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Abstract 

Dose from radiation exposure can be estimated from dicentric chromosome (DC) frequencies in 

metaphase cells of peripheral blood lymphocytes.  We automated DC detection by extracting 

features in Giemsa-stained metaphase chromosome images and classifying objects by machine 

learning (ML).  DC detection involves i) intensity thresholded segmentation of metaphase 

objects, ii) chromosome separation by watershed transformation and elimination of inseparable 

chromosome clusters, fragments and staining debris using a morphological decision tree filter, 

iii) determination of chromosome width and centreline, iv) derivation of centromere candidates 

and v) distinction of DCs from monocentric chromosomes (MC) by ML. Centromere candidates 

are inferred from 14 image features input to a Support Vector Machine (SVM). 16 features 

derived from these candidates are then supplied to a Boosting classifier and a second SVM 

which determines whether a chromosome is either a DC or MC. The SVM was trained with 292 

DCs and 3135 MCs, and then tested with cells exposed to either low (1 Gy) or high (2-4 Gy) 

radiation dose.  Results were then compared with those of 3 experts. True positive rates (TPR) 

and positive predictive values (PPV) were determined for the tuning parameter, . At larger ,  

PPV decreases and TPR increases.  At high dose, for = 1.3, TPR = 0.52 and PPV = 0.83, while 

at = 1.6, the TPR = 0.65 and PPV = 0.72.  At low dose and  = 1.3, TPR = 0.67 and PPV = 

0.26. The algorithm differentiates DCs from MCs, overlapped chromosomes and other objects 

with acceptable accuracy over a wide range of radiation exposures. 
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Introduction 

Clastogenic events producing dicentric chromosomes (DC) are among the most reliable 

biomarkers of radiation exposure. These events are infrequent relative to the background of 

normal monocentric chromosomes (MC), thereby requiring many cells for accurate dose 

estimation. This has motivated efforts to automate cytogenetic image analysis. This task has 

been a longstanding challenge in computer vision research (Bayley et. al. 1991), largely because 

chromosome morphology is incredibly variable between metaphase cells and different 

preparations and laboratories. The reasons include differences in chromosome structure, staining 

methods, biological effects and differences in sample preparation methods. Metaphase cell 

selection strongly influences the accuracy of these analyses. Content and classification-based 

methods have been used to rank metaphase cell images based on chromosome number and 

degree of chromosome overlap (Kobayashi et al. 2004).  Nevertheless, advances in automated 

karyotyping have been limited by the accuracy of algorithms, and hidden implementation details 

of commercial products.   

 

Spurious branches produced by medial axis thinning of irregular chromosome objects can lead to 

incorrect centromere placement. We developed an algorithm to calculate the centerline of the 

chromosome that excluded spurious branches and was independent of overall morphological 

differences (Subasinghe et al. 2010; Subasinghe et al. 2013). This approach spurred new 

strategies for centromere detection using curvature rather than width to determine centromere 

location (Mohammaed 2012) or artificially straightened chromosomes to create a trellis 

perpendicular to the centerline (Jahani and Setarehdan 2012).  However, these methods, 

including our own, require objects with smooth chromosomal boundaries. The presence of 

irregular contours adversely impacts the centreline, and consequently, the accuracy of features 

used to infer centromere location. Centerline-based results are also affected by chromosomes 

exhibiting sister chromatid separation (SCS).     

 

Metaphase images containing ~46 individual, non-overlapped chromosomes without SCS will 

yield the most accurate DC detection. In practice, such ideal images are uncommon among cell 

preparations in biodosimetry laboratories so a method of selecting appropriate metaphases or 

dealing with overlaps is required. In this manuscript, we present a series of image processing 
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methods to automate detection of DCs. The process involves selecting metaphase cells with 

optimally distributed chromosomes (Kobayashi et al. 2004) from a sample, defining the 

boundaries of the remaining chromosomes, detecting centromere candidates, and discriminating 

mono- from dicentric chromosomes.  When multiple chromosomes overlap or touch in an image, 

these clusters are preprocessed and separated by a watershed transform, which ensures that valid 

chromosome objects are processed. 

 

The method segments the chromosome objects using local thresholding and draws object 

outlines by Gradient Vector Flow (GVF) active contours (Xu and Prince 1998). Once the object 

is extracted based on the GVF outline, the contour of the chromosome is partitioned along the 

centreline using a polygonal shape simplification algorithm called Discrete Curve Evolution 

(DCE) (Latecki and Lakamper 1999, Bai et al. 2007) .  

