
 1

Application of new informatics tools for identifying allosteric lead ligands of the c-Src kinase 
 
Authors: Lili X. Peng1,2, Morgan Lawrenz3, Diwakar Shukla1,3,4, Grace W. Tang1,2, Vijay S. Pande1,3, and Russ 
B. Altman2,3,4 
 
Affiliations: 1SIMBIOS NIH Center for Biomedical Computation, 2Department of Bioengineering, 
3Department of Chemistry, 4Department of Genetics, Stanford University, Stanford, CA, 94305. 4Department 
of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801. 
 
Keywords: drug discovery, allosteric kinase inhibitors, virtual screening, Markov State Models, machine 
learning algorithms, FragFEATURE 
 
 
 
 
 
 
 
ABSTRACT 
 
Recent molecular dynamics (MD) simulations of the catalytic domain of the c-Src kinase revealed intermediate 

conformations with a potentially druggable allosteric pocket adjacent to the C-helix, bound by 8-anilino-1-

naphthalene sulfonate.  Towards confirming the existence of this pocket, we have developed a novel lead 

enrichment protocol using new target and lead enrichment software to identify sixteen allosteric lead ligands of 

the c-Src kinase.  First, Markov State Models analysis was used to identify the most statistically significant c-

Src target conformations from all MD-simulated conformations.  The most statistically relevant candidate 

MSM targets were then prioritized by assessing how well each reproduced binding poses of ligands specific to 

the ATP-competitive and allosteric pockets.  The top-performing MSM targets, identified by receiver-

operating curve analysis, were then used to screen the ZINC library of 13 million ‘clean, drug-like'’ ligands, all 

of which prioritized based on their empirical scoring function, binding pose consistency across MSM targets, 

and strong hydrogen bonding and hydrophobic interactions with Src residues.  The FragFEATURE 

knowledgebase of fragment-protein pocket interactions was then used to identify fragments specific to the 

ATP-competitive and allosteric pockets.  This information was used to identify seven Type II and nine Type 

III lead ligands with binding poses supported by fragment predictions.  Of these, Type II lead ligands, 

ZINC13037947 and ZINC09672647, and Type III lead ligands, ZINC12530852 and ZINC30012975, exhibited 

the most favorable fragment profiles and are recommended for further experimental testing for the existence of 

the allosteric pocket in Src.    
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INTRODUCTION 

Drug discovery is a complex and difficult processes in the pharmaceutical industry as millions of dollars and 

man-hours are devoted to the discovery of new therapeutic agents.  Traditional methods of drug discovery rely 

on trial-and-error testing of chemical substances on in vitro and in vivo biological models, and matching 

apparent effects to treatments.1 A commonly used computational method to identify promising compounds to 

bind to a target molecule of known structure is virtual screening.  There are two main approaches of virtual 

screening: structure-based approaches, which involve docking of candidate ligands into a protein target 

followed by applying a scoring function to estimate the affinity of the ligand for the protein, and ligand-based 

approaches, which rely on knowledge of known binders to create a pharmacophore model for the target of 

interest.2  Virtual screening is a productive and cost-effective way to search for novel lead compounds, 

especially given the increasing availability of high-performance computing platforms.  However, the accuracy 

of algorithms used in docking software still has room for improvement.  In addition, the design of lead 

compounds also heavily relies on the amount and quality of structural information on the target protein.3  A 

protein exists in a population of conformational states in dynamic equilibrium with one another, adopting 

conformations not always captured by X-ray crystallography and NMR spectroscopy.4,5  Large-scale 

supercomputing platforms such as Anton6, Google Exacycle7,8, and Folding@Home9 have been used to run 

molecular dynamics (MD) simulations on proteins with important disease implications, such as the epidermal 

growth factor receptor kinase10 and G-protein coupled receptor7, to reach timescales on the order of hundreds 

of microseconds.  These simulation results reveal conformational states not yet witnessed experimentally and 

could be potentially exploited for drug design.11-14  

 

