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Adaptation depends on the rates, effects, and interactions of many mutations. We analyzed
264 genomes from 12 Escherichia coli populations to characterize their dynamics over
50,000 generations. The trajectories for genome evolution in populations that retained the
ancestral mutation rate fit a model where most fixed mutations are beneficial, the fraction
of beneficial mutations declines as fitness rises, and neutral mutations accumulate at a
constant rate. We also compared these populations to lines evolved under a mutation-
accumulation regime that minimizes selection. Nonsynonymous mutations, intergenic
mutations, insertions, and deletions are overrepresented in the long-term populations,
supporting the inference that most fixed mutations are favored by selection. These results
illuminate the shifting balance of forces that govern genome evolution in populations

adapting to a new environment.
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Adaptation to a new environment is a complex process that depends on the rates, effects,
and interactions of mutations. Comparative genomics has revealed the molecular basis of
some specific adaptations including such examples as lactase permanence in humans (1),
domestication of plants (2) and animals (3), and pathogenicity in bacteria (4). Nevertheless,
it has been difficult to determine more broadly what fraction of new mutations appearing
in an evolving lineage are beneficial versus neutral or deleterious. Answering this question
is important for modeling changes in sequences that are the basis of phylogenetic methods
(5) and would inform debate about the relative importance of adaptive versus nonadaptive
modes of genome evolution (6, 7).

The combination of experimental evolution and whole-genome sequencing provides
a way forward owing to controlled conditions, replicate populations, and temporal data (8).
In one study, the diversity of mutations involved in the early stage of adaptation to high-
temperature stress was studied by sequencing >100 bacterial lineages after a 2000-
generation experiment (9). In another study, sequencing a series of clones from one
population over 40,000 generations showed the trajectory of genome evolution (10).
However, these studies had some limitations: a short-term experiment reveals only the
early steps of adaptation, and it is difficult to distinguish between adaptive “driver” and
nonadaptive “passenger” mutations when only one population is examined.

To overcome these limitations, we analyzed the complete genomes of 264
Escherichia coli clones sampled from 12 populations across 50,000 generations of the long-
term evolution experiment (LTEE) (11, 12). These populations have been propagated in a
defined medium with scarce resources since 1988. The mean fitness of the bacteria,

measured in competition with their ancestor, has increased by ~70% over that time (12).
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The LTEE is a model system for studying fundamental evolutionary questions (10-19).

Genome-wide mutations and hypermutability

We sequenced the genomes of 2 clones from each population after 500, 1000, 1500, 2000,
5000, 10,000, 15,000, 20,000, 30,000, 40,000 and 50,000 generations (Table S1) using the
[llumina platform, and we predicted the mutations in each genome, including structural
variation, using the breseq pipeline (20, 21). In total, we found 14,572 point mutations; 500
[S-element insertions; 726 deletions and 1132 insertions each <50 bp (small indels); and
267 deletions and 45 duplications each >50 bp (large indels). After 50,000 generations, the
average genome length declined by 63 kbp (~1.4%) relative to the ancestor (Fig. S1).
Mutations were not distributed uniformly across the populations. Instead, six populations
(Ara-1, Ara-2, Ara-3, Ara-4, Ara+3 and Ara+6) had 96.5% of the point mutations, having
evolved hypermutable phenotypes caused by mutations that affect DNA repair or the
removal of oxidized nucleotides (13-15). Fig. 1A shows the trajectories for the total
number of mutations in all 12 populations; Fig. 1B is rescaled to provide better resolution
for those that did not become point-mutation mutators.

Increased numbers of IS elements can also cause hypermutability (22), with higher
rates not only of transpositions but also deletions and duplications through homologous
recombination. In population Ara+1, 31.8% of all mutations observed through 50,000
generations were [S150 insertions, compared with 12.3% for the other five populations
that also never evolved an elevated rate of point mutations. This mode of hypermutability
evolved early in Ara+1; IS150 insertions are overrepresented in each Ara+1 clone from
5,000 generations onward when compared individually to all other non-point-mutator

clones from the same generation (Fisher’s exact test with Bonferroni correction, p < 0.05).
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Two clones from other populations were also IS150 hypermutators by this test: 38.7% of
the mutations in one 30,000-generation clone from Ara-5 and 31.7% of the mutations in
one 40,000-generation clone from Ara-3 were IS150 insertions. The aberrant Ara-5 clone
shares only one early mutation with other sequenced Ara-5 clones, indicating that it
represents a deeply diverged lineage in that population; furthermore, it does not share
point mutations with any other population, excluding cross-contamination. The emergence
of these various mutator types shows how evolution can alter the production of genetic

diversity (15, 23), which in turn will change the tempo and mode of genome evolution.