 

We recently implemented a centromere localization algorithm, which is refractory to the 

confounding effects of highly bent chromosomes and SCS (Subasinghe et al.2015). Since 

centerline-based centromere detection tends to perform better than other approaches, the 

centerline is used to partition the chromosome contour into two nearly symmetric regions. The 

centerline is not used to measure chromosome width or other properties.  As a result, the 

boundary texture does not affect the smoothness of the width profile measurements which are 

used to locate centromeric constriction(s). Once the contour is partitioned and segmented, an 

Intensity Integrated Laplacian (IIL) thickness measurement algorithm (Subasinghe et al. 2013) 

integrates pixel intensities, resulting in vectors traced axially along homogenous intensity 

regions, analogous to chromosome bands. Here, we derive features in chromosome images to 

rank centromere candidates by Support Vector Machine (SVM) learning.  These features 

represent various aspects of the geometry and other properties of the chromosome at the 

locations of the selected candidates. A second SVM is then used to discriminate monocentric 

and dicentric chromosomes.  

 

 

Materials and Methods 
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The algorithm and software separates and isolates chromosomes, localizes centromere candidates 

within each, then processes the candidates to distinguish MCs from DCs. This is done by 

extracting valid chromosomes from images of complete metaphase cells using customized 

image-processing methods, computing quantitative features from these images as input to pre-

trained ML models that optimize identification of DCs among a larger population of MCs. 

Image Segmentation 

All objects in images are first segmented and binarized by local intensity thresholding (Otsu 

1979). The foreground objects obtained are a mixture of single chromosomes, clusters of 

overlapped or touching chromosomes, nuclei and staining debris.  Touching and overlapped 

chromosome clusters are problematic for DC analysis as their inclusion presents multiple 

centromeres in one object. To separate chromosome clusters into individual chromosomes, we 

perform a watershed-based method. The watershed transform, a widely used technique in image 

segmentation (Meyer 1994), treats an image as a surface and consequently finds catchment 

basins and ridge lines that separates domains of the object. The transform is guided by seeds 

placed by users to match possible basins on the image. Aggressive intensity re-thresholding on 

foreground pixels is calculated for all objects. New segmented regions act as seeds in the 

watershed transform. Therefore, the ridge pattern combines intensity and positioning 

information, which provides a possible separation strategy for the object (Figure 1A). However, 

single chromosomes with considerable SCS or non-uniform staining can also be broken at the 

site of a ridge pattern. Fragments caused by incorrect splitting exhibit different morphological 

characteristics from complete chromosomes. We established three simple empirical conditions 

based on feature length, perimeter and area to prevent inappropriate splitting of chromosomes  

(Figure 1B). Ridges that meet any of the conditions are considered to split a single chromosome 

and are therefore discarded. The two parts of an object separated by a ridge (R) are referred to as 

  and  .  

Condition 1:                                        .  

Condition 2:                                      .  
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Condition 3: 85% of  ,  ’s area are spatially symmetric with   being the axis and 

                                      .  

Conditions 1 and 2 are designed to avoid breaking of complete chromosomes. Condition 3 

prevents splitting of sister chromatids. All parameters for these conditions have been 

heuristically chosen and validated with large numbers of images containing touching and 

overlapping chromosomes. However, separation of these objects cannot be guaranteed. 

To filter out non-chromosomal objects, we examined the sizes, brightness and contours after 

segmentation of all objects in an image. Upper and lower thresholds for chromosome area and 

average intensity have been determined from statistical distributions of these values from 

analysis actual chromosomes in a set of metaphase cells. Chromosome fragments, nuclei and 

staining debris are eliminated if they are respectively above or below the thresholds for either 

chromosome area ( >5x the area of neighboring median object size or <200 pixels
2
) or intensity 

(>20x mean intensity of median size objects or <40x mean intensity of median size objects). To 

detect overlapping chromosomes and other unfiltered chromosomal objects in the image, the 

contour of each object was analyzed.   We measure the point-wise inner distances (Ling and 

Jacobs 2007) of the contour to estimate the maximum width of a chromosome. DCE simplified 

contours are used, replacing original contours to reduce computational time complexity. Outliers 

of the estimated width in a metaphase are removed as overlapped chromosomes.  

Centromere Localization 

Chromosomes are serially processed by the GVF, DCE and the IIL algorithms [Subasinghe et al. 

2013], then candidate centromeres are selected from local minima along the width profile of each 

chromosome. A Support Vector Machine (SVM) was previously trained on 11 image analysis 

features (Subasinghe et al. 2015) to find the strongest candidate centromere with the based on its 

distance to the hyperplane relative to all others. Briefly, these features describe: i) the local 

minimal chromosome width, the pixel intensity at each candidate; ii) differences between a curve 

fit to the width profile and the profile itself; iii) the maximal width adjacent to the candidate; iv) 

the beginning and end coordinates of the Intensity Integrated Laplacian vectors, v) the shortest 

distance from the candidate to the end of the centerline; and vi) the ratio of width at the candidate 

to the average width of all points along the centerline. 
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This centromere SVM identifies a single candidate as the centromere, regardless of whether the 

chromosome is MC or DC. To identify secondary centromere candidates, the top candidates are 

sorted in order of their signed distances to the SVM hyperplane and the two best candidates are 

then analyzed. The true centromere(s) are expected to be present among the candidates. In the 

case of a MC chromosome, the two candidates comprise a true centromere and a non-

centromeric region; for DC chromosomes, both candidates would include the true centromeres. 