The proto-oncogene tyrosine-protein kinase Src plays important roles in cell proliferation, migration, and 

survival.13-16  Recent ~50 µs massively-distributed parallel MD simulations on the catalytic domain of c-Src 

reveal a hydrophobic pocket, adjacent to the ATP binding site and encapsulated by the αC-helix, β4, and β5 

strands, that is structurally similar (21% identity) to hydrophobic allosteric pocket in cyclin-dependent kinase 2 

(Cdk2), bound with 8-anilino-1-naphthalene sulfonate (ANS).17  The binding of ANS to Cdk2 is accompanied 

by substantial structural changes, inducing αC-helix conformation incompatible with association of Cdk2 with 

downstream substrate cyclin A.16  Superimposition of representative simulation snapshots of ANS-bound and 

apo ANS conformations of intermediate Src shows that ANS binding displaces the αC-helix outwards in a 

manner similar to how binding of ANS displaces the αC-helix in Cdk2 (see Figure 1).  The binding of ANS 

remains energetically stable throughout the ~50 µs aggregate MD simulations, suggesting that the ligand can 

bind to the pocket in a manner similar to ANS binding Cdk2.  Figure 1 shows that the binding pose of ANS 

blocks the formation of the salt bridge between the catalytic Lys295 and Glu310.  This salt bridge is necessary 

for Src activation.16,18  Likely additional contributions to ANS’ binding pose include hydrogen bonding with 

the side-chain amine group of Lys295 and backbone heavy atoms of Phe405 and Gly406, as well as ample 

hydrophobic interactions between naphthalene and phenyl rings with neighboring hydrophobic residues.19  
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Altogether these findings strongly suggest the presence of an allosteric pocket in MSM states of intermediate 

Src conformations that could be exploited for discovery of allosteric Src inhibitors. 

 

Allosteric targeting of kinases via inhibitor binding has been gaining traction in drug discovery because they 

overcome target selectivity by exploiting non-ATP-competitive binding sites and regulatory mechanisms 

unique to a particular kinase.20-23 The objective of this study is to recommend lead ligands specific to this 

allosteric pocket in Src for experimental testing. Towards this end, we developed a generalizable workflow 

using new predictive analytics software for target and lead enrichment, MSMBuilder24 and FragFEATURE25, 

respectively, and using qualitative metrics for various enrichment steps.  This workflow was applied to 

determine ligands that bind the allosteric and ATP-competitive pockets (Type II) and those that bind strictly 

the allosteric pocket (Type III).  We foresee that these predicted ligands could be used as small molecules to 

experimentally procure a co-crystal structure of an intermediate Src conformation, to prove the existence of the 

allosteric pocket. 

 

Figure 1. a) Local superimposition of the apo ANS (pink) and ANS-bound (blue) intermediate Src conformations reveals 
that ANS binding displaces the αC-helix outwards relative to αC-helix’s orientation in the apo ANS MSM state.  The 
allosteric pocket is encapsulated by β4, β5, and the αC-helix. b) Binding of ANS can be stabilized by hydrogen bonding 
of the sulfonate group to the Lys295 sidechain amide and backbone amides of Asp404, Phe405, and Gly406, thereby 
preventing formation of the salt bridge between Lys295 and Glu310.  c) Pharmacophore of ANS shows hydrogen bonding 
with Lys295 and DFG residues (red) and hydrophobic interactions between the naphthalene ring and Val323, Thr338, 
Met314, Ala311, and Leu325 and between the phenyl ring and Leu407, Met302, Phe307, Ile336, and Leu325. 
 
It is noteworthy that, in generating candidate target conformations of Src, we had considered using less 

computationally intensive approach like homology modeling, which would involve stringing c-Src’s sequence 

onto the crystal structure of ANS-bound Cdk2 as a template.  However, clustal sequence alignment of human 

Src and Cdk2 returns 21% identity and 35% similarity, based on the kinase domain, values too low to have 
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confidence in homology modeling.26  Our approach of running long-timescale MD simulations utilizes a 

previously generated MD dataset that is derived from the experimental crystal structures of the inactive and 

active conformations of the Src kinase, followed by MSM analysis, which yields mechanistic insight into the 

protein-ligand system within a set of physics-derived parameters of an MD force field.27  Altogether these 

features offer a very rigorous approach in identifying target conformations of Src for virtual screening, an 

advantage over less computationally demanding approaches like homology modeling.  Furthermore, the 

application of Markov State Models to detect intermediate conformations and cryptic allosteric binding 

pockets has been gaining increasing user adoption in the field of protein conformational change.  Buch et al. 

