
 1 

Transethnic	genetic	correlation	estimates	from	summary	statistics	support	widespread	

non-additive	effects	

Brielin	C.	Brown,	Asian	Genetic	Epidemiology	Network-Type	2	Diabetes	(AGEN-T2D)	
Consortium,	Chun	Jimmie	Ye,	Alkes	L.	Price,	Noah	Zaitlen 

Abstract	

	 The	increasing	number	of	genetic	association	studies	conducted	in	multiple	

populations	provides	unprecedented	opportunity	to	study	how	the	genetic	architecture	of	

complex	phenotypes	varies	between	populations,	a	problem	important	for	both	medical	and	

population	genetics.	Here	we	develop	a	method	for	estimating	the	transethnic	genetic	

correlation;	the	correlation	of	causal	variant	effect	sizes	at	SNPs	common	in	populations.	

Unlike	some	prior	approaches,	we	take	advantage	of	the	entire	spectrum	of	SNP	

associations	and	utilize	only	summary-level	GWAS	data,	thereby	avoiding	the	

computational	costs	and	privacy	concerns	associated	with	genotype-level	information	while	

remaining	scalable	to	hundreds	of	thousands	of	individuals	and	millions	of	SNPs.	We	apply	

our	method	to	gene	expression,	rheumatoid	arthritis,	and	type-two	diabetes	data	and	

overwhelmingly	find	that	the	genetic	correlation	is	significantly	less	than	1.	We	argue	that	

this	is	evidence	for	the	presence	of	non-additive	or	differential	tagging	effects	that	modify	

the	marginal	effect	sizes	at	SNPs	common	in	both	populations.	Our	method	is	implemented	

in	a	python	package	called	popcorn.	

	

Introduction	

Many	complex	human	phenotypes	vary	dramatically	in	their	distributions	between	

populations	due	to	a	combination	of	genetic	and	environmental	differences.	For	example,	

northern	Europeans	are	on	average	taller	than	southern	Europeans1	and	African	Americans	

have	an	increased	rate	of	hypertension	relative	to	European	Americans2.	The	genetic	

contribution	to	population	phenotypic	differentiation	is	driven	by	differences	in	causal	

allele	frequencies,	effect	sizes,	and	genetic	architectures.	Understanding	the	root	causes	of	

phenotypic	differences	worldwide	has	profound	implications	for	biomedical	and	clinical	

practice	in	diverse	populations,	the	transferability	of	epidemiological	results,	aiding	multi-

ethnic	disease	mapping3,4,	assessing	the	contribution	of	non-additive	and	rare	variant	

effects,	and	modeling	the	genetic	architecture	of	complex	traits.	In	this	work	we	consider	a	

central	question	in	the	global	study	of	phenotype:	do	genetic	variants	have	the	same	

phenotypic	effects	in	different	populations?	
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While	the	vast	majority	of	GWAS	have	been	conducted	in	European	populations5,	

the	growing	number	of	non-European	and	multi-ethnic	studies4,6,7	provide	an	opportunity	

to	study	genetic	effect	distributions	across	populations.	For	example,	one	recent	study	used	

mixed-model	based	methods	to	show	that	the	genome-wide	genetic	correlation	of	

schizophrenia	between	European	and	African	Americans	is	nonzero8.	While	powerful,	

computational	costs	and	privacy	concerns	limit	the	utility	of	genotype-based	methods.	In	

this	work,	we	make	two	significant	contributions	to	studies	of	transethnic	genetic	

correlation.	First,	we	expand	the	definition	of	genetic	correlation	to	better	account	for	a	

transethnic	context.	Second,	we	develop	an	approach	to	estimating	genetic	correlation	

across	populations	that	uses	only	summary	level	GWAS	data.	Similar	to	other	recent	

summary	statistics	based	heritability	methods9–11,	our	approach	avoids	privacy	concerns	

and	is	scalable	to	hundreds	of	thousands	of	individuals	and	millions	of	markers.	Unlike	

traditional	approaches	that	focus	on	the	similarity	of	GWAS	results12–16	we	utilize	the	entire	

spectrum	of	GWAS	associations	while	accounting	for	LD	in	order	to	avoid	filtering	

correlated	SNPs.	

	 In	a	single	population,	the	genetic	correlation	of	two	phenotypes	is	defined	as	the	

correlation	coefficient	of	SNP	effect	sizes17,18.	In	multiple	populations,	differences	in	allele	

frequency	motivate	multiple	possible	definitions	of	genetic	correlation.	Here	we	consider	

both	the	correlation	of	allele	effect	sizes	as	well	as	the	correlation	of	allelic	impact,	which	

takes	into	account	the	frequency	of	the	variant	in	the	population.	For	example,	a	variant	

may	have	a	much	higher	effect	size	but	much	lower	frequency	in	one	population.	Therefore,	

we	define	the	transethnic	genetic	effect	correlation	(ρge)	as	the	correlation	coefficient	of	the	

per-allele	SNP	effect	sizes,	and	the	transethnic	genetic	impact	correlation	(ρgi)	as	the	

correlation	coefficient	of	the	population-specific	allele	variance	normalized	SNP	effect	sizes.	

While	other	definitions	of	the	genetic	correlation	are	possible	(see	discussion),	these	

quantities	capture	two	important	questions	about	the	study	of	disease	in	multiple	

populations:	to	what	extent	do	the	same	mutations	in	multiple	populations	differ	in	their	

phenotypic	effects	and	to	what	extent	are	these	differences	mitigated	or	exacerbated	by	

differences	in	allele	frequency?		