To improve the accuracy of centromere assignment, it was necessary to incorporate 3 additional 

image features (A1 – A3, defined below) in the centromere SVM, defined as follows. For each 

chromosome, let          denote the     point on its centerline. We introduce the following 

notations: 

      refers to the image intensity value at   . 

      and          refer to the width profile at   , or of the interval        . 

       refer to the quadratic curve fit to the width profile at   . 

       and        refer to Laplacian start and end points corresponding to   .  

For each centromere candidate k of the same chromosome,   , the additional features are 

described below: 

A1:                           . This is the normalized intensity of the candidate. 

A2:                    . This feature is the turning angle between the start and 

endpoints of the Intensity Integrated Laplacian vector at the candidate. 

A3:             . The difference of the fitted quadratic width and the actual width of 

the candidate.  

Feature A1 extracts intensity values at the centromere candidates. Feature A2 prevents false 

candidates at bending or twisting regions in a chromosome. The width profile of a chromosome 

contains a set of discrete width values with peaks in the middle and valleys at the ends of each 

which are fit to a quadratic function. Centromeres normally show significant reduction in width 

due to constrictions at these contour coordinates. This chromosome property can be captured by 

comparing the actual width profiles at the centromere candidates to their expected widths fit to 
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the quadratic function. Feature A3 in the centromere SVM measures the  difference between 

these values. Along with the original features, the final centromere SVM uses 14 features to 

select the optimal candidates used in the detection of DCs.  

DC Detection 

A compound ML model was developed to discriminate MCs from DCs. The components of the 

model included a second SVM trained to recognize MCs and DCs, whose accuracy was 

enhanced with a Boosting Classifier (Viola and Jones 2001). Given the two candidate 

centromeres, the method generates a set of features for a chromosome which characterize their 

respective impacts on chromosome structure. We developed a set of image features (F1 – F16, 

defined below) to train the MC-DC SVM to distinguish between them. In a DC, each candidate 

is expected to exhibit a constriction of similar magnitude, but their respective widths will differ 

in MC chromosomes. The MC-DC SVM analyzes selected candidates in the context of the 

chromosome.  Significant variation between the morphologies of different chromosomes 

required some features to be designed  to mitigate the occurrence of false positive DCs, which 

were, in fact,  true MCs. To illustrate these features, we use          to denote the     point 

along the centerline of a chromosome. In addition to the expressions defined above, we also 

introduce the following symbols:   

         refers to the normalized accumulated Euclidean distance between    and    along 

the centerline. 

      refers to the distance from    to the hyperplane in the centromere SVM, if it is a 

candidate.  

       and        refer to   ’s Euclidean distances to        and       .  

  and   denote the mean and standard deviation, respectively, for sample distributions. 

We define the selected centromere candidates as    and   , with    , and summarize features 

based on these candidates in the MC-DC SVM below:  

F1, F2:       and      . They are the likelihoods of the candidates being true 

centromeres evaluated by the centromere SVM. 
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F3:              . DC chromosomes should have similar F1 and F2 values since both 

candidates are true centromeres and a smaller F3 value. By contrast, in MC 

chromosomes, F3 tends to be large, as one of the candidates is a false centromere. 

F4:          . This feature prevents cases where the two candidates are so close that they 

actually belong to the same centromere.  

F5:                                          . This feature prevents false positive 

cases where a candidate is positioned too close to telomeres. 

F6:                                    . This feature is part of the 

centromere SVM. 

F7:                                    . F6 and F7 measure the contour 

constriction at the centromere candidates. 

F8:                                                 . This feature is the 

larger value of the z-scores for the candidates’ width profiles . It is  relatively small for 

DC chromosomes, and large for MC chromosomes. 

F9:                   , where                       ,          

             . This feature assesses the similarity of the steepness at the candidate 

locations on the chromosome. 

F10:                                                       . This feature 

detects false centromeres that are caused by chromosome bending. 

F11, F12:       and       , where                                  . These features 

detect the contour concavities of the Laplacian start points for the candidates.  

F13, F14:       and       , where                                  . These features 

detect the contour concavities of the Laplacian end points for the candidates. 

