On the other hand, our simulations also 

revealed that testing SNP by θ where genetic ancestry is a proxy for a single highly differentiated SNP 

is severely underpowered. Although genetic ancestry in our simulations was not a good proxy for a 

single SNP, our results from cell lines suggest that genetic ancestry is a good proxy for genetic 

background, since all highly differentiated SNPs across the genome will be correlated with genetic 

ancestry. There are also other contexts in which modeling SNP by θ may be useful, such as in 

heritability estimation. We have previously shown that local ancestry from admixed populations can 

be leveraged to estimate the total additive heritability of a phenotype[22]. We could also use the SNP 

by θ interaction terms to estimate heritability in a mixed-model framework because genetic ancestry 

is correlated with many genetic markers and environmental covariates[23]. To do so, we would 

introduce an additional variance component computed from SNP by θ across the genome in addition 

to the component computed from SNPs only. In this scenario, genetic ancestry would represent an 

aggregate of potential interacting genetic and environmental covariates. It will be interesting to see 

whether such estimations yield more accurate measures of heritability. 

 

In our analysis of real data, we discovered gene by θ interactions associated with genes that 

have known interactions. In the Coriell data, we found that ERBB4 gene expression was associated 

with a SNP by θ interaction. Notably, ERBB4 gene expression has been previously shown to be 

modulated by SNP-SNP interactions in Schizophrenic individuals of European background[24,25]. 

Furthermore, the SNP rs7585465 in ERBB4 that we identified has been shown to be part of multiple 

epistatic interactions from the results of interaction analysis for rheumatoid arthritis in the WTCCC; 

of note, this SNP was in interaction for this disease with a highly population-differentiated SNP 
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rs163673 (which has allele "A" frequency of 0.11 in the reference African population YRI and 1.0 in 

the reference European ancestry population CEU)[26]. In the GALA II Mexicans, the interaction of 

rs925736 with ancestry was associated with the methylation of HDAC4, a known histone deaceytlase 

(HDAC).  In concert with DNA methylases, HDACs function to regulate gene expression by altering 

chromatin state[27]. In Europeans, HDACs have been shown to be associated with lung function 

through direct genetic effects and through environmental interactions[28,29]. For the GALA II Puerto 

Ricans, rs17091085 showed an interaction associated with the methylation state of SERPINA6. Of 

note, interaction between birth weight and SERPINA6 has been previously associated with 

Hypothalamic-Pituitary-Adrenal axis function[30]. Further investigations of our interaction findings 

are thus warranted. 

 

Our analysis revealed the existence of interactions but does not provide a direct way to 

determine the covariate that is interacting with a SNP. Further work will need to be done to uncover 

the exact environmental exposures or genetic loci with which SNPs are interacting. The existence of 

gene by θ interactions in GALA II underscores why modeling interactions should be considered for 

future association studies and heritability estimation in admixed populations. 

 

V. Materials and Methods 

Our approach is best illustrated with an example. First consider testing a SNP s for 

interaction with an environmental covariate E. θ can serve as a proxy for E if the two are correlated, 

even if E is unknown or unmeasured (see Figure 3a). Now consider testing s for interaction with a 

SNP j≠s that is highly differentiated in terms of ancestral allele frequencies. For example, a SNP that 

has a high allele frequency in one ancestral population and a low allele frequency in the other 

ancestral population. θ can be used as a proxy for j because θ and the genotypes of SNP j will be 

correlated. Consider the case where j has a frequency of 0.9 in population 1 and frequency of 0.1 in 

population 2. Individuals with large values of θ
1 

are more likely to have derived j from population 1 

and on average have greater genotype values at j. Similarly, individuals with small values of θ
1 

are 
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more likely to have derived j from population 2 and on average have smaller genotype values. Thus, θ 

will be correlated with the genotypes of the individuals for highly differentiated SNPs and can serve 

as a proxy for detecting interactions (see Figure 3b). 

Consider an admixed individual i who derives his or her genome from k ancestral 

populations. We denote individual i’s global ancestry proportion as 

�� � &���, ��	, … , ���(, where ∑  ��� � 1� . The local ancestry of individual i at a SNP s is denoted as 

-��� . /0, 1, 20 and is equal to the number of alleles from ancestry 1 . /1 … 20 inherited at SNP s. 

Current methods allow us to estimate ancestry directly from genotype data both globally and at 

specific SNPs[9,31,32]. We denote the genotype of an individual i at SNP s as 3�� . /0, 1, 20 and the 

corresponding phenotype as yi. 