Population phylogenies

Fig. 2A shows phylogenetic trees constructed using point mutations for each population;
Fig. 2B shows the trees with branches rescaled after the point-mutation mutators evolved.
Some populations—including Ara-2, which became hypermutable early, and Ara-6, which
never did—harbor lineages that coexisted for tens of thousands of generations. Some other
populations—such as Ara-4, which became hypermutable, and Ara+2, which did not—are
more linear in structure, without deep branches among the sequenced clones. The deepest
branches were likely supported by the diversity-promoting effects of negative frequency-

dependent interactions, as demonstrated in the Ara-2 population (18, 19).

Dynamics of genome evolution

The genome-wide substitution rate for point mutations increased by ~100-fold in several
populations after mutations arose that caused hypermutability (13-15), and these changes
overwhelm the genomic signature of adaptation. Although the mutator lineages got a slight
boost in their rate of fitness gain, the effect is small owing to clonal interference between

beneficial mutations (12, 24). As a consequence, beneficial mutations are lost in a sea of
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unselected mutations in mutator populations. Therefore, to better understand the dynamic
coupling between adaptation and genome evolution, we analyzed only the populations that
retained the ancestral mutation rate (25) through 50,000 generations and the others before
they became point-mutation or IS150 mutators.

Wiser et al. (12) showed the LTEE’s trajectory for mean fitness is well described by a
power-law relation, in which log fitness increases linearly with log time. Moreover, the
power law accurately predicts fitness out to 50,000 generations using data from the first
5,000 generations only. Wiser et al. also showed that a population-dynamical model that
incorporates two phenomena known to be important in the LTEE—clonal interference (8,
26) and diminishing-returns epistasis (8, 17)—generates the power-law relationship. This
dynamical model further predicts that the number of beneficial mutations in a lineage
increases with the square root of time (12). However, not all mutations that accumulate are
beneficial; neutral and nearly neutral mutations can spread by recurring mutation, by drift,
and by hitchhiking with beneficial mutations. Selective sweeps will purge some neutral
mutations while causing others to increase; the expected overall effect is that the average
number of neutral mutations in a lineage should increase linearly with time (15, 27).

To test these predictions, we fit three models to the trajectory for the number of
mutations that accumulated over time in the nonmutator and premutator lineages:

m=at

m = b sqrt(t)

m = at + b sqrt(t)
where m is the number of mutations, t is time (generations), and a and b govern the

genome-wide rates of accumulation of neutral and beneficial mutations, respectively (Fig.
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3). (Fig. S2 shows the models fit to each population separately.) We compared the models
using the Akaike information criterion (AIC), and the two-parameter model fits the data
much better than those with only the linear (AAIC = -77.7) or square-root (AAIC = -99.7)
terms. Because the one-parameter models are nested within the two-parameter model, we
can also assess the significance of adding the second parameter to the model; the resulting
p-values for adding the parameter are 7.5 x 105 and 5.2 x 107 relative to the linear and
square-root models, respectively. The trajectory for genome evolution thus shows strong

signatures of both adaptive and nonadaptive changes.

Most observed mutations are beneficial

What proportion of the genomic changes in the nonmutator populations was adaptive, and
how did it change over time? Fig. 4A shows the cumulative fraction of beneficial mutations
estimated using the two-parameter model above, which declined from 86.3% at 500
generations to 38.7% at 50,000 generations. Fig. 4B shows the instantaneous proportion of
adaptive changes, which dropped to 23.9% at 50,000 generations. Figs. 4C and 4D show the
same estimates as the ratio of total mutations to the expectation under the null model
where all mutations are neutral; a ratio of 2, for example, indicates 50% beneficial
mutations, and 1 means all mutations are neutral. This latter representation is useful for
showing two other approaches.