To	estimate	genetic	correlation,	we	take	a	Bayesian	approach	wherein	we	assume	

genotypes	are	drawn	randomly	from	their	population	and	effects	sizes	have	a	normal	prior	

(the	infinitesimal	model19).	While	unlikely	to	represent	reality,	this	model	has	been	used	

successfully	in	practice8,20–23.	The	infinitesimal	assumption	yields	a	multivariate	normal	
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distribution	on	the	observed	test	statistics	(Z-scores),	which	is	a	function	of	the	heritability	

and	genetic	correlation.	Rather	than	pruning	SNPs	in	LD10,24,25,	this	allows	us	to	explicitly	

model	the	resulting	inflation	of	Z-scores.	We	then	maximize	an	approximate	weighted	

likelihood	function	to	find	the	heritability	and	genetic	correlation.	This	method	is	

implemented	in	a	python	package	called	popcorn.	Though	derived	for	quantitative	

phenotypes,	popcorn	extends	easily	to	binary	phenotypes	under	the	liability	threshold	

model.	We	show	via	extensive	simulation	that	popcorn	produces	unbiased	estimates	of	the	

genetic	correlation	and	the	population	specific	heritabilities,	with	a	standard	error	that	

decreases	as	the	number	of	SNPs	and	individuals	in	the	studies	increases.	Furthermore,	we	

show	that	our	approach	is	robust	to	violations	of	the	infinitesimal	assumption.	

We	apply	popcorn	to	European	and	Yoruban	gene	expression	data26	as	well	as	GWAS	

summary	statistics	from	European	and	East	Asian	rheumatoid	arthritis	and	type-two	

diabetes	cohorts,27,28.	Our	analysis	of	gEUVADIS	shows	that	our	summary	statistic	based	

estimator	is	concordant	with	the	mixed	model	based	estimator.	We	find	that	the	mean	

transethnic	genetic	correlation	across	all	genes	is	low	(ρge=	0.320	(0.009)),	but	increases	

substantially	when	the	gene	is	highly	heritable	in	both	populations	(ρge=	0.772	(0.017)).	We	

find	the	genetic	effect	correlation	in	RA	and	T2D	to	be	0.463	(0.058)	and	0.621	(0.088),	

respectively.		

Across	all	phenotypes	considered,	we	overwhelmingly	find	that	the	transethnic	

genetic	correlation	is	significantly	less	than	one.	There	are	many	phenomena	that	

contribute	to	this,	including:	untyped	and	unimputed	rare	variants	correlated	with	

observed	SNPs;	gene-gene	interactions	or	dominance	effects,	gene-environment	

interactions,	including	epigenetic	effects,	that	are	differential	between	populations;	and	

differences	in	sub-phenotype	composition.	Our	results	therefore	show	that	these	

phenomena	significantly	alter	the	effect	sizes	of	SNPs	common	to	both	populations.	

	

Methods	

	 Consider	GWAS	of	a	phenotype	conducted	in	two	different	populations.	Assume	we	

have	N1	individuals	genotyped	on	M	SNPs	in	study	one	and	N2	individuals	genotyped	on	the	

same	SNPs	study	two.	Let	X1,	X2	be	the	matrices	of	mean-centered	genotypes	in	study	one	

and	study	two,	respectively,	and	let	Y1,	Y2	be	normalized	phenotypes	of	the	individuals	in	

study	one	and	two,	respectively.	Let	f1,	f2	be	vectors	of	the	allele	frequencies	of	the	M	SNPs	

common	to	both	populations.	Assuming	Hardy-Weinberg	equilibrium,	the	allele	variances	
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are	σ12	=	2f1(1	–	f1),	σ22	=	2f2(1	–	f2).	Let	β1,	β2	be	the	(unobserved)	per-allele	effect	sizes	for	

each	SNP	in	studies	one	and	two,	respectively.	The	heritability	in	study	one	is	then	h12	=	Σi	

σ1i2	β1i2	(and	likewise	for	study	two).	The	objective	of	this	work	is	to	estimate	transethnic	

genetic	correlation	from	summary	statistics	of	common	variants	 	(and	

likewise	for	study	two)	and	estimates	of	population	LD	matrices	(Σ1	and	Σ2)	from	external	

reference	panels.	

There	are	multiple	possible	definitions	of	transethnic	genetic	correlation	and	in	this	

work	we	consider	the	genetic	effect	correlation	ρge	=	Cor(β1,	β2),	previously	defined	by	Lee	et	

al17	and	implemented	in	GCTA,	while	additionally	defining	the	genetic	impact	correlation	ρgi	

=	Cor(	σ1β1,	σ2	β2).	Intuitively,	the	genetic	effect	correlation	measures	the	extent	to	which	the	

same	variant	has	the	same	phenotypic	change,	while	the	genetic	impact	correlation	gives	

more	weight	to	common	alleles	than	rare	ones	separately	in	each	population.	For	example,	

if	the	effect	sizes	are	the	same	in	each	population	ρge	=	1	but	ρgi	<	1	because	of	allele	

frequency	differences	between	the	populations.	In	this	case	ρgi	<	ρge	however	the	opposite	

can	also	be	true.	If	rare	alleles	have	larger	effect	sizes	and	there	are	many	alleles	common	in	

study	one	but	rare	in	study	two,	then	ρgi	will	be	greater	than	ρge.	In	this	case,	the	differences	

in	effect	sizes	are	mitigated	by	corresponding	differences	in	allele	frequency.	

We	assume	the	genotypes	are	drawn	randomly	from	each	population	and	that	

phenotypes	are	generated	by	the	linear	model	Y1	=	X1β1	+	ε1	(likewise	for	phenotype	two).	