Features derived from width profiles and contours are founded on the knowledge of cytogenetic 

characteristics of centromeres, which are specifically associated with the analysis of DCs. 
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However, the diversity of raw intensity pixel values between different chromosomes and images 

discourages the use of unprocessed features in these supervised learning models.  This problem 

was addressed with generalized pixel-level features that are widely used in various recognition-

driven problems in computer vision. A Boosting Classifier applied to Haar-like features in 

chromosome images uses this pixel-level information to strengthen the accuracy of centromere 

probability measurement (Viola and Jones 2001). Haar-like features have been proven to be an 

effective descriptor for low-level intensity patterns. Pixel intensities are integrated in moving 

sub-windows and the integrated values are compared within windows comprising a series of 

symmetric rectangles. This mechanism generates a comprehensive gray-scale descriptor for a 

region of interest. In most applications, Haar-like features work with Boosting classifiers because 

of the high dimension of the feature set. A Boosting model consists of a large number of simple 

classifiers that are only required to be more accurate than a random classifier. During training, 

the Boosting model iteratively adjusts weights of its classifiers, and combines all classifier 

predictions to improve accuracy. The sign of the weighted sum of the Boosting classifiers 

determines the binary classification. Haar-like features, computed in a 21-by-21 region centered 

on a selected candidate, comprise 6749 features input to the Boosting classifier. The weighted 

sums of the classifier of both candidates in a chromosome are appended to the MC-DC SVM as 

additional features (F15, F16). Various Boosting configurations (eg. Ada Boost and Robust 

Boost) were also tested to determine if these improved discrimination of candidate centromeres.  

 The performance of different kernel types, linear, polynomial and radial basis function (RBF) 

kernels, were compared for the MC-DC SVM. The centromere SVM was previously configured 

to use the RBF kernel [Subasinghe et al. 2015]. Similarly, RBF was selected for the MC-DC 

SVM classifier, due to its superior accuracy in distinguishing MCs and DCs in a curated set of 

chromosomes (see Results). SVMs can produce multiple classifier models, each based on a 

unique tuning parameter, . Increasing  values effectively represent a tradeoff between 

increased sensitivity and reduced specificity in DC detection. The RBF is tuned with the   

parameter, whose value monotonically increases (1.1 – 1.8) with increased detection of DCs 

(both true and false positives [TP, FP]). The optimal results are determined by testing these 

values. For example, the inferred DC distribution in a sample at different values of   is fit to the 

expected Poisson distribution of DCs in irradiated lymphocytes [International Atomic Energy 

Agency 2001].    
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Software Organization 

The algorithms were originally developed in MATLAB, and the finished software has been 

implemented in C++. The current version has been re-organized from its last release, logically 

divided into four layers. The architecture is indicated in Figure 2.  

The supporting libraries layer includes third-party libraries, as well as low-level image 

processing modules. Most core classes and functions are built on OpenCV and Qt libraries. Intel 

Thread Building Blocks (TBB) provides multi-threading parallel processing for DC analysis 

operations. The GNU scientific (GSL) and Qt libraries are also called by the software. The main 

DC analysis is implemented in the functionalities layer and contains three modules 

corresponding to the three stages of the ADCI algorithm: image segmentation, centromere 

detection and ML. We create the interface layer as an intermediate between DC analysis and user 

interfaces. Core data structures and classes representing metaphase images, chromosomes and 

other key cytogenetic concepts are coded in this layer.  

The top tier is the applications layer, including multiple applications depending on the end user 

requirements. A graphical user interface (GUI) was developed to obtain training data for the 

SVMs. This GUI supports user scoring by visually displaying the centromere candidates on each 

chromosome. These data are compared with ground truth-scored centromeres by the training GUI 

to assess performance of the SVM iterations and feature improvements during the development 

process. A version of this software application can be used to evaluate individual DC and MC 

chromosomes either in the available image gallery or supplied by the user (Figure 3).  

 

Results 

Data sources 

Unlike the centromere detection procedure, most experimental data analyzed are from cells that 

have been exposed to calibrated gamma or X-ray radiation sources. The microscopy images of 

metaphase cells were generated in biodosimetry laboratories at Health Canada (HC) and 

Canadian Nuclear Laboratories (CNL).  Experts in these laboratories determine the biological 

level of radiation exposure in accidents and other exercises. The datasets were comprised of 
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multiple batches of images from samples of different known radiation exposures (from 1-4 Gy). 

Cytogenetic experts collected chromosome information for routine biodosimetry exercises, 

which have been used to develop and test the automated methods described in this study. Distinct 

datasets were used to derive the ML models and to evaluate their performance by cross-

validation. An early version of the software was used to record key attributes used for training, 

ie. 3 experts marked all true centromeres amongst the set of candidates on each DC chromosome, 

and denoted false positive DCs.   