A second approach uses the genomic data more directly, but only point mutations; it
reflects the expectation that synonymous substitutions—point mutations in protein-coding
genes that do not affect the amino-acid sequence—are neutral and should accumulate at a
rate that equals their underlying mutation rate (25, 27). This expectation is not strictly true

owing to selection on codon usage, RNA folding, and other effects, but it is generally
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thought that selection on synonymous changes is extremely weak, affects only a small
fraction of sites at risk for synonymous mutations, or both (28). We calculate whether
nonsynonymous and intergenic point mutations are found in excess relative to
synonymous mutations, given the number of sites at risk for each class of mutation. Fig. 5A
shows the number of synonymous mutations in nonmutator and premutator populations,
scaled such that the mean at 50,000 generations is unity. As expected, synonymous
mutations accumulated at an approximately constant rate (Fig. S3). Fig. 5B shows the
number of nonsynonymous mutations relative to the neutral expectation based on
synonymous mutations. Nonsynonymous mutations accumulated ~17.1 times faster than
synonymous ones over the first 500 generations and ~3.4 times faster over the entire
50,000 generations. The cumulative 3.4:1 ratio implies that ~70% (i.e., 2.4/3.4) of the
nonsynonymous mutations observed in nonmutator lineages were beneficial—that is, they
increased in frequency owing to positive selection. Nonsynonymous mutations still
accumulated at over twice the rate of synonymous mutations in later generations (Fig. S4),
implying that most nonsynonymous mutations were beneficial even after tens of thousands
of generations in a constant environment. The same approach applied to intergenic point
mutations (Fig. 5C) also reveals a large excess relative to synonymous mutations (6.5:1),
implying that ~85% of observed intergenic point mutations were adaptive.

Synonymous mutations provide an internal benchmark that reveals the role of
positive selection in the accumulation of nonsynonymous and intergenic point mutations.
However, synonymous mutations are not directly informative for understanding how
selection affects the accumulation of insertions and deletions that collectively comprise

45.6% of all mutations in the nonmutator and premutator clones sequenced through
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50,000 generations. This set of mutations includes 54.4% base substitutions, 23.2% IS
insertions, 8.7% small indels (<50 bp), 10.6% large deletions (>50 bp), and 3.0% large
duplications (>50 bp). Despite changes in the rate at which mutations accumulated (Fig. 3)
and the fraction of beneficial mutations (Fig. 4), the composition of observed mutations
with respect to these categories was relatively stable over time (Fig. S5). Again considering
only nonmutator clones, there was no significant difference in the types of mutations that
arose before 10,000 generations and those present in the 50,000-generation clones that
were not in the 40,000-generation clones (Fisher’s exact test, p = 0.53). This constancy in
the spectrum of changes over time implies that no one type of mutation was much more
likely to generate a benefit than other types, and it suggests that the fraction of beneficial
mutations for other mutation types is roughly similar to that for base substitutions.

We developed a third approach to estimate the proportion of beneficial changes that
can be applied to all types of mutation. We compare the mutational spectrum between two
experiments, the LTEE and a Mutation Accumulation Experiment (MAE) in which 15 lines
were propagated via single-cell bottlenecks (29). Such bottlenecks eliminate the genetic
variation needed for natural selection, so that all types of mutations accumulate at the rates
at which they happen spontaneously, regardless of their fitness effects, except for lethal or
severely deleterious mutations that preclude cells from making colonies used to propagate
the lines (8). Such unselected lines thus provide a baseline for distinguishing beneficial and
nonbeneficial mutations. In fact, because more unselected mutations are deleterious than
beneficial, MAE lines are expected to lose fitness over time, and they did (Fig. S6).

To quantify the relative rates for all types of mutations in the absence of selection,

we sequenced clones from the MAE lines after 550 days of serial bottlenecks (Table S1).
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Consistent with the random accumulation of mutations, the number of nonsynonymous
mutations (including nonsense) was similar to the expectation based on synonymous
mutations (117 observed, 105.02 expected); the resulting ratio of 1.11 is well within the
95% confidence interval (0.70-1.50) obtained by a randomization test. Also, there was no
among-line variation in the total number of mutations (}?* = 5.46, df = 14, p = 0.978). We
can therefore reasonably use the MAE lines to estimate the relative rates of different types
of mutations, with synonymous mutations providing a benchmark that should be largely
free of selection in both experiments. For example, population Ara-1 had 21
nonsynonymous mutations at 20,000 generations and the expected number of synonymous
mutations based on the average nonmutator LTEE population was 1.08 (Fig. S3); the 15
MAE lines in total had 117 nonsynonymous and 39 synonymous mutations; thus, the ratio
of observed mutations to the neutral expectation in this case is (21/1.08)/(117/39) = 6.5.
These ratios show that all major classes of mutations—including various insertions and
deletions—are substantially overrepresented in the LTEE relative to the MAE (Fig. S7),
implying that many mutations in each class were adaptive during the LTEE.