When	effect	sizes	β	are	assumed	inversely	proportional	to	allele	frequency,	as	is	commonly	

done21,23,	we	show	(Appendix)	that	under	the	linear	infinitesimal	genetic	architecture,	the	

joint	distribution	of	the	Z-scores	from	each	study	is	asymptotically	multivariate	normal	with	

mean	 	and	variance:	

	

(1)	

	

However,	when	effects	sizes	are	assumed	independent	of	allele	frequency	we	show:	

	

(2)	

	

	

Z1 =
(X1/�1)>Y1p

N1

�!
0

Var(Z) =

"
⌃1 +

N1+1
M h2

1⌃
2
1 ⇢gi

p
h2
1h

2
2

p
N1N2

M ⌃1⌃2

⇢gi
p

h2
1h

2
2

p
N1N2

M ⌃2⌃1 ⌃2 +
N2+1
M h2

2⌃
2
2

#

Var(Z) =

2

4
⌃1 +

N1+1
k�2

1k1
h2
1⌃1�2

1⌃1 ⇢ge
p
h2
1h

2
2

p
N1N2p

k�2
1k1k�2

2k1

⌃1

p
�2
1�

2
2⌃2

⇢ge
p

h2
1h

2
2

p
N1N2p

k�2
1k1k�2

2k1

⌃2

p
�2
2�

2
1⌃1 ⌃2 +

N2+1
k�2

2k1
h2
2⌃2�2

2⌃2

3

5

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 14, 2016. ; https://doi.org/10.1101/036657doi: bioRxiv preprint 

https://doi.org/10.1101/036657
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

Given	these	equations	for	variance,	the	quantities	ρgi	or	ρge	and	h12,	h22	can	be	

estimated	by	maximizing	the	multivariate	normal	likelihood	

,	where	C	is	either	of	the	above	covariance	

matrices	(1)	and	(2).	Because	Σ1	and	Σ2	are	estimated	from	finite	external	reference	panels,	

maximum	likelihood	estimation	of	the	above	multivariate	normal	leads	to	over	fitting.	We	

implemented	two	optimizations	to	avoid	this	problem.	First,	we	maximize	an	approximate	

weighted	likelihood	that	utilizes	only	the	diagonal	elements	of	each	block	of	Var(Z).	This	

allows	us	to	account	for	the	LD-induced	inflation	of	tests	statistics	but	discards	covariance	

information	between	pairs	of	Z-scores	and	therefore	leads	to	over	counting	Z-scores	of	SNPs	

in	high	LD.	To	compensate	for	this,	we	down	weight	Z-scores	of	SNPs	in	proportion	their	LD.	

Second,	rather	than	compute	the	full	products	Σ12,	Σ22	and	Σ1Σ2	over	all	M	SNPs	in	the	

genome,	we	choose	a	window	size	W	and	approximate	the	product	by	

.	These	optimizations	are	similar	to	those	employed	by	LD	score	

regression21.	The	full	details	of	the	derivation	and	optimization	are	provided	in	the	

appendix.	

	

Results	

Simulated	Genotypes	and	Simulated	Phenotypes	

	 In	order	to	verify	that	popcorn	yields	an	unbiased	estimate	of	the	heritabilities	(h12,	

h22)	and	genetic	correlations	(ρge,	ρgi),	we	applied	popcorn	to	summary	statistics	from	

simulated	GWAS.	We	simulated	50,000	European-like	(EUR)	and	50,000	East	Asian-like	

(EAS)	individuals	at	248,953	SNPs	from	chromosomes	1-3	with	allele	frequency	above	1%	

in	both	European	and	East	Asian	HapMap3	populations	with	HapGen229.	HapGen2	

implements	a	haplotype	recombination	with	mutation	model	that	results	in	excess	local	

relatedness	among	the	simulated	individuals.	To	account	for	this	local	structure,	we	

randomly	removed	one	individual	from	each	pair	with	global	IBD	coefficient	π	>	0.15,	

leaving	20,085	simulated	EUR	and	20,006	simulated	EAS.	Additionally,	we	used	a	5	MB	

window	in	our	analysis	to	accommodate	longer	range	LD.	From	these	simulated	individuals,	

1000	per	population	were	chosen	uniformly	at	random	to	serve	as	an	external	reference	

panel	for	estimating	Σ1	and	Σ2.		
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In	each	simulation	effect	sizes	were	drawn	from	a	“spike	and	slab”	model,	where	

	with	probability	p	and	 	with	

probability	1-p.	ρgi	was	analytically	computed	from	the	simulated	effect	sizes	and	allele	

frequencies	in	the	simulated	reference	genotypes.	Quantitative	phenotypes	were	generated	

under	a	linear	model	with	i.i.d.	noise	and	normalized	to	have	mean	0	and	variance	1,	while	

binary	phenotypes	were	generated	under	a	liability	threshold	model	where	individuals	are	

labeled	cases	when	their	liability	exceeds	a	threshold	 ,	with	K	the	

population	disease	prevalence30.	

	 We	varied	h12,	h22,	ρge,	and	ρgi,	as	well	as	the	number	of	individuals	in	each	study	(N1,	

N2),	the	number	of	SNPs	(M),	the	population	prevalence	K,	and	proportion	of	causal	variants	

(p)	in	the	simulated	GWAS	and	generated	summary	statistics	for	each	study.	The	results	

shown	in	Figure	1	and	Figure	S1	demonstrate	that	the	estimators	are	nearly	unbiased	and	

that	standard	error	that	decreases	with	(roughly)	the	square	root	of	the	number	of	SNPs	

and	individuals.	Furthermore,	by	varying	the	proportion	of	causal	variants	p	we	show	that	

our	estimator	is	robust	to	violations	of	the	infinitesimal	assumption	(Figure	S2).	Finally,	we	

show	in	Table	S1	that	our	estimates	of	the	heritability	of	liability	in	case	control	studies	are	

nearly	unbiased.	

	

Simulations	with	nonstandard	disease	models	

	 Our	approach,	as	well	as	genotype-based	methods	such	as	GCTA	make	assumptions	

about	the	genetic	architecture	of	complex	traits.	Previous	work	has	shown	that	violations	of	

these	assumptions	can	lead	to	bias	in	heritability	estimation31,	therefore	we	sought	to	

quantify	the	extent	that	this	bias	may	effect	our	estimates.	We	simulated	phenotypes	under	

six	different	disease	models.	Independent:	effect	size	independent	of	allele	frequency.	