Cytogenetic specialists at UWO, HC, and CNL used the graphical user interface version of the 

software (Figure 2), which provided training data for the SVM that indicated ground truth 

designations of dicentric, and in some instances, monocentric chromosomes. Chromosomes were 

first classified by a SVM; then, users scored chromosomes as DC or MC by confirming or 

correcting this classification. Scoring differences resulted from SVMs with different sigma 

values (1.4 vs. 1.5), and scoring criteria adopted by different specialists. For example, the 

classification of dicentric acrocentric chromosomes depends on the length of the p arm and the 

proximity of. the centromere to the nearest telomere. If this distance is particularly short, i.e. less 

than the chromatid width, a potential DC is not counted as dicentric, as the determination is 

ambiguous for the software. Differences between scores were then discussed and usually could 

be resolved by joint review. Any remaining discrepancies are reported in the final results. 

The metaphase image data were divided into 3 groups, according to how each was scored. 

Cytogenetic experts scored all DCs in each dataset. Dataset 1 contained 281 fully labeled 

metaphase images with centromeres marked by experts. 266 DC chromosomes, 3,222 MC 

chromosomes are present in dataset 1, with all other segmented objects being chromosome 

clusters, nuclei and staining debris. In dataset 2, only true DC chromosomes are scored while 

other objects, including MC chromosomes, are ignored. In dataset 2, we observed 531 DC 

chromosomes and 13,898 other objects from 612 images. Both datasets 1 and 2 are from cells 

exposed to 3-4 Gy (high-level) gamma radiation. The image segmentation of these datasets was 

subjected to intensity thresholding without application of the watershed method. The final 

dataset 3, comprises a wide range of doses and has been separated into 1 Gy (low dose) and 3-4 

Gy high dose subsets. This dataset 3 was analyzed with a version of the algorithm that included 

watershed segmentation.  
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Image Segmentation 

The watershed separation and the segmentation components were tested with an dataset enriched 

in chromosome clusters created from 60 metaphase images from dataset 1. It contained 2340 

objects including 1762 single chromosomes, 349 chromosome clusters and 229 nuclei and debris 

or fragmentary objects. The watershed method separates 294 chromosome clusters, or 84% of 

the set of 349. Some single chromosomes (n=48) were inappropriately broken by the watershed 

method, however 1714 (97%) remained intact. A portion of whole nuclei, fragments and debris 

objects (n=84) were also split by the watershed method, however none of these were classified in 

subsequent steps as either MC or DCs. 

Centromere SVM 

The centromere SVM model in our DC analysis selected centromere candidates to provide 

information to assign the type of chromosome by the MC-DC SVM. We evaluated the 

performance of the centromere SVM on the basis of selected candidates that identified true 

centromeres. Only DCs were assessed, as it was very rare that the centromere in a MC was not 

among the two candidates. The detection accuracy based on the 2 most highly-ranked centromere 

candidates in a chromosome was compared with the 4 top-ranked candidates. Both centromeres 

in a DC were required to be identified in either the top 2 or top 4 candidates. In dataset 1, a 5-

fold cross-validation was carried out with 4 of 5 DCs defined as training data and the remainder 

were used for testing the SVM  Subsequently, the full centromere SVM was trained with all DCs 

in dataset 1, and tested with data from dataset 2 (results are shown in Table 1).  

Boosting and the MC-DC SVM  

We applied several types of Boosting classifiers, which combine different features to improve 

the performance of weak SVMs. We compared the performance of Boosting models available in 

the MATLAB Image Processing Toolkit and the C++ OpenCV library. Boosting classifiers were 

trained using selected candidates of chromosomes in dataset 1, including 6906 candidates 

comprising both DC and MC chromosomes. The Boosting models were assessed by comparing 

results from Adaptive Boosting in OpenCV, as well as Adaptive Boosting and Robust Boosting 

in MATLAB. The lowest accuracy, 87%, was found using Adaptive Boosting method in 

MATLAB, whereas the Adaptive Boosting in OpenCV exhibited a slightly higher accuracy 
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(89%). The results demonstrate that various Boosting models have highly similar training 

accuracies and therefore, we do not discriminate between them.  

For the MC-DC SVM, we evaluate combinations of candidate centromeres produced by the 

centromere SVM for individual chromosomes. The number of TP DCs and the number of MCs 

incorrectly labeled positive (FPs) by the SVM are assessed by expert review. The PPV (also 

called precision) and TPR (also known as sensitivity or recall) are used to assess the performance 

of the SVM at different  values. PPV indicates the exactness of DC detection. TPR measures 

the fraction of true DC detection. We seek feature sets and   values that maximize PPV and 

TPR using the same training data. Since the MC-DC SVM is limited by the selections made by 

the preceding centromere SVM, the centromere SVM trained with the complete dataset 1 is used 

to provide selected candidates. Only DC chromosomes with both centromeres selected are 

counted towards correct proportion of DCs classified.  