All three approaches, based on different assumptions and comparisons, indicate that
most mutations observed in the nonmutator LTEE populations were beneficial drivers
rather than mere passengers. Also, the proportion of observed mutations that were

beneficial declined over time but remained high throughout the LTEE’s 50,000 generations.

Parallel evolution at many gene loci
Parallel evolution occurs when similar changes arise independently in multiple lineages at
a frequency above a suitable null model, and it is often used to discover putative targets of

selection (4, 9, 16, 30). Genetic parallelism can be studied at the level of DNA sequence,
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affected genes, or integrated functions. Parallelism at the nucleotide level tends to be rare
because different mutations in a gene often produce similar benefits (4, 9, 16), although
there are exceptions (30). Parallelism at a functional level requires detailed understanding
that is often unavailable, and it is difficult to interpret when there are many mutations. We
therefore examined parallelism at the gene level.

We focused on lineages that retained the ancestral point-mutation rate (including
clones from populations that later became hypermutable) because, as shown above, most
mutations are drivers in those cases; hypermutability makes such analyses less informative
because many more mutations are passengers. We first calculated the expected number of
nonsynonymous mutations for each single-copy protein-coding gene based on its length as
a fraction of all such genes and the total number of nonsynonymous mutations in the
relevant lineages (Table S2). We computed G scores for goodness-of-fit between observed
and expected values; the total score was 2592.9. We compared that total with simulated
datasets where positions of mutations in the coding genome were randomized, and the
observed total significantly exceeded the simulations (mean simulated G = 1933.7, Z = 25.5,
p < 10-144). Fifty-seven genes had two or more mutations; these genes had 50.1% of the
nonsynonymous mutations but constituted only 2.1% of the coding genome. (In contrast,
only one gene had multiple synonymous changes.) Table 1 shows the 15 genes that
contribute the most to the total G score for nonsynonymous mutations. Several encode
proteins with core metabolic or regulatory functions, including three involved with
peptidoglycan synthesis.

Table 2 lists the 16 genes with the most deletions, duplications, insertions, and

intergenic point mutations. In 12 cases, the majority of the mutations were mediated by IS
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elements; these include new insertions as well as deletions and duplications involving pre-
existing IS elements that can facilitate such mutations via homologous recombination. In
six cases (including five involving IS-element insertions), the same or nearly identical
mutations occurred in one or more of the MAE lines, where the opportunity for selection
was minimal, suggesting that these cases might involve mutational hotspots. While parallel
changes involving IS elements may indicate high-frequency mutational events, recall that IS
insertions and large indels are substantially enriched in the LTEE populations relative to
the MAE lines (Fig. S7), implying that many of those mutations are also beneficial. Indeed,
the IS-mediated rbsD deletions have been shown both to occur at a high rate and to confer
an advantage in the LTEE environment (31), and some [S-mediated mutations have been
shown to be beneficial in other studies as well (32, 33).

The parallelisms involving nonsynonymous substitutions and other mutation types
in the LTEE populations, coupled with their high rates of accumulation relative to the MAE
lines, provide evidence that many mutations in the sequenced genomes were drivers of
adaptation. For many insertions and deletions, however, the specific genes that are the foci
of adaptive evolution are difficult to identify owing to the multiplicity of genes affected and

the potentially confounding effect of mutational hotspots.

Discussion

Adaptation by natural selection sits at the heart of phenotypic evolution. However, the
random processes of spontaneous mutation and genetic drift often overwhelm, or at least
obscure, the genomic signatures of adaptation. We overcame this difficulty by combining a
well-controlled experimental system with whole-genome sequencing. In particular, we