Inverse:	effect	size	inversely	proportional	to	allele	frequency.	Rare:	only	SNPs	with	allele	

frequency	under	10%	affect	the	trait.	Common:	only	SNPs	with	allele	frequency	between	

40%	and	50%	affect	the	trait.	Difference:	effect	size	proportional	to	difference	in	allele	

frequency.	Adversarial:	difference	model	with	sign	of	beta	set	to	increase	the	phenotype	in	

the	population	where	the	allele	is	most	common.	Additional	genetic	architectures	are	

possible,	including	ones	where	effect	sizes	are	not	a	direct	function	of	MAF32.		

We	simulated	phenotypes	using	genotypes	with	allele	frequency	above	1%	or	5%	

and	compared	the	true	and	estimated	genetic	impact	and	effect	correlation	among	all	

�1i,�2i ⇠ N
✓
0,


h2
1 ⇢ge

p
h2
1h

2
22

⇢ge
p

h2
1h

2
2 h2

2

�◆

�1i,�2i = (0, 0)

⌧ = ��1(1�K)

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 14, 2016. ; https://doi.org/10.1101/036657doi: bioRxiv preprint 

https://doi.org/10.1101/036657
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

models	(Table	1).	We	find	that	when	only	SNPs	with	frequency	above	5%	in	both	

populations	are	used,	the	difference	in	ρge	and	ρgi	is	minimal	except	in	the	most	adversarial	

cases.	Even	in	the	adversarial	model,	the	true	difference	is	only	7%.	Though	unlikely	to	

represent	reality,	the	four	nonstandard	disease	models	result	in	substantial	bias	in	our	

estimators.	When	SNPs	with	allele	frequency	above	1%	in	both	populations	are	included,	

the	differences	are	more	pronounced.	This	is	because	the	normalizing	constant	1/σ	rapidly	

increases	as	the	SNP	becomes	more	rare.	Indeed,	as	SNPs	become	more	rare	having	an	

accurate	disease	model	becomes	increasingly	important	and	therefore	we	proceed	with	a	

5%	MAF	cutoff	in	our	analysis	of	real	data	and	use	the	notation	hc2	to	refer	to	the	heritability	

of	SNPs	with	allele	frequency	above	5%	in	both	populations	(the	common-SNP	heritability).	

Note,	however,	that	one	of	the	advantages	of	maximum	likelihood	estimation	in	general	is	

that	the	likelihood	can	be	reformulated	to	mimic	the	disease	model	of	interest.	

	

Validation	of	Popcorn	using	gene	expression	in	GEUVADIS	

To	further	validate	our	approach,	we	compared	the	common-SNP	heritability	(hc2)	

and	genetic	correlation	estimates	of	popcorn	to	GCTA	in	the	gEUVADIS	dataset	for	which	

raw	genotypes	are	publicly	available.	gEUVADIS	consists	of	RNA-seq	data	for	464	

lymphoblastoid	cell	line	(LCL)	samples	from	five	populations	in	the	1000	genomes	project.	

Of	these,	375	are	of	European	ancestry	(CEU,	FIN,	GBR,	TSI)	and	89	are	of	African	ancestry	

(YRI).	Raw	RNA-sequencing	reads	obtained	from	the	European	Nucleotide	Archive	were	

aligned	to	the	transcriptome	using	UCSC	annotations	matching	hg19	coordinates.	RSEM	was	

used	to	estimate	the	abundances	of	each	annotated	isoform	and	total	gene	abundance	is	

calculated	as	the	sum	of	all	isoform	abundances	normalized	to	one	million	total	counts	or	

transcripts	per	million	(TPM).	For	eQTL	mapping,	Caucasian	and	Yoruban	samples	were	

analyzed	separately.	For	each	population,	TPMs	were	median	normalized	to	account	for	

differences	in	sequencing	depth	in	each	sample	and	standardized	to	mean	0	and	variance	1.	

Of	the	29763	total	genes,	9350	with	TPM	>	2	in	both	populations	were	chosen	for	this	

analysis.		

For	each	gene	we	conducted	a	cis-eQTL	association	study	at	all	SNPs	within	1	

megabase	of	the	gene	body	with	allele	frequency	above	5%	in	both	populations	using	30	

principal	components	as	covariates.	We	found	that	GCTA	and	popcorn	agree	on	the	global	

distribution	of	heritability	(Figure	S3)	and	that	GCTA’s	estimates	of	genetic	correlation	have	

a	similar	distribution	to	popcorn’s	genetic	effect	(GE)	and	genetic	impact	(GI)	correlation	
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estimates	(Figure	2).	While	the	number	of	SNPs	and	individuals	included	in	each	gene	

analysis	are	too	small	to	obtain	accurate	point	estimates	of	the	genetic	correlation	on	a	per-

gene	basis	(N=464,	M=4279.5),	the	large	number	of	genes	enables	accurate	estimation	of	

the	global	mean	heritability	and	genetic	correlation.	

	

Common-SNP	heritability	and	genetic	correlation	of	gene	expression	in	gEUVADIS	

We	find	that	the	average	cis-hc2	of	the	expression	of	the	genes	we	analyzed	was	

0.093	(0.002)	in	EUR	and	0.088	(0.002)	in	YRI.	Our	estimates	are	higher	than	previously	

reported	average	cis-heritability	estimates	of	0.055	in	whole	blood	and	0.057	in	adipose33,	

which	could	arise	for	several	reasons.	First,	we	remove	68%	of	the	transcripts	that	are	

lowly	expressed	in	either	the	YRI	or	EUR	data.	Second,	estimates	from	RNA-seq	analysis	of	

cell	lines	might	not	be	directly	comparable	to	microarray	data	from	tissue.	