In this work, we model phenotypes in an additive linear regression framework, but note that 

our method can easily be extended to a logistic framework for case-control data. Assuming n 

(unrelated) individuals, define 45 to be the vector of all individuals’ phenotypes. The model for the 

phenotype is then  

45 �  6
5 7  85 

where 85 ~ :�0, ;	  is a n×1 vector of error terms, X is a n×v matrix of v covariates, and 
5 is a v×1 

vector of the covariate effect sizes. We note that in our notation <5	 � <5�<5 for a vector <5. Assuming 

independence, the likelihood under this model is: 

= �  > 1
;√2@A�  BC� >D 12;	

�45 D 6
		A 

We can compute the log-likelihood ratio statistic (D) using a maximum likelihood approach: 

E � argmax
�,�

 �log =� D log =
	 � D IJ logK;L��
M 7 K45 D 6
N��

M	

2;L��

	 O 7 IJ logK;L��
M 7 K45 D 6
N��

M	

2;L��

	 O 

The maximum likelihood estimator (MLE) of the effect sizes is 
N � �6�6	��6�45, and the MLE of the 
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error variance is ;L	 � �

�
K45 D 6
NM	

. Here, =� is the likelihood under the alternative and =
 is the 

likelihood under the null. �
N��
, ;L��

	 	 and �
N��
, ;L��

	 	 are the effect sizes and error variance estimates 

that maximize the respective likelihoods. D is distributed as �	 with k degrees of freedom (df), where 

k is the number of parameters constrained under the null. 

 

1-df Ancestry Interaction Test (AIT) 

The first test we present is the standard direct test of interaction. We test for a SNP’s 

interaction with θ instead of an environmental covariate or another genotype. Let 35� � &3�� … 3��( be 

the vector of the individuals’ genotypes at SNP s, �5� � &��� … ���( be the vector of their global 

ancestries for ancestry a, and 35� � �5� be the vector of interaction terms which result from the 

component-wise multiplication of the genotype and global ancestry vectors. We test the alternative 

hypothesis K
N��� P 0M against the null hypothesis K
N��� � 0M. 

 

Q�: 45 �  35� 7 35� � �5� 7 �5� 

Q
: 45 �  35� 7 �5� 

 

In this test of interaction, we test a single ancestry versus the other ancestries that may be present in 

the population of interest. One parameter is constrained under the null which results in a statistic 

with k=1 df. Let 
N���,����� , 
N���,������� , and 
N���,����� denote the effect sizes of genotype, interaction, and 

global ancestry under a given hypothesis respectively. The statistic is given below. 

 

E � D IJ logK;L��
M 7 S45 D 6&
N����� , 
N������� , 
N�����( T	

2;L��

	 O 7 IJ logK;L��
M 7 S45 D 6&
N����� , 0, 
N�����(T	

2;L��

	 O 

where 6 is an J � 3 matrix composed of 35�, �5�, and 35� � �5� as columns. 

 

1-df Ancestry Interaction Test with Local Ancestry (AITL) 
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Given that the individuals we analyze in this work are assumed to be admixed, there is 

potential for confounding due to differential LD. An interaction that is not driven by biology could 

occur due to the possibility that a causal variant may be better tagged by a SNP being tested on one 

ancestral background versus another (See Figure 3c). We account for the different LD patterns on 

varying ancestral backgrounds by including local ancestry as an additional covariate in AITL. By 

including local ancestry, we assume that the SNP being tested is on the same local ancestry block as 

the causal SNP that it may be tagging. Such an assumption is reasonable because admixture in 

populations such as Latinos and African Americans are relatively recent events and their genomes 

have not undergone many recombination events. As a result, local ancestry blocks on average stretch 

for several hundred kilobases[33,34].  

Let -5�� � &-��� … -���( be the vector of local ancestry calls for all individuals for ancestry a 

and let 35� � -5�� be the interaction terms from piecewise multiplication of the two vectors. We use the 

following alternative and null hypotheses: 

 

Q�: 45 �  35� 7 35� � �5� 7 �5� 7 -5�� 7 35� � -5��  
Q
: 45 �  35� 7 �5� 7 -5�� 7 35� � -5��  

 

Here we are testing for an interaction effect, i.e. 
N��� P 0, and constrain one parameter under the 

null resulting in a statistic with k=1 df. Let 
N���,�������  and 
N���,�����  denote the effect sizes of the 

interaction between genotype and local ancestry and just local ancestry, respectively. The log 

likelihood ratio statistic is given by 

 

E � D IJ logK;L��
M 7 S45 D 6&
N����� , 
N������� , 
N�����, 
N�����, 
N�������( T	

2;L��

	 O

7 IJ logK;L��
M 7 S45 D 6&
N����� , 0, 
N�����, 
N�����, 
N�������( T	

2;L��

	 O 
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where 6 is an J � 5 matrix composed of 35�, �5�, 35� � �5�, -5��, and 35� � -5�� as columns. All of these test 

statistics are straightforwardly modified to jointly incorporate several ancestries in the case of multi-

way admixed populations. 