used MSMs ti predict the binding pose and binding pathways of trypsin.28  Plattner et al. have also MSMs to 

understand conformational change and ligand-binding kinetics for trypsin and its inhibitor benzamidine.29   

Finally, Greg Bowman and colleagues have also used MSMs to detect allosteric sites in β-lactamase, 

interleukin-2, and RNase H.30,31  

 

This workflow commences with performing MSM analysis on all conformational states accessed during the 

MD simulations, followed by selecting candidates based on quantitative metrics, such as statistical significance 

and the binding pose reproducibility of ATP-Mg2+ and ANS, and qualitative metrics, such as the size and 

morphology of the software-defined docking region.  The best-performing target conformations were then used 

to screen the ZINC library of 13 million “clean, drug-like” ligands.32  After selecting the lead ligands with the 

highest docking scores, they were further prioritized by whether they were bound to the appropriate binding 

region (Type II: ATP-competitive and allosteric, Type III: allosteric) and consistency in binding pose across 

multiple target conformations.  Furthermore, Figure 1 shows that ANS binding Src could be stabilized by 

hydrogen bonding to the side chain amide of Lys295 and backbone heavy atoms of the DFG motif.  The 

naphthalene ring of ANS could interact with hydrophobic residues Ala311, Met314, Val323, Leu325, and 

Thr338; the phenyl ring of ANS could interact hydrophobically with Met302, Phe307, Leu325, Ile336, and 

Leu407.17  These findings motivated us to prioritize lead ligand candidates exhibiting hydrogen bonding and 

hydrophobic interactions similar to those of ANS-bound Src. 

 

The workflow culminates with identification of lead ligands whose substructures are empirically supported to 

bind to pockets (of other proteins) structurally similar to the docking region of Src target conformations.  This 

information on protein structural environments annotated with small molecule fragments is in the 

FragFEATURE knowledge base, curated from 34,000 Protein Data Bank structures using k nearest neighbors, 

a supervised machine learning algorithm.25 FragFEATURE compares structural environments from a target 

protein to the knowledgebase with similar structural environments and identifies statistically preferred 

fragments.  FragFEATURE was developed to identify fragments that could lead to drug-like ligands to study 

further using computational and/or experimental tools in lead discovery, using a data-driven approach given 

the availability of the large number of structures of protein-small molecule complexes.  Currently, 
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conventional methods of in silico fragment-based binding predictors/evaluators rely on physics-based scoring 

functions, which can be difficult to calibrate.  FragFEATURE circumvents these limitations by making 

predictions based on the statistics and direct observations of fragment contacts with amino acid side chains and 

their environments.  FragFEATURE is entirely data-driven and predicts the likely binding of a fragment 

because the environment in question looks very similar to other environments where that fragment has been 

observed to bind previously.33 

 

The study describes how new computational tools, Markov State Models and FragFEATURE, can be used to 

enrich target conformations from long timescale MD simulations and reduce the chemical search space in lead 

identification. Markov State Models have been previously used in drug discovery to identify the prominent 

target conformations of GPCRs7, but this work more importantly focuses on enrichment of lead ligands, using 

the FragFEATURE knowledge base of preferred fragment-protein pocket interactions. This study represents 

the first time FragFEATURE is used in lead enrichment; interpretations of the FragFEATURE results are 

discussed in the context to identify lead candidates with the strongest fragment profiles, and subsequently 

recommended for experimental testing.  Overall, this methodology has potential to be incorporated in lead 

enrichment protocols in early stages of drug discovery.  

 

METHODS 

Enrichment of MSM states of intermediate Src conformational targets 

The first step of target enrichment was to optimize the number of candidate target conformations from 97983 

MD snapshots from Shukla et al.’s MD simulations of ANS-bound intermediate Src totaling 50 μs.17  

Screening all snapshots would be computationally intractable, so MSMs were constructed to identify the 

dominant conformational states of ANS-bound intermediate Src.  This was achieved by clustering all snapshots 

by residues within 5 Å of ATP-Mg2+ and ANS at an RMSD cutoff of 2.6 Å, after testing a range of values.  

