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Abstract

Using genome-wide SNP-based methods for tracking pathogens has become standard practice

in academia and public health agencies. There are multiple computational approaches available

that perform a similar task: call variants by mapping short read data against a reference genome,

quality filter these variants, then concatenate the variants into a sequence matrix for downstream

phylogenetic analysis. However, there are no existing methods to validate the accuracy of these

approaches despite the fact that we know there are parameters that can affect whether a SNP

is called, or the correct tree is recovered. We present a simulation approach (TreeToReads) to

generate raw read data from mutated genomes simulated under a known phylogeny. The user

can vary parameters of interest at each step in the simulation (e.g., topology, model of sequence

evolution, and read coverage) to assess the robustness of a given result, which is critical within

both research and applied settings. Source code, examples, and a tutorial are available at https:

//github.com/snacktavish/TreeToReads.

1 Introduction

Genomics has revolutionized our understanding of patterns and processes of evolution across a wide

range of taxa. Differentiating among individuals who only very recently diverged, between which only

a few single nucleotide polymorphisms (SNPs) may exist, is only possible in the light of whole genome

sequence data. In lieu of whole genome alignment, analysis pipelines attempt to extract the variable

sites directly from the raw sequence reads (e.g. Illumina MiSeq data) and then infer the phylogeny

directly from a SNP matrix of variable-only sites. In these examples where estimates of ancestry rely

on a handful of data points, it is particularly important to ensure that analysis methods are validated

and free from bias. Rigorous testing of these methods is needed, especially when the phylogenetic
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Figure 1: Schematic of the TreeToReads procedure

trees are used by public heath agencies to make regulatory decisions (e.g. identifying a source in a

foodborne outbreak (Hoffmann et al., 2015).

SNP-calling biases can be caused by various factors, including genotyping of single nucleotides

which are polymorphic in a subset of the population (McTavish and Hillis, 2015), missing data cutoffs

resulting in preferential inclusion of loci evolving at lower rates (Huang and Knowles, 2014) and those

related to read mapping due to choice of reference genome (Bertels et al., 2014)). filter artifacts (Li,

2014) and different mapping algorithms (Pightling et al., 2014). Mis-estimation can be exacerbated by

interaction between these dataset biases and analysis choices; for example using a model of evolution

developed for sequence data on a panel of exclusively variable sites (Lewis, 2001) or choosing an

inappropriate model of evolution (Sullivan and Swofford, 1997). Despite the sheer quantities of genomic

data, it is possible that these types of biases could affect phylogenetic conclusions and, if systematic,

inappropriate methods may converge to an incorrect result with high bootstrap confidence. In order

to adopt data analysis pipelines for the regulatory environment it is necessary to understand these

biases and validate their use. Without in silico modeling food safety scientists would have to rely on

benchmark datasets where the truth can never be truly known.

Here, we present TreeToReads (TTR), a software tool to simulate realistic patterns of sequence

variation across phylogenies in order to assess the robustness of evolutionary inferences from whole

genome data to potential biases in the data collection and analysis pipeline.

2 Methods

The TTR pipeline generates short read data from genomes simulated along an input phylogeny. The

software is written in python and requires two input files - a phylogeny with branch lengths and

an anchor genome (Figure 1a); there is also a default configuration file within which the user can

specify parameter settings (e.g., number of variable sites to simulate and nucleotide substitution model

parameters). The branch lengths of the user provided phylogeny determine the probability that a single

site is affected by multiple mutational events (Sukumaran and Holder, 2010). The pipeline uses seq-

gen (Rambaut and Grass, 1997) to simulate the variable sites specified in the configuration file. These
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sites are then distributed across the anchor genome (Figure 1b). The locations for mutations either

drawn from a uniform distribution, or clustered according to parameters of an exponential distribution

specified in the configuration file. This procedure creates an output folder for each tip in the tree that

contains the simulated genomes (fasta files). Using these simulated genomes, TTR calls the read

simulation software, ART (Huang et al., 2012) to generate Illumina MiSeq paired-end reads (Figure

1c). The user can specify a different sequence error model in the configuration file. While TTR

currently only supports automated generation of Illumina paired end reads, the simulated genome files

may be used outside of TTR with any ART parameter configuration. Alternatively, if RAD-seq like

data are desired other raw-read generators such as SimRAD (Lepais and Weir, 2014) can be used. If

ART is invoked in TTR the program will output a fastq folder containing directories labeled with the

names of each tip from the simulation tree within which the simulated reads in .fastq.gz and .sam

format are deposited. A file with the location and nucleotide state of each mutation within each tip is

also provided.

3 Case Study

To illustrate the utility of TTR, we tested the effects of sequence coverage on the ability of the

CFSAN SNP pipeline (Davis et al., 2015) to call SNPs and recover an observed phylogeny (more

importantly, the outbreak clade) (Figure 1a) of ten Salmonella enterica subsp. enterica serovar Bareilly

sequences associated with a 2010 outbreak (Hoffmann et al., 2015). For outbreak regulatory decisions

the most important part of a foodborne outbreak phylogenetic tree is the split that separates isolates

belonging to the outbreak versus not part of the outbreak. We used a closed Salmonella enterica

genome (CFSAN000189, GenBank: CP006053.1) as the anchor, simulated 150 variable sites under

the GTR model, SNP clustering ON with locations for 20% drawing from an exponential distribution

with a 125bp mean, and finally, a read error profile based on observed data. TTR was run under

four different sequence coverage settings: 1X, 5X, 15X, and 30X. We analyzed the resulting four short

read datasets with the CFSAN SNP pipeline and default settings (Davis et al., 2015), which identified

SNPS within each set. Finally, we inferred the phylogeny for each set using RAxML (Stamatakis,

2014) under the ASC GTRCAT model. Results are as follows: 1X) zero SNPS, no phylogeny; 5X)

37 SNPS, correct outbreak (OB) clade; 15X) 146 SNPS, correct OB clade; 30X) 148 SNPS, correct

OB clade. While this is a very simple test case, it illustrates the utility of TTR to test important

parameters and their interactions affecting analysis pipelines ability to accurately call SNPS and infer

phylogenies.

4 Conclusions

To date the phylogenetic perspective in simulation testing of assembly and alignment tools has been

lacking in genomic simulation software. TreeToReads allows researchers to test the joint effects of

multiple parameter values (such as coverage thresholds, amount of sequence variation, choice of refer-

ence genome, phylogenetic inference method, etc.) on the ability of any analysis pipeline to recover

the signal and infer the correct tree. Simulating data that spans these parameters will help validate
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methods for reconstructing phylogenies directly from short-read data, which is especially useful for

public health agencies using these methods to track various emerging pathogens.
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