 

Simulation Framework 

For all our simulations, we simulated 2-way admixed individuals. Global ancestry for 

ancestral population 1 ���) was drawn from a normal distribution with U � 0.7 and ; � 0.2. 

Individuals with �� X 1 or �� � 0 were assigned a value of 1 or 0, respectively. We simulated 

phenotypes of individuals to investigate our method in three different scenarios: gene-environment 

interactions, pairwise gene-gene interactions, and false positive interactions due to local differential 

tagging. 

 

To simulate phenotypes under the situation of a gene-environment interaction, we simulated 

a single SNP. For each individual i, we assigned the local ancestry or the number of alleles derived 

from population 1 �-��	 for each haplotype by performing two binomial trials with the probability of 

success equal to ���. We then drew ancestry specific allele frequencies following the Balding-Nichols 

model by assuming a Y�� � 0.16 and drawing two ancestral frequencies, p1 and p2, from the following 

beta distribution[35]. 

 

��, �	 ~ZB[1 \��1 D Y��	Y��

, �1 D �	�1 D Y��	Y��

] 

 

where p is the underlying MAF in the entire population and is set to 0.2. Genotypes were drawn using 

a binomial trial for each local ancestry haplotype with the probability of success equal to p1 or p2 for 

values of -�� � 0 or 1, respectively. Environmental covariates correlated with ��, Ei, were generated 

for each individual i by drawing from a normal distribution :�U � ���, ;�	. ;� was varied from 0 to 5 

in increments of 0.005 to create Ei’s that were correlated with individuals’ global ancestries in 

varying degrees. We generated phenotypes for individuals assuming only an interaction effect by 
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drawing from a normal distribution, :�U � 
��� �  3�� � ��, ; � 1	 for a given interaction effect size 

�
���	. 

 

To simulate phenotypes based on gene-gene interactions, we simulated two SNPs. At both 

SNPs, we assigned the local ancestry values as described for the gene-environment case. We assigned 

genotypes for individuals at the first SNP assuming an allele frequency of 0.5 for both populations 

and drawing from two binomial trials. We assigned genotypes at the second SNP over a wide range of 

ancestry specific allele frequencies to simulate different levels of SNP differentiation. Ancestry 

specific allele frequencies were initially �� � �	 � 0.5 and iteratively increasing p1 by 0.005 while 

simultaneously decreasing p2 by 0.005 until p1 = 0.05 and p2 = 0.95. Genotypes at the second SNP 

were drawn using the same approach described for gene-environment. Using the simulated 

genotypes, phenotypes were drawn from a normal distribution, :�U � 
��� �  3�� � 3�	, ; � 1	, 

where 3�� is the genotype for individual i at the simulated SNP s.  

 

To simulate the scenario of differential LD on different ancestral backgrounds leading to 

false positives, we simulated phenotypes based on a single causal SNP that was tagged by another 

SNP. At both SNPs, local ancestries were assigned as described previously and genotypes were drawn 

using ancestry specific allele frequencies. Ancestral allele frequencies were assigned such that the 

average r2 between the causal and tag SNP was 0.272 on the background of ancestral population 1 

and 0.024 on the background of ancestral population 2. Thus, the tag SNP was only a tag on the 

population1 background and not on the population 2 background. Phenotypes were drawn from a 

normal distribution, :�U � 

� ��! � 3�", ; � 1	, assuming no interaction and 

� ��! � 0.7, where 

3�" is the genotype of individual i at the causal variant.  

 

We implemented our approach in an R package (GxTheta), which is available for download 

at http://www.scandb.org/newinterface/GxTheta.html 
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Data Normalization 

Gene Expression Normalization 

Gene expression data (see Results) were first standardized for each gene such that mean 

expression was 0 and variance was 1. We then computed a covariance matrix of individual’s 

expression values and performed PCA on the covariance matrix. Residuals were computed for all 

expression values by adjusting for the top 10 principal components and the mean for each gene was 

added back to the residuals. Due to the high dynamic range of gene expression compared to 

methylation we conservatively chose to additionally perform quantile normalization. We then sorted 

the gene expression residuals and used the quantiles of their rank order to draw new expression 

values from a normal distribution, :�U � 0, ; � 1	, by using the inverse cumulative density 

function24,25.  