This cutoff selection of 2.6 Å returned ten MSM conformational states A-J, which sufficiently captures the 

diversity of the full dataset (see Figure 2 and Table 1) and are conformationally representative of the 97983 

MD snapshots.  While we could have used the traditional protein clustering method with an RMSD cutoff to 

identify conformational states, this method provides structurally distinct conformations with insignificant 

equilibrium populations. On the other hand, MSMs helps us identify conformational states with highest 

equilibrium population from a set of simulation trajectories. 

 

The next step was to screen for ligands that would dock the ATP-competitive and allosteric regions (Type II) 

or strictly the allosteric region (Type III), the docking area of each candidate target was derived from the 

original binding poses of ATP-Mg2+ and ANS, respectively, to designate a ‘hybrid’ docking area of each MSM 

target. Using Surflex-Dock34, the threshold, which determines how much of the binding site can be buried in 

the protein, and bloat, which is used to inflate the docking area and nearby crevices, were set to default values 
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of 0.5 and 0.0, respectively. All ligands were docked invoking the standard scoring function (pscreen) an

receptor proton flexibility (pflex).   

Figure 2. Size and morphology of hybrid ATP-Mg2+, ANS-derived binding sites in the ten candidate MSM targe
Upper right-hand inset shows the volume of the binding site for each candidate target: A (2286 Å3), B (2489 Å3), C (174
Å3), D (1717 Å3), E (2314 Å3), F (2154 Å3), G (1705 Å3), H (2513 Å3), I (2374 Å3), and J (2107 Å3).  
 

The docking area in our MSM states of intermediate Src conformations includes the ATP-competitive an

allosteric pockets.  Prior to commencing target enrichment, we used the receiver-operating characterist

(ROC) approach to evaluate our docking method in its ability to distinguish between the active and inactiv

(decoy) ligands to a specific site on the target.35  While this method is applicable for the ATP-competitiv

binding site, which has known active and decoy ligands, the allosteric pocket is witnessed only in the presenc

of ANS binding intermediate Src conformations from MD simulations. Because there are currently no public

accessible active and decoy ligands specific to the allosteric site, the ROC approach is unsuitable for testin

the performance of the allosteric region. However, for benchmarking against the intermediate S

conformations, the ROC approach was applied to test performance of the ATP-competitive pocket: th

Directory of Useful Decoys (DUD)36 has 126 active ligands for AMPCPP, an ATP mimetic in which th

oxygen between Pα and Pβ is mutated to carbon, which is bound to an inactive, DFG-in conformation of S

(PDB id 2SRC37).  In addition to using ROC for the ATP-competitive region, we sought to define other criter

to prioritize the ten candidate MSM targets.  The first criterion we had used is statistical significance of eac

MSM centroid state, or the number of corresponding MD snapshots with respect to the total number of M
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snapshots (97983) from the aggregate 50 microsecond MD simulation.  Targets A, B, and C exhibited the 

highest statistical significance in its representation of the protein conformational space, at 17.3%, 20.3%, and 

39.2%, respectively (see Table 1).  While statistical significance is important in target enrichment, visual 

inspection of the docking regions in the ten candidate targets reveal considerable differences in their three-

dimensional size (volume) and morphology.  Figure 2 shows that docking regions for targets C, D, and G 

exhibit relatively conservative coverage of the ATP-competitive and allosteric sites. This is indicated by the 

docking region volumes of 1747 Å3, 1717 Å3, and 1705 Å3, which are below the average volume of 2141 ± 

315 Å3.  On the other hand, the allosteric pocket in other targets, including A and B, are slightly larger in that 

they occupy space not derived from ATP-Mg2+ and ANS.  While these differences in the size and morphology 

of a target’s docking region seem minor, it is likely that they can result in significant differences in docking 

scores of a ligand’s predicted binding pose.  Finally, another criterion used to select target conformations for 

virtual screening is how well each MSM target reproduces the binding poses of ATP-Mg2+ and ANS. How 

these criteria are used all together to prioritize the ten candidate MSM states is discussed in more detail in the 

succeeding sections. 