The	average	genetic	effect	correlation	was	0.320	(0.010)	while	the	average	genetic	

impact	correlation	was	0.313	(0.010).	Notably,	the	genetic	correlation	increases	as	the	cis-

hc2	of	expression	in	both	populations	increases	(Figure	3).	In	particular,	when	the	cis-hc2	of	

the	gene	is	at	least	0.2	in	both	populations	the	genetic	effect	correlation	was	0.772	(0.017)	

while	the	genetic	impact	correlation	was	0.753	(0.018).	

In	order	to	verify	that	there	were	no	small-sample	size	or	conditioning	biases	in	our	

analysis,	we	analyzed	the	genetic	correlation	of	simulated	phenotypes	over	the	gEUVADIS	

genotypes.	We	sampled	pairs	of	heritabilities	from	the	estimated	expression	heritability	

distribution	and	simulated	pairs	of	phenotypes	to	have	the	given	heritability	and	a	genetic	

effect	correlation	of	0.0	over	randomly	chosen	4000	base	regions	from	chromosome	1	of	the	

gEUVADIS	genotypes.	Without	conditioning,	the	average	estimated	genetic	effect	

correlation	was	-0.002	(0.003),	indicating	that	the	estimator	remained	unbiased.	

Furthermore,	the	average	estimated	genetic	effect	correlation	was	not	significantly	different	

from	0.0	conditional	on	the	estimates	of	heritability	being	above	a	certain	threshold	(Figure	

S4).	Note	however	that	the	small	sample	size	increases	the	variance	of	the	estimator	

substantially.	Because	the	genetic	correlation	is	bounded	between	-1	and	1,	this	may	induce	

bias	when	the	true	value	is	close	to	the	boundary	and	the	sample	size	is	small.	

We	find	that	while	the	average	genetic	correlation	is	low,	the	genetic	correlation	

increases	with	the	cis-hc2	of	the	gene,	indicating	that	as	cis-genetic	regulation	of	gene	

expression	increases	it	does	so	similarly	in	both	YRI	and	EUR	populations.	This	may	help	

interpret	the	recent	observation	that	while	the	global	genetic	correlation	of	gene	expression	
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across	tissues	is	low33,	cis-eQTL’s	tend	to	replicate	across	tissues34.	As	the	presence	of	a	cis-

eQTL	indicates	substantial	cis-genetic	regulation,	an	analysis	of	eQTL	replication	across	

tissues	is	implicitly	conditioning	on	the	heritability	of	gene	expression	being	high	and	

therefore	may	indicate	much	higher	genetic	correlation	than	average.	

	

Summary	statistics	of	RA	and	T2D	

Finally,	we	sought	to	examine	the	transethnic	ρgi	and	ρge	in	RA	and	T2D	cohorts	for	

which	raw	genotypes	are	not	available.	We	obtained	summary	statistics	of	GWAS	for	

rheumatoid	arthritis	and	type-2	diabetes	conducted	in	European	and	East	Asian	

populations.	We	removed	the	MHC	region	(chromosome	6,	25–35	Mb)	from	the	RA	

summary	statistics.	We	estimated	the	common-SNP	heritability	and	genetic	correlation	

using	2539629	SNPs	genotyped	or	imputed	in	both	RA	studies	and	1054079	SNPs	

genotyped	or	imputed	in	both	T2D	studies	with	allele	frequency	above	5%	in	1000	genomes	

EUR	and	EAS	populations.	The	hc2	and	genetic	correlation	estimates	are	presented	in	Table	

2.	Our	RA	hc2	estimates	of	0.177	(0.015)	and	0.221	(0.026)	for	EUR	and	EAS,	respectively,	

are	lower	than	a	previously	reported	mixed-model	based	heritability	estimates	of	0.32	

(0.037)	in	Europeans35.	Similarly,	our	T2D	hc2	estimates	of	0.242	(0.013)	and	0.105	(0.021)	

for	EUR	and	EAS,	respectively,	are	lower	than	a	previously	reported	mixed-model	based	

estimate	of	0.51	(0.065)	in	Europeans35.	We	stress	that	this	discrepancy	is	likely	due	to	the	

difference	between	common-SNP	heritability	hc2	and	total	narrow-sense	heritability	hg2.	

Furthermore,	estimates	of	the	heritability	of	T2D	from	family	studies	can	vary	

significantly36,37.	

	We	find	the	genetic	effect	correlation	in	RA	and	T2D	to	be	0.463	(0.058)	and	0.621	

(0.088),	respectively,	while	the	genetic	impact	correlation	is	not	significantly	different	at	

0.455	(0.056)	and	0.606	(0.083).		The	transethnic	genetic	impact	and	effect	correlation	for	

both	phenotypes	are	significantly	different	from	both	1	and	0	(Table	2),	showing	that	while	

there	is	clear	genetic	overlap	between	the	phenotypes,	the	per	allele	effects	sizes	differ	

significantly	between	the	two	populations.	This	is	evidence	for	the	presence	of	differential	

tagging	of	untyped	and	unimputed,	possibly	rare	variants	as	well	as	gene-gene,	gene-

environment	or	other	non-additive	interactions,	the	marginal	effects	sizes	of	which	are	

modified	by	changes	in	allele	frequency	between	the	two	populations.	While	within-locus	

(dominance)	interactions	may	also	play	a	role38,	the	magnitude	of	this	effect	has	been	

debated39.	
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Discussion	

	 We	have	developed	the	transethnic	genetic	effect	and	genetic	impact	correlation	and	

provided	an	estimator	for	these	quantities	based	only	on	summary-level	GWAS	information	

and	suitable	reference	panels.	We	have	applied	our	estimator	to	several	phenotypes:	

rheumatoid	arthritis,	type-2	diabetes	and	gene	expression.	While	the	gEUVADIS	dataset	

lacks	the	power	required	to	make	inferences	about	the	genetic	correlation	of	single	or	small	

subsets	of	genes,	we	can	make	inferences	about	the	global	structure	of	genetic	correlation	of	

gene	expression.	We	find	that	the	global	mean	genetic	correlation	is	low,	but	that	it	

increases	substantially	when	the	heritability	is	high	in	both	populations.	In	all	phenotypes	

analyzed,	the	genetic	correlation	is	significantly	different	from	both	0	and	1.	Our	results	

show	that	global	differences	in	SNP	effect	size	of	complex	traits	can	be	large.	In	contrast,	

effects	sizes	of	gene	expression	appear	to	be	more	conserved	where	there	is	strong	genetic	

regulation.	