The model derived from dataset 1 was evaluated by cross-validation. The centromere SVM made 

correct selections for 194 of the 266 DCs. A Boosting classifier was trained by 5 fold cross-

validation, followed by sequential training of the MC-DC SVM with the same cross-validation 

schema. The Boosting-SVM model was then tested. Results shown in Table 2 indicate that the  

value of 1.4 achieves the highest combined PPV and TPR. 

In addition to cross-validation, we also tested dataset 2 using a Boosting-SVM model that was 

trained using dataset 1. By contrast with dataset 1, MC chromosomes were not scored or labeled 

in dataset 2. Since MC-DC SVM distinguish  DC from non-DC objects, and the non-DC objects 

comprise a mixture of MCs, intact nuclei, debris and acentric fragments, this is actually a more 

stringent evaluation than the original approach. The centromere and MC-DC SVMs correctly 

selected 371 of the 531 DCs present (Table 3).  

Dicentric chromosomes (FNs) missed in dataset 2 were then reclassified and appended to the DC 

training data as TPs, the MC-DC SVM was retrained, and then tested on independent dataset 3. 

A cytogenetic expert in our research group (JHMK) scored DCs of all metaphase cells in dataset 

3  as ground truth. Specialists from HC and CNL also scored a common subset of 144 of these 

metaphases in the high-dose subset for comparative study. Comparison of the retrained model 
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with the ground truth scoring indicated retraining the model significantly increased the PPV 

(approximately 20%).    

In the high dose exposure subset, the software segmented 14428 objects, averaging 40 objects 

per metaphase. Our UWO expert (JHMK) designated 476 objects as DCs, with 179 in the 144 

metaphase cells scored by all experts. At low-dose (1 Gy), the software detected 8,041 objects, 

an average of 38.7 objects per image. The DC chromosomes in cells exposed to low dose 

radiation are infrequent. The expert (JHMK) found 27 DC chromosomes in the low-dose subset. 

The comparison of the MC-DC SVM with ground truth and inter-specialist comparisons are 

shown  in Table 4. The results are stratified according to (a) a subset of DCs from cells exposed 

to high dose radiation scored by all experts and compared those produced by the software, (b) all 

high dose DCs identified by the software relative to scoring by JHMK, and (c) DCs detected in a 

low dose sample compared to JHMK’s interpretation. Using  of 1.4 or 1.5, at high dose 

exposures, approximately half of DCs are detected with acceptable false positive rates (PPV = 71 

- 77%). At low dose in which fewer DCs form, sensitivity of detection is higher (66-74%), at a 

cost of significantly lower specificity (PPV = 18 – 21%), the latter being related to quality of the 

data and current limitations of the algorithm.  Scoring of DCs of different experts were 

minimally discordant (<3%).   

 

Discussion 

The overall accuracy of the DC detection algorithm relies on the combined performance of its 

three components: chromosome segmentation, centromere candidate assignment, and 

discrimination of DCs and MCs. However, image segmentation of metaphase chromosomes is 

not a trivial task. Under-segmentation hindered the performance of early releases of ADCI. 

Originally, the average number of segmented chromosomes (DC or MC) per image in dataset 1 

was 12.4 (3488/281) and 24 (14429/531) in dataset 2. Both values are below the 46 

chromosomes expected in a normal cell. Although inseparable chromosome clusters are 

eliminated by the software, reducing the TP DCs, this was preferable to the increased FP rates 

that would result from including these objects. Overlapping normal chromosomes (50%) are 

misclassified as DCs by commercial DCScore software (Metasystems; Vaurijoux et al. 2009) 
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due to the presence of multiple centromeres per object.  Application of the modified watershed 

transform largely resolved this problem for touching chromosomes or close neighbors (but not 

overlapping chromosome clusters). The watershed separation increased the average number of 

segmented objects per cell to near euploid levels, i.e. 38-40 per image (dataset 3). Although the 

modified Watershed algorithm handles homologous metaphases chromosomes with fused sister 

chromatids, it does promote over-segmentation in metaphase cells with severe sister chromatid 

separation or significant amounts of staining debris.  Gaps between sister chromatids along the 

length of the chromosome create separate objects with variable intensity patterns resembling 

multiple discrete chromosome objects, which misleads watershed transform to produce ridges. 

Heuristically-designed conditional filters have been implemented to prevent over-segmentation 

(see Methods). Furthermore, the software avoids misclassification by selecting metaphase 

images by thresholding object counts per image. Excessive sister chromatid separation produces 

large numbers of segmented objects (>60) corresponding to individual chromatid arms rather 

than whole chromosomes. Using these object count thresholds, cells prone to DC 

misclassification due to over-segmentation can be eliminated. 