analyzed 264 genomes from 12 populations of E. coli that evolved for 50,000 generations
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under identical culture conditions. Even so, six of these populations evolved hypermutable
phenotypes that caused their point-mutation rates to increase by ~100-fold, and another
evolved hypermutability mediated by a mobile genetic element. By focusing our analyses
on populations that retained the ancestral mutation rate, we identified several key features
of the tempo and mode of their genome evolution. First, a population-genetic model with
two terms—one for beneficial drivers, the other for hitchhikers—describes the dynamics of
genome change much more accurately than models without both terms. Second, the great
majority of mutations in the genomes sampled during the early generations were beneficial
drivers. Third, the proportion of observed mutations that were beneficial declined over
time but remained substantial even after 50,000 generations. The second and third findings
follow from the population-genetic model. Both are also strongly supported by the excess
of nonsynonymous and intergenic point mutations relative to synonymous changes in the
LTEE and by the excess of all major classes of mutations, including insertions and deletions,
in comparison to the mutation-accumulation lines. Fourth, there was extensive gene-level
parallel evolution involving all types of mutations across the replicate LTEE populations.
Our analyses also show a striking contrast between the contributions of beneficial
mutations to molecular evolution and to the marginal fitness improvements observed after
50,000 generations in a stable environment. In particular, our data indicate that beneficial
mutations continue to constitute a large fraction of genetic changes, whereas the fitness
gains amount to only a few percent over the last 10,000 generations. Beneficial mutations
with very small selection coefficients—including those well below our ability to measure
them directly—are nonetheless visible to natural selection (12). Hence, adaptation remains

a major driver of molecular evolution even many tens of thousands of generations after an
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environmental shift. Our experimental results thus support a selectionist view of molecular
evolution, complementing indirect evidence based on comparative genomics in bacteria,
Drosophila, and humans (34-36). Also, if the process of adaptation is still so pervasive such
a long time after populations encounter new conditions, then fixations of neutral mutations
will occur primarily by hitchhiking, or “genetic draft” (37-39), rather than by genetic drift
as traditionally envisioned. Of course, the LTEE has some features that differ from many or
most natural populations including a low mutation rate, the absence of sex or horizontal
gene transfer, and a stable environment. As seen in the lineages that became hypermutable,
a high mutation rate reduces the relative contribution of adaptation to molecular evolution.
The effects of horizontal gene transfer and variable environments on the dynamic coupling
between genomic change and adaptive evolution should also be examined further. Long-
term experiments with microorganisms provide opportunities for rigorous analyses of

these issues as well.
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Fig. 1. Total number of mutations over time in the 12 LTEE populations. (A) Total
mutations in each population. (B) Total mutations rescaled to reveal the trajectories for
the six populations that did not become hypermutable for point mutations. Each colored
symbol shows a sequenced genome; each colored line passes through the average of
the two genomes from the same population and generation.
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Fig. 2. Phylogenetic trees for LTEE populations. (A) Phylogenies for 22 sequenced
genomes sampled from each population, based on point mutations. The color scheme
used here for the 12 populations is employed in other figures, when relevant. (B) The
same trees, except branches after the evolution of mutators are rescaled to show their
structure more clearly. Branches for lineages with mismatch-repair defects are orange
and shortened by a factor of 25; branches for mutT mutators are red and shortened by a
factor of 50. Strain REL606 (at left) is the ancestor of the LTEE. No early point
mutations are shared between any populations, confirming independent evolution. Most
populations have multiple basal lineages that reflect early diversification and extinction;
some have deeply divergent lineages with sustained persistence, most notably Ara—2.
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Fig. 3. Alternative models fit to trajectory of genome evolution. Each symbol shows
the total number of mutations for one LTEE population, based on the mean of its
sequenced genomes at that time. Data are shown for populations that never became
mutators and for other populations before hypermutability evolved. The dashed grey line
shows the best fit to the linear model, m = at. The solid grey curve shows the best fit to
the square-root model, m = b sqrt(f). The solid black curve shows the best fit to the
composite model, m = at + b sqrt(f), where a = 0.000944 and b = 0.134856. See text for
statistical analysis.
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Fig. 4. Contribution of beneficial mutations to genome evolution. (A) Cumulative
fraction of genome changes resulting from beneficial mutations, based on best fit of the
composite model in Fig. 3. (B) Fraction of changes from beneficial mutations over
successive 1000-generation intervals. (C) Total mutations relative to the expectation
under the null model where all mutations are neutral. (D) Total mutations relative to the
neutral model over successive 1000-generation intervals.
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Fig. 5. Trajectories for synonymous, nonsynonymous, and intergenic point
mutations. (A) Accumulation of synonymous mutations, scaled such that the mean of
the five nonmutator populations at 50,000 generations is unity. (B) Accumulation of
nonsynonymous mutations, scaled using the same rate as synonymous mutations after
adjusting for the number of genomic sites at risk for nonsynonymous and synonymous
mutations. (C) Accumulation of intergenic point mutations, scaled using the same rate
as synonymous mutations after adjusting for the sites at risk for intergenic and
synonymous mutations. Each symbol shows the mean of the sequenced genomes from
the nonmutator or premutator lineages in one population. Note the discontinuous scale,
in which populations with no mutations of the indicated type are plotted below. Black
lines connect grand means; the grey shading shows standard errors calculated from the
replicate populations.
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Table 1 Protein-coding genes with highest G scores.