 

Methylation Data Normalization 

Raw methylation values (see Results) were first normalized using Illumina’s control probe 

scaling procedures. All probes with median methylation less than 1% or greater than 99% were 

removed and the remaining probes were logit-transformed as previously described[36]. To control 

for extreme outliers, we truncated the distribution of methylation values. For a given probe, we first 

computed the mean and standard deviation of the methylation values. We then set any methylation 

values deviating more than 2.58 standard deviations from the mean to the methylation value 

corresponding to the 99.5th quantile. 

 

Availability of Supporting Data 

The Coriell data is available from dbGAP under accession number phs000211.v1.p1. The GALA 

and SAGE data is available by emailing the study organizers at https://pharm.ucsf.edu/gala/contact. 
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Figure Legends  

Figure 1. Power Plots for Pairwise Interaction Simulations. 
Power of testing � � � (a) versus testing pairwise SNPs directly (b) as a function of the difference in 
the ancestral allele frequencies at a differentiated SNP. 
 

Figure 2. Power Plots for � � � Interaction Simulations. 
Power of testing � � � as a function of the correlation between an environmental covariate and 
genetic ancestry. 
 
Figure 3. Examples of How Genetic Ancestry Can Be A Proxy for Interacting Covariates. 
(a) Model of how genetic ancestry � can be correlated with various environmental exposures, some 
of which affect a phenotype. (b) Example of how the correlation between the probability of an AA 
genotype (bars 2-4) and values of � (bar 1) increase with higher levels of SNP allele frequency 
differentiation. In this plot p1 and p2 denote the allele frequency of allele A in ancestral populations 1 
and 2 respectively. (c) Example of how effect sizes at a tag-SNP may differ due to differential LD on 
distinct ancestral backgrounds (here, EUR and AFR). 
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Tables 

 

Table 1. Distribution of Ancestry in Coriell and GALA II. 

Dataset θEUR θAFR θNAM 

Coriell μ=0.212, 
σ=0.021 

μ=0.788, 
σ=0.021 

NA 

GALA II MX μ=0.396, 
σ=0.022 

μ=0.043, 
σ=0.001 

μ=0.561, 
σ=0.025 

GALA II PR μ=0.464, 
σ=0.008 

μ=0.241, 
σ=0.009 

μ=0.113 
σ=0.001 

Mean and variance of the global ancestry distributions for each dataset. 
 
Table 2. GALA II DNA Methylation Analysis Results. 

GALA II 

Population 

Probe 

Gene 

Probe ID rsid Distance 

of SNP to 

Probe 

Marginal 

p-value 

AITL  

p-value 

AITL 

Replication 

p-value 

MX CNFN cg14327995 rs16975986 280795 2.49E-09 5.69E-09 9.27E-03 

MX C11orf95 cg16678159 rs7106153 249768 2.58E-01 2.52E-08 9.39E-02 

MX NA cg05697734 rs1560919 13711 1.14E-01 2.21E-08 8.18E-03 

MX TNK2 cg01792640 rs67217828 278866 4.49E-01 6.38E-09 1.43E-02 

MX HDAC4 cg06533788 rs925736 9548 4.51E-01 3.09E-09 2.80E-02 

PR NA cg07436864* rs8117083 31813 7.46E-02 1.34E-09 5.34E-03 

PR NA cg16803083* rs4312379 63847 3.69E-01 2.29E-08 2.31E-04 

PR SERPINA6 cg10025865 rs17091085 247796 6.83E-01 2.97E-08 8.05E-03 

P-values for AITL applied to the methylation data in the GALA II Latinos. MX and PR denote Mexicans 
and Puerto Ricans respectively in the GALA II population columns. The probe gene column shows the 
gene that the methylation probe lies in. The marginal column is the p-value for standard linear 
regression of methylation on genotype while controlling for population structure. * indicates results 
that replicated between the Mexicans and Puerto Ricans. 
 

 
 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 18, 2016. ; https://doi.org/10.1101/036640doi: bioRxiv preprint 

https://doi.org/10.1101/036640


certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 18, 2016. ; https://doi.org/10.1101/036640doi: bioRxiv preprint 

https://doi.org/10.1101/036640


certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 18, 2016. ; https://doi.org/10.1101/036640doi: bioRxiv preprint 

https://doi.org/10.1101/036640


certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 18, 2016. ; https://doi.org/10.1101/036640doi: bioRxiv preprint 

https://doi.org/10.1101/036640