	 It	is	not	possible	to	draw	conclusions	about	polygenic	selection	from	estimates	of	

transethnic	genetic	correlation.	The	effects	sizes	may	be	identical	(!!" = 1)	while	polygenic	
selection	acts	to	change	only	the	allele	frequencies.	Similarly,	the	effects	sizes	may	be	

different	(!!" < 1)	without	selection.	Differences	in	effects	sizes	at	common	SNPs	can	result	
from	many	phenomena.	The	marginal	effects	of	a	gene	interaction	can	be	altered	

substantially	via	differences	in	allele	frequency,	which	may	arise	due	to	drift.	Variants	that	

are	rare	in	both	populations	but	differentially	tagged	may	also	contribute,	though	we	expect	

this	effect	to	be	small.	Another	contribution	likely	comes	from	variants	that	are	rare	in	

population	one	but	common	in	population	two	(and	vice	versa),	which	will	be	filtered	in	our	

analysis	but	may	be	differentially	tagged.	

	 While	the	genetic	correlation	of	multiple	phenotypes	in	one	population	has	a	

relatively	straightforward	definition,	extending	this	to	multiple	populations	motivates	

multiple	possible	extensions.	In	this	work	we	have	provided	estimators	for	the	correlation	

of	genetic	effect	and	genetic	impact	but	other	quantities	related	to	the	shared	genetics	of	

complex	traits	between	populations	include	the	correlation	of	variance	explained	

	and	proportion	of	shared	causal	variants	between	the	two	

populations.	Interestingly,	while	our	goal	was	to	construct	an	estimator	that	determined	the	

extent	of	genetic	sharing	independent	of	allele	frequency,	we	observe	that	the	correlation	of	

genetic	effect	and	genetic	impact	are	similar.	Furthermore,	our	simulations	show	that	under	

⇢ge = Cor(�2
1�

2
1 ,�

2
2�

2
2)
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a	random	effects	model	utilizing	only	SNPs	with	allele	frequency	above	5%	in	both	

populations	the	true	genetic	effect	and	genetic	impact	correlation	are	similar.	We	conclude	

that	at	variants	common	in	both	populations,	differences	in	effect	size	and	not	allele	

frequency	are	driving	the	transethnic	phenotypic	differences	in	these	traits.	

	 Estimates	of	the	transethnic	genetic	correlation	are	important	for	several	reasons.	

As	detailed	in	this	work,	they	provide	insight	into	the	extent	that	non-additive	genetic	

variation	affects	a	phenotype,	furthering	our	understanding	of	the	genetic	architecture	of	

complex	traits.	Furthermore,	they	may	help	inform	best	practices	for	transethnic	meta-

analysis,	potentially	offering	improvements	over	current	methods	that	utilize	fst	to	cluster	

populations	for	analysis4.	Finally,	the	transethnic	genetic	correlation	constrains	the	limit	of	

out	of	sample	phenotype	predictive	power.	If	the	maximum	within	population	correlation	of	

predicted	phenotype	P	to	true	phenotype	Y	is	 ,	then	the	maximum	out	of	

population	correlation	is	 	(Appendix).	

	 Our	approach	to	estimating	genetic	correlation	has	two	major	advantages	over	

mixed-model	based	approaches.	First,	utilizing	summary	statistics	allows	application	of	the	

method	without	data-sharing	and	privacy	concerns	that	come	with	raw	genotypes.	Second,	

our	approach	is	linear	in	the	number	of	SNPs	avoiding	the	computational	bottleneck	

required	to	estimate	the	genetic	relationship	matrix.	Conceptually,	our	approach	is	very	

similar	to	that	taken	by	LD	score	regression.	Indeed,	the	diagonal	of	the	LD	matrix	product	

in	one	population	are	exactly	the	LD-scores	( ).	One	could	ignore	our	likelihood-

based	approach	and	define	cross-population	scores	 	in	order	to	exploit	the	

linear	relationship	 	(a	similar	approach	can	be	taken	for	

the	genetic	effect	correlation).	Since	LD-score	regression	has	been	successfully	used	to	

compute	the	genetic	correlation	of	two	phenotypes	in	a	single	population,	this	derivation	

can	be	viewed	as	an	extension	of	LD-score	regression	to	one	phenotype	in	two	different	

populations.	The	main	difference	in	our	approach	is	choosing	maximum	likelihood	rather	

than	regression	in	order	to	fit	the	model.	A	comparison	of	our	method	to	the	ldsc	software	

shows	they	perform	similarly	as	heritability	estimators	(Figure	S5).	