Table 1. Statistical significance of MSM states of k = 10 centroid structures.  

MSM centroid 
structure 

Number of MD snapshots 
corresponding to MSM state 

Percentage of total MD 
snapshots in MSM state (%) 

A 16954 17.3 
B 19902 20.3 
C 38389 39.2 
D 1060 1.1 
E 1781 1.8 
F 497 0.5 
G 3362 3.4 
H 7940 8.1 
I 713 0.7 
J 7385 7.5 

 

Applying the ROC approach to the ATP-competitive region: ROC curves for each of the ten candidate MSM 

targets were calculated, along with area-under-the-curve (AUC) values, using the 126 active ligands for 

AMPCPP bound to inactive Src (PDB id 2SRC) from DUD36 and 990 randomly selected decoy ligands from 

Bissantz et al.38  The average AUC is 0.65 ± 0.03, with targets A and G having the highest and lowest AUC 

values of 0.72 and 0.61 respectively.  These values are not particularly outstanding but consistent with the 

standard AUC of ~0.6 for kinases.35  However, the highest AUC of 0.72 (from target A) is nearly equivalent to 

0.73, the AUC for the inactive, AMPCPP-bound Src conformation (2SRC), as shown in Figure S4, suggesting 

that the best-performing target, in terms of AUC, is consistent with the performance of the crystal structure of 

the inactive conformation.” 

 

Three-dimensional size and morphology of the hybrid ATP-Mg2+, ANS-derived binding site: As 

aforementioned, Figure 2 shows that the docking regions of targets C, D, and G exhibit sufficient but 

conservative coverage of the ATP-competitive and allosteric sites, whereas the docking regions in the other 
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MSM targets extend outwards of the allosteric pocket towards the A-loop, tangential to the region occupied by 

the phosphate of ATP-Mg2+ and the region occupied by ANS.  The docking regions of targets C, D, and G are, 

on average smaller (1723 Å3), than those of the other seven candidates (2320 Å3).  This region extending 

towards the A-loop may seem extraneous, since it is neither derived from the binding poses of ATP-Mg2+ and 

ANS, and could introduce undesirable poses in ligands during virtual screening.  However, later we were 

alerted to Type III allosteric inhibitors of MEK1/2 and p38α: visual inspection of PD318088-bound MEK1/239 

(PDB id 1S9J) and GDC-0973-bound p38α40 (PDB id 4AN2) reveal allosteric regions that also extend towards 

the A-loop.  The allosteric pockets in MEK1/2 and p38 are structurally similar to that in Cdk2 and MSM 

targets of ANS-bound intermediate Src, as evidenced by their structural overlay in Figure S1. This evidence 

strongly suggests that the region extending towards the A-loop in intermediate Src conformations could be 

exploited for enhancing Src selectivity.  Not present in targets C, D, and G, this space is present in docking 

regions of targets A, B, E, F, H, I, and J, all together representing 56.2% of 97983 trajectory snapshots. 

Table 2. Binding pose reproducibility by average RMSD (Å) of original and predicted 
poses of ATP-Mg2+ and ANS of k = 10 centroid structures. Values were calculated from 
the original and three top-ranking predicted poses for ATP-Mg2+ and ANS. 

MSM centroid structure ATP-Mg2+ ANS 
A 2.35 ± 1.82 2.34 ± 0.31 
B 6.87 ± 0.15 5.33 ± 5.10 
C 6.52 ± 0.21 5.01 ± 1.47 
D 7.14 ± 7.18 8.71 ± 0.04 
E 1.21 ± 0.50 3.32 ± 1.74 
F 0.91 ± 0.26 2.96 ± 1.17 
G 1.21 ± 0.44 3.15 ± 0.38 
H 1.41 ± 0.17 5.93 ± 0.24 
I 8.19 ± 0.91 4.31 ± 0.84 
J 5.56 ± 3.34 2.43 ± 0.62 