Genes are ranked by G scores computed using the observed number of independent
nonsynonymous mutations relative to the number expected given the gene length (bp).
The parenthetical gene name is a synonym. The data are from populations that retained
the ancestral point-mutation rate throughout the 50,000 generations and from other
populations before they evolved hypermutability.

Gene Length Observed Expected G Annotation

pykF 1413 19 0.16 180  pyruvate kinase

transcriptional repressor,

icIR 825 13 0.10 128 glyoxylate bypass
spoT 2109 14 0.25 113  stringent response
bifunctional transcriptional
nadR 1233 12 0.14 106 repressor and NMN
adenylyltransferase
molecular chaperone and ATPase
hslU 1332 1 0.16 94 component of protease
yijC transcriptional repressor, fatty acid
(fabR) 705 ! 0.08 62 and phosphatidic acid pathway
topA 2598 8 0.30 52 DNA topoisomerase | subunit
transcriptional activator,
malT 2706 8 0.32 52 maltotriose-ATP-binding
mrdA 1902 v 0.22 48 transpeptldase in peptidoglycan
synthesis
mreB 1044 6 0.12 47 Iongitud?nal peptidoglycan
synthesis
infB 2673 7 0.31 44 translation initiation factor IF-2
response regulator in two-
arcA 717 5 0.08 41 component system, anoxic redox
control
argR 471 4 0.05 34 repressor of arginine regulon
rplF 534 4 0.06 33 50S ribosomal subunit protein
mreC 1103 4 013 8 longitudinal peptidoglycan

synthesis
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Table 2 Genes with the most deletions, duplications, insertions, and intergenic
point mutations.

Genes are ranked based on total number of mutations excluding nonsynonymous and
synonymous point mutations. When two genes are separated by a slash, the affected
sequence includes the intergenic region between them. Parenthetical gene names are
synonyms. The column labeled IS indicates whether the majority of mutations involve IS
elements. The MAE column indicates whether the same or nearly identical mutations
occurred in one or more of the MAE lines. The data are from populations that kept the
ancestral point-mutation rate throughout the 50,000 generations and other populations
before they evolved hypermutability.

Genes Mutations Number IS MAE Annotation
rbsD mostlyllarge 41 yes no D-ribose _utlllzat|on; most deletions
deletions affect entire rbs operon
various .
nupC intergenic 19 yes yes nucleoside transporter
alkaline-phosphatase isozyme
ia mostly large 19 os o conversion; most indels affect tens of
P indels y adjacent genes including rpoS, which
encodes stationary-phase o factor
mokB various indels 17 yes yes  enables hokB toxin expression
intergenic point
yhgl/gntT mutations 16 no no  gluconate transport
mokC various indels 15 yes yes enables hokC toxin expression
. indels affect this and adjacent remnants
ybcU (borD) large indels 14 yes N fpLP12 prophage
ECB_02013 various indels 14 no yes indels _affect this and adjacent remnants
of P2-like prophage
ECB_02816 . . polysialic-acid transport protein
(kpsD) various indels 14 yes no precursor
acs/nrfA _various 14 no no  acetyl-CoA synthase; nitrite reductase
intergenic
toxin in plasmid-derived toxin-antitoxin
. system; most indels affect several
hoke large indels 12 yes no adjacent genes involved in iron
acquisition
various unknown functions, but adjacent to
ybeB/phpB intergenic " yes no genes involved in cell-wall synthesis
ydid/ydiK _various 11 no no predlpteq FAD-linked omdoredgctase;
intergenic putative inner membrane protein
ldrC various indels 10 yes yes small toxic polypeptide
menC IS insertions 10 yes yes menaquinone biosynthesis
fimA .mostl_y IS 10 yes no component of fimbrial complex
insertions
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