	 Of	course,	our	method	is	not	without	drawbacks.	First,	it	requires	a	large	sample	

size	and	large	number	of	SNPs	to	achieve	standard	errors	low	enough	to	generate	accurate	

estimates.	Until	recently	large	sample	GWAS	have	been	rare	in	non-European	populations,	
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though	they	are	becoming	more	common.	Similarly,	reference	panel	quality	may	suffer	in	

non-European	populations	and	this	may	impact	downstream	analysis40.	Second,	it	is	limited	

to	analyzing	relatively	common	SNPs,	both	because	having	an	accurate	disease	model	is	

important	for	the	analysis	of	rare	variants	and	because	effect	size	and	correlation	coefficient	

estimates	have	a	high	standard	error	at	rare	SNPs21.	Third,	our	analysis	is	currently	limited	

to	SNPs	that	are	present	in	both	populations.	Indeed	it	is	currently	unclear	how	best	to	

handle	population-specific	variants	in	this	framework.	Finally,	admixed	populations	induce	

very	long-range	LD	that	is	not	accounted	for	in	our	approach	and	we	are	therefore	limited	

to	un-admixed	populations21.		

	 Our	analysis	leaves	open	several	avenues	for	future	work.	We	approximately	

maximize	the	likelihood	of	an	!×!	multivariate	normal	distribution	via	a	method	that	
utilizes	only	the	diagonal	elements	of	each	block,	discarding	covariance	information	

between	Z-scores.	A	better	approximation	may	lower	the	standard	error	of	the	estimator,	

facilitating	an	analysis	of	the	genetic	correlation	of	functional	categories,	pathways	and	

genetic	regions.	We	would	also	like	to	extend	our	analysis	to	include	population	specific	

variants	as	well	as	variants	at	frequencies	between	1-5%	or	lower	than	1%.	Our	simulations	

indicate	that	having	an	accurate	disease	model	is	important	for	determining	the	difference	

between	the	genetic	effect	and	genetic	impact	correlation	when	rare	variants	are	included.	

Maximum	likelihood	approaches	are	well	suited	to	different	genetic	architectures,	for	

example	one	could	explicitly	model	the	relationship	between	allele	frequency	and	effect	size	

,	where	α=-1	corresponds	to	the	inverse	assumption	and	α=0	corresponds	

to	the	independence	assumption.	However,	a	more	thorough	approach	would	incorporate	

additional	sources	of	information	such	as	the	effect	of	selection.	
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Appendix

Consider two GWAS of a phenotype conducted in di↵erent populations populations. Assume we have N1

individuals genotyped or imputed to M SNPs in study one and N2 individuals genotyped or imputed to

M SNPs in study two. Let X1, X2 and Y1, Y2 be the matrices of mean-centered genotypes and phenotypes

of the individuals in study one and two, respectively, with f1, f2 the allele frequencies of the M SNPs

common to both populations. Assuming Hardy-Weinberg equilibrium, the allele variances are �2
1 = 2f1(1�

f1),�2
2 = 2f2(1� f2). Let �1,�2 be the (unobserved) per-allele e↵ect sizes for each SNP in studies one and

two, respectively. Define the genetic impact correlation ⇢
gi

= Cor(
p
�2
1�1,

p
�2
2�2) and the genetic e↵ect

correlation ⇢
ge

= Cor(�1,�2). We present a maximum likelihood framework for estimating the heritability of

the phenotype in study 1 and it’s standard error, the heritability of the phenotype in study 2 and it’s standard

error, and the genetic e↵ect and impact correlation of the phenotype between the studies and it’s standard

error given only the summary statistics Z1, Z2 and reference genotypes G1, G2 representing the populations

in the studies. We assume that genotypes are drawn randomly from populations with expected correlation

matrices ⌃1 (and similarly for study two), and that every SNP is causal with a normally distributed e↵ects

size (though this assumption is not necessary in practice, see Figure S1).

Genetic impact correlation

Let X 0
1 = X1p

�

2
1

(and similarly for study 2) be normalized genotype matrices. We consider the standard linear

model for generation of the phenotypes, where

Y1 = X 0
1�1 + ✏1

Y2 = X 0
2�2 + ✏2

For convenience of notation let h2
ix

= ⇢
gi

p
h2
1h

2
2. We assume the SNP e↵ects follow the infinitesimal model,

where every SNP has an e↵ect size drawn from the normal distribution, and that the residuals are independent

for each individual and normally distributed:
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where h2
1, h

2
2 are the heritability of the disease in study one and two, respectively, and ⇢

gi

is the genetic

impact correlation.

Using the above model, we compute the distribution of the observed Z scores as a function of the reference

panel correlations and the model parameters (h2
1, h

2
2, ⇢gi). Given a distribution for Z and an observation of

Z we can then choose parameters which give the highest probability of observing Z. First, we compute the

distribution of Z. It is well known that the Z-scores of a linear regression are normally distributed given

� when the sample size is large enough. Since P(Z) / P(Z|�)P(�) and the product of normal distributions

is normal, we only need to compute the unconditional mean and variance of Z to know its distribution.

Specifically, let Z = [Z>
1 , Z>

2 ]>, then it’s mean is
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The within-population variance is:
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pij

= ⌃
pij

is the correlation coe�cient of SNP i and j in population p. Similarly, the between-

population variance is:
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where ⌃(i) denotes the i’th row of ⌃ and ⌃(j) denotes the j’th column. The covariance of the Z-scores is

2
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thus

C = Var(Z) =

2
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3

5 (3)

and Z ⇠ N (0, C).