 

Binding pose reproducibility of ATP-Mg2+ and ANS: Assessment of how well each MSM target reproduces the 

binding poses of ATP-Mg2+ and ANS was done by redocking each ligand into its original target, and 

calculating the RMSD between the original and re-docked poses for the three top-ranking poses (see Tables 2 

and S1).  Good reproducibility was defined by an RMSD not exceeding 3 Å.  Based on this cutoff, targets A, E, 

G, and H reproduce the binding pose of ATP-Mg2+ well, and targets A, F, and J exhibit for ANS.  Notably, of 

the ten candidate targets, only target A exhibits good reproducibility for both ATP-Mg2+ and ANS (RMSD of 

2.35 ± 1.82 Å for ATP-Mg2+, RMSD of 2.34 ± 0.31 Å for ANS).  In the context of target selection, heavier 

emphasis was placed on the binding pose reproducibility of ANS than that of ATP-Mg2+ because there are no 

known active ligands to the allosteric pocket of Src, leaving ANS’ binding pose reproducibility the only 

quantitative metric for assessing performance of the allosteric region in each candidate target. 

 

Final selection of MSM targets for virtual screening: As aforementioned, MSM analysis determined that the 

most statistically prominent targets are A (17.3%), B (20.3%), and C (39.2%), with the statistical relevance of 

the remaining seven being at least an order of magnitude lower than that of target A (i.e. target H has 8.1% 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 2, 2016. ; https://doi.org/10.1101/038323doi: bioRxiv preprint 

https://doi.org/10.1101/038323
http://creativecommons.org/licenses/by/4.0/


 9

relevance).  While target C is the most statistically significant, its docking region lacks the extraneous space 

extending from the allosteric pocket towards the A-loop, which are present in targets A and B.  This 

morphological difference in the docking regions is reflected in target C’s docking volume of 1747 Å3, which is 

20-30% smaller compared to the volume of the docking regions of targets A (2286 Å3) and B (2489 Å3).  As 

previously discussed, this region initially seems extraneous, but the binding poses of Type III inhibitors 

PD31808839 and GDC-097340 in MEK1/2 and p38α suggest that this region in MSM states of intermediate Src 

could be exploited for enhancing Src selectivity. Hence, using target C for virtual screening could restrict the 

chemical search space of lead Type III ligands selective to the allosteric pocket in Src extending towards the 

A-loop. Therefore, we considered candidates A and B as the two most statistically significant targets with 

docking regions best representing the majority of target conformations accessed during MD trajectories.   

 

While target B is slightly more statistically significant than A, both have docking regions that are quite 

spacious and include the region extending from the allosteric pocket and towards the A-loop.  However, that 

target A demonstrates better binding pose reproducibility for both ATP-Mg2+ and ANS, in addition to having a 

higher AUC value for the ATP-competitive region than target B (A: 0.722, B: 0.635) leads us to place slightly 

more confidence in the virtual screening results from target A.  For these reasons, we used target A to screen 

the ZINC library of 13,195,609 ‘clean, drug-like’ ligands,32 followed by cross-docking the top-scoring ligands 

in target A against target B. 

 

Lead ligand enrichment of Type II and III allosteric inhibitors of Src  

After using target A to screen the ZINC library of 13 million “clean, drug-like” ligands, we ranked all ligands 

in decreasing order by their Hammerhead score and selected the top 0.05% (6500 total) of highest-scoring 

ligands.  We chose the top 0.05% because this cutoff is typically applied in virtual screening using ZINC 

libraries, as demonstrated in Kolb et al. for the β2-adrenergic receptor41.  These 6500 ligands were clustered by 

their pairwise Tanimoto shape and chemical complementarity score (see Equation 1 in Text S2), using ROCS 

in the OpenEye Scientific Software42.  (ROCS reports the Tanimoto score within a range from 0.0 to 2.0, 

representing a range of combinations of shape and chemical complementarity.)  Figure S5 shows the histogram 

of all Tanimoto scores; the histogram peaks around 0.2, corresponding to 59 clusters.  Each cluster is 

represented by a ‘centroid’ ligand with a Tanimoto score that collectively represents the shape, 

physicochemical properties, and binding poses of all ligands in the cluster.  That the histogram peaks at 0.2 

reflects the ample diversity in ligand predicted poses, which is due to the spaciousness of target A’s docking 

region. This clustering step allowed us to reduce the 6500 ligands to a smaller set of representative ligand 

binding poses that were subject to visual inspection, as follows. 