 

The centromere detection algorithm has been optimized to reject false-negative DCs at the 

expense of higher false-positive rates. The method works well for identifying the first centromere 

(92% accuracy); however, detection of the second centromere based on the two highest ranked 

candidates is less accurate (70%). The candidates ranked and selected by the centromere SVM 

are important for making DC assignments. Incorrect centromere candidates affect the correct 

identification of true DCs by the MC-DC SVM. The current approach is approximately 70% 

accurate using the optimum  values. Acrocentric chromosomes with short arms at the end of the 

DC or two acrocentric chromosomes forming DCs by fusion of their short arms are often 

misclassified as MCs (FNs).  Centromere misclassification along chromatids is also common in 

SCS chromosomes. However, selecting centromeres among the 4 top-ranked candidates 

increases dicentric catchment rates. However, the preferred approach to train the MC-DC SVM 

with 4 centromere candidates has not yet been established.  

 

One of the challenges in developing the centromere and MC-DC SVMs has been to develop 

image features that discriminated correct centromeres and DCs, independent of chromosome 
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morphology. The most useful features were inspired by visual constrictions at centromeric 

structures and the corresponding width profiles. Other feature classes (F4 and F10) aimed at 

preventing or reducing FP DCs were discovered through review of testing results. A number of 

potential features in this class were ultimately not incorporated because of their minimal 

contribution or even adverse effect on accuracy. Some features are loosely defined, because of a 

lack of strict mathematical definitions for these biological characteristics. Examples include the 

curvature angles in F11-F15. The indexed distance of the 5-point offset to the Laplacian point on 

the contour used in the angle calculation was determined empirically, and validated to improve 

the accuracy of the MC-DC SVM through experimentation. We found that flexibility in these 

calculations has little effect on final classification results, as long as the results are biologically 

sensible. For instance, the steepness comparison of a pair of candidate width profiles, F9, which 

is measured by a relative ratio, can alternatively, be expressed as the absolute difference between 

these values without affecting the performance of the SVM.   

 

The preferred SVM tuning parameters, , were empirically determined. There is a tradeoff 

between tuning the SVM to maximize either TPR or PPV (but not both). Increasing  improves 

sensitivity, ie. more positive predictions of DCs, but reduces specificity. However, the numbers 

of MCs will always exceed DCs, regardless of radiation exposure. For this reason, the SVMs 

have been optimized to maximize correct detection of TP.  values from 1.4 to 1.6 result in a 

balance of TP and FPs and maximize PPV and TPR. At high doses, at least, these sigma values 

provide satisfactory accuracy for differentiating MCs from DCs, though manual review by 

experts is more accurate when scoring is consistent.     

At low dose exposure (<1 Gy), the algorithm identifies fewer DCs as expected. The FPR is near 

constant across a range of exposure levels, however small errors in DC detection at low dose will 

inflate dose estimation.  The FPs are comprised of monocentric chromosomes, noisy objects and 

chromosome clusters or fragments that were not eliminated. Since there are multiple sources of 

FPs, no single solution may resolve this issue. One promising approach to reduce FPs involves 

normalization of image segmentation features of all chromosomes in a metaphase cell and using 

thresholding to discriminate outlier FPs relative to these normalized distributions. 
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To perform dose assessment will require constructing calibration curves from automated analysis 

of all DCs in a set of metaphase cells, and using these curves to predict doses for test samples 

processed using the same algorithms. Dose assessment comparisons between cytogenetic experts 

and the software will also be critical for adoption of automated approaches.  
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Table 1. Performance of centromere SVM 

 Cross-validation in dataset 1 Testing of dataset 2 

Total no. of DCs present 266 531 

No. DCs  detected with  top 2 

candidate centromeres (%) 

194 (73%) 371 (70%) 

No. DCs  detected with top 4 

candidate centromeres (%) 

248 (93%) 499 (94%) 

 

 

Table 2. Results of MC-DC SVM cross-validation on dataset 1 

Sigma  TPs FPs PPV% TPR
1
 % TPR

2
   

1.0 91 18 83.5 46.9 34.2 

1.1 111 24 82.2 57.2 41.7 

1.2 124 28 81.6 63.9 46.6 

1.3 134 35 79.3 69.0 50.4 

1.4 148 41 78.3 76.3 55.6 

1.5 154 49 75.9 79.4 57.9 

2.0 166 79 67.8 85.6 62.4 

1
 Total of 371 chromosomes with both centromeres correctly detected by Centromere SVM;   

2
 Total of 531 chromosomes with all known DCs scored, regardless of results of Centromere SVM 

 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 20, 2016. ; https://doi.org/10.1101/037309doi: bioRxiv preprint 

https://doi.org/10.1101/037309
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 
 