Genetic e↵ect correlation

Let h
ex

= ⇢
ge

p
h2
1h

2
2. We modify the procedure above to use mean-centered instead of normalized genotype

matrices and model the distribution of the e↵ect sizes as

0
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1
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Notice that a linear model with e↵ects sizes acting on un-normalized genotypes is the same as a linear model

with e↵ect sizes acting on normalized genotypes under the substitution �1,2 !
q

�2
1,2�1,2. Therefore the

covariance of Z-scores on the per allele scale can be immediately inferred from the prior derivation

C = Var(Z) =

2
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Approximate maximum likelihood estimation

Let C =

2

4 C11 C12

C21 C22

3

5 be either of the above covariance matrices written in block form. We approximately

optimize the above likelihood as follows: first we find h2
1 and h2

2 by maximizing the likelihood corresponding

to C11 and C22, then we find ⇢
gi

or ⇢
ge

by maximizing the likelihood corresponding to C12:

l(h2
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◆

Because we are discarding between-SNP covariance information (Cov(Z1i, Z1j)), highly correlated SNPs will

be overcounted in our approximate likelihood. As a simple example, notice that two SNPs in perfect LD

will each contribute identical terms to the approximate likelihood, and therefore should be downweighted

by a factor of 1/2. The extent to which SNP i is over-counted is exactly the i’th entry in it’s corresponding

3
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LD-matrix product. Therefore we let wgi

jki

= 1/ (⌃
j

⌃
k

)
ii

and wge

jki

= 1/
⇣
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j

q
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ii

to reduce the

variance in our estimates of the parameters h2
1, h

2
2, ⇢gi and ⇢

ge

.

Furthermore, rather than compute the full products ⌃2
1, ⌃

2
2 and ⌃1⌃2 over all M SNPs in the genome, we

choose a window size W and approximate the product by (⌃
a

⌃
b

)
ii

=
P

w=i+W

w=i�W

r
aiw

r
biw

. Though maximum

likelihood estimation admits a straightforward estimate of the standard error via the fisher information, we

found these estimates to be inaccurate in practice. Instead, we use block jackknife with block size equal to

min(100, M

200 ) SNPs to ensure that blocks are large enough to remove residual correlations.

Out of population prediction of phenotypic values

Consider using the results of a GWAS with perfect power in population 2 to predict the phenotypic values of

a set of individuals from population 1. This defines the upper limit of the correlation of true and predicted

phenotypic values. Let the true values of the e↵ects sizes in population 2 be �2. Let the true phenotypes

in population 1 be Y = X1�1 + ✏1 while the predicted phenotypes are P = X1�2. We are interested in the

correlaiton of the predicted and true phenotypes ⇢MAX

Y P

= Cor(Y, P ). Notice that, given X, the true and

predicted phenotype of each individual is an a�ne transformation of a multivariate normal random variable
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tion correlation tends to the sample correlation as the number of samples increases, therefore
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as N ! 1

4
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Figure	1:	Standard	error	of	our	estimate	of	genetic	effect	and	impact	correlation	as	a	

function	of	the	number	of	SNPs	and	individuals.	Phenotypes	were	simulated	with	h12=0.5,	

h22=0.5	and	ρgi,e=0.5	and	genotypes	were	simulated	with	HapGen2	to	match	European	(EUR)	

and	East	Asian	(EAS)	populations.	

Figure	2:	Distribution	of	genetic	correlation	comparison	between	popcorn	and	GCTA.	

Distribution	was	computed	using	a	gaussian	kde	on	the	set	of	genetic	correlation	estimates.	

Figure	3:	Genetic	correlation	as	a	function	of	heritability	for	gene	expression.	The	mean	and	

standard	error	of	the	genetic	correlation	of	the	set	of	genes	with	h12	and	h22	exceeding	

threshold	h	in	each	analysis	(y-axis)	is	plotted	against	h	(x-axis).	

	

Tables	

Table	1:	True	and	estimated	values	of	the	genetic	impact	and	effect	correlation	in	simulated	

EUR-like	and	EAS-like	genotypes.	Results	are	the	average	of	100	simulations	with	

phenotype	heritability	of	0.5	in	each	population.		

	

	

Table	2:	Heritability	and	genetic	correlation	of	RA	and	T2D	between	EUR	and	EAS	

populations.	EUR	RA	data	contained	8,875	cases	and	29,367	controls	for	a	study	prevalence	

of	0.23.	EAS	RA	data	contained	4,873	cases	and	17,642	controls	for	a	study	prevalence	of	

0.22.	RA	disease	prevalence	was	assumed	to	be	0.5%	in	both	populations7.	T2D	EUR	data	

contained	12171	cases	and	56862	controls	for	a	study	prevalence	of	0.18.	T2D	EAS	data	

contained	6952	cases	and	11865	controls	for	a	study	prevalence	of	0.37.	T2D	EUR	

prevalence	was	assumed	to	be	8%27	while	T2D	EAS	prevalence	was	assumed	to	be	9%41.	

	 RA	 T2D	

	 MAF	>	0.01	 MAF	>	0.05	

Model	 	 	 	 	 	 	 	 	
Independent	 0.500	 0.478	 0.490	 0.459	 0.500	 0.489	 0.490	 0.469	

Inverse	 0.438	 0.500	 0.520	 0.493	 0.479	 0.500	 0.503	 0.489	

Rare	 0.500	 0.482	 NA	 NA	 0.500	 0.498	 0.916	 0.731	

Common	 0.500	 0.500	 0.308	 0.286	 0.500	 0.500	 0.298	 0.277	

Difference	 0.500	 0.419	 0.428	 0.414	 0.500	 0.461	 0.479	 0.468	

Adversarial	 0.695	 0.588	 0.730	 0.676	 0.698	 0.648	 0.739	 0.698	

⇢ge ⇢gi ⇢̂ge ⇢̂gi ⇢ge ⇢gi ⇢̂ge ⇢̂gi
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hEUR2	obs	 0.265	(0.022)	 0.146	(0.008)	

hEAS2	obs	 0.320	(0.038)	 0.093	(0.020)	

hEUR2	lia	 0.177	(0.015)	 0.242	(0.013)	

hEAS2	lia	 0.221	(0.026)	 0.105	(0.021)	

ρge	 0.463	(0.058)	 0.621	(0.088)	

pρge>0	 1.37e-15	 1.70e-12	

pρge<1	 2.53e-20	 1.66e-05	

ρgi	 0.455	(0.056)	 0.606	(0.083)	

pρgi>0	 8.16e-16	 2.85e-13	

pρgi<1	 4.87e-22	 2.06e-06	
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