Table 3. Results of MC-DC SVM test on dataset 2 

 Value No. TPs No. FPs PPV% TPR
1 
% 

 
TPR

2 
% 

 

0.9 173 65 72.6 46.6 32.6 

1.0 210 96 68.6 56.6 39.6 

1.1 240 149 61.7 64.7 45.2 

1.2 264 186 58.7 71.2 49.7 

1.3 279 234 54.4 75.2 52.5 

1.4 286 264 52.0 77.1 53.9 

1.5 294 302 49.3 79.3 55.4 

1
 Total of 371 with both cen correctly detected by Centromere SVM; 

2
 Total of 531 with all 

known DCs scored, regardless of results of Centromere SVM 
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Table 4. Performance of MC-DC SVM on dataset 3, consisting of metaphase cells subject to 

high-dose and low-dose exposure: comparison with expert scoring by University of Western 

Ontario (UWO), Health Canada (HC) and Canadian Nuclear Laboratories (CNL) 

Source of 

dicentric 

chromosome 

data 

No. 

chromo-

somes; 

Percentage  

SVM  value HC CNL UWO
1 

  1.2 1.3 1.4 1.5 1.6 1.7 1.8    

High-Dose 

chromosome 

data, 

commonly 

scored
2 

TPs 71 79 90 98 102 108 110 175 176 179 

FPs 13 17 33 39 46 54 66 4 3 0 

PPV% 84.5 82.3 73.2 71.5 68.9 66.7 62.5 97.8 98.3 100 

TPR% 39.7 44.1 50.3 54.8 57.0 60.3 61.5 97.8 98.3 100 

All High-

Dose 

chromosome 

data
3 

TPs 214 250 280 301 314 327 333 N/A N/A 476 

FPs 43 53 81 104 125 148 172 0 

PPV% 83.3 82.5 77.6 74.3 71.5 68.8 65.9 100 

TPR% 45.0 52.5 58.8 63.2 66.0 68.7 70.0 100 

Low-Dose 

chromosome 

data 

TPs 13 18 18 20 20 20 20 N/A N/A 27 

FPs 37 51 67 90 120 136 156 0 

PPV% 26.0 26.1 21.2 18.2 14.3 12.8 11.4 100 

TPR% 48.2 66.7 66.7 74.1 74.1 74.1 74.1 100 
1
 Results scored by University of Western Ontario (UWO/JHMK). DCs scored by UWO are 

treated as ground truth. Calculation of TPs and FPs based on comparing scoring by SVMs by HC 

and CNL are based on UWO ground truth. 
2
 The DC chromosome subset commonly scored by 

UWO, HC, and CNL and by the software was exposed to high dose radiation. 
3
All data in the 

high-dose subset, scored by UWO and the software. This includes images that were not scored 

by all three experts. N/A: not applicable; TPs: true positive DCs; FPs: false positive DCs; PPV: 

positive predictive value; TPR: true positive rate 
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Figure legends.  

Figure 1. Modified watershed separation of chromosome clusters. After the original metaphase 

image is binarized by intensity threshold Segmentation, connected chromosome clusters are 

formed due to under-segmentation. Panel (A) Watershed separation operation is applied to these 

clusters to prevent oversegmentation. This involves determining the lengths of the ridges 

between components of the cluster, areas of the separated regions, and the degree of symmetry of 

the separated regions; (B) Constraints are applied to prevent oversegmentation of individual 

chromosomes if: i) length of the ridge exceeds half of the perimeter of one of the separated 

regions, ii) areas of small regions separated by the operation are less than 10% area of the larger 

region, and iii) The two separated regions exhibit highly symmetric structures adjacent to the 

ridge the separates them.  

Figure 2. UML diagram of software development system. The figure illustrates the structure of 

the chromosome image processing software system in a layered structure based on functional 

modules called during training and testing of the SVM components. Software modules are the 

displayed as boxes and containing rectangles represent development layers. Light gray boxes and 

dark gray boxes indicate third-party libraries and libraries developed by our team respectively. 

Software building dependencies are showed by arrows. The layers supporting libraries, 

functionalities and interface comprise the complete automated dicentric chromosome 

identification algorithm. Any application using the algorithm belongs to the applications layer, 

including our training graphical user interface.  

Figure 3. Classification of mono- and dicentric chromosomes. The figure displays a 

representative set of MCs and DCs, as well as the classification results scored by the MC-DC 

SVM (sigma=1.5). The contour of the chromosome defined by the algorithm is color coded as 

either monocentric (green) or dicentric (red). Chromosomes are cropped from metaphase images 

in a sample exposed to a 3-Gy X-ray radiation source provided by CNL. .  These examples can 

be classified with the centromere and MC-DC SVMs online with a software application available 

at http://cytobiodose.cytognomix.com.  
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