 

The objective of lead enrichment is to identify Type II and Type III allosteric ligands that would displace the 

αC-helix outwards in a manner to prevent downstream Src activation.  To get a general idea of where in Src do 
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the 6500 ligands bind, we manually inspected their binding poses in target A.  Consequently, we identified 500 

ligands whose predicted binding pose in target A occupied the ATP-competitive and allosteric pocket (Type II) 

or strictly to the allosteric pocket (Type III).  We then cross-docked the 500 ligands against target B; despite its 

caveats of lower binding pose reproducibility for ANS, target B is 3% more statistically significant than target 

A and exhibits a structurally similar allosteric pocket to that of target A.  Since slight differences in the size 

and morphology of the docking regions in targets A and B could translate to differences in predicted poses of 

the 500 cross-docked ligands, we evaluated for each ligand’s binding pose consistency by superimposing the 

two target-ligand complexes and calculating the RMSD between the ligand’s poses in targets A and B.  

Ligands exhibiting an RMSD not exceeding 4 Å between the two targets were regarded as exhibiting excellent 

binding pose consistency.  Accordingly, 250 ligands were identified as exhibiting excellent binding pose 

consistency in targets A and B.  These ligands were then enriched based on whether they exhibited 

pharmacophoric features similar to ANS: hydrogen bonding to the Lys295 side chain amide and DFG 

backbone atoms and hydrophobic interactions between the ligand’s hydrophobic substructures and surrounding 

residues in the target (see Figure 1).  LigandScout43 was used determine the pharmacophoric features for the 

250 ligands bound to targets A and B. 

 

Performing FragFEATURE analysis on the MSM targets  

The final step of lead enrichment is to prioritize lead ligands whose substructures are empirically supported by 

the FragFEATURE knowledgebase of protein pockets annotated with preferred fragment binding interactions.  

Using MSM targets A and B as our query targets, we determined the fragment-pocket binding preferences for 

the ATP-competitive and allosteric regions, represented by the residues within 5 Å of ATP-Mg2+ and ANS (see 

Table S5).  For these residues, FragFEATURE calculates the microenvironments (single or multiple backbone 

and sidechain heavy atoms of a residue) and compares each microenvironment to a knowledgebase of 

microenvironments from proteins whose sequence identity to the query target is at most 50%.25  Each fragment 

prediction is characterized by a set of microenvironments and the set spread, or the maximum distance between 

two microenvironments of a microenvironment set (see Table S5).  For each microenvironment set, 

FragFEATURE also calculates a Fishers’ p-value, or a probabilistic measure of fragment reliability; the value 

of the Fishers’ p-value is inversely related to the statistical significance of the predicted fragment.  For MSM 

target A, FragFEATURE generated 371 fragments, of which 190 and 181 respectively correspond to the ATP-

competitive and allosteric regions; for MSM target B, FragFEATURE predicted 501 fragments, of which 429 

and 72 respectively correspond to the ATP-competitive and allosteric regions.  These relatively high numbers 

of predicted fragments are reasonable given that the ATP-competitive and allosteric regions comprise a large 

composite binding pocket.  Of all the fragment predictions for the two targets, those used for lead enrichment 

were fragments with a Fisher’s p-value of at least 10-4, set spread of at least 6.0, and having at least three 

microenvironment sets.  Applying these criteria to the lead ligands excellent binding pose consistency, 

hydrogen bonding with Lys295’s side chain amide and DFG backbone amides, and ample hydrophobic 
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interactions with surrounding Src residues, we identified sixteen allosteric lead ligands (seven Type II and nine 

Type III) with favorable fragment profiles, as shown in Figures 3 and 4. 

 

Figure 3. Chemical structures of Type II lead ligand candidates.  Shows the structures for a) 
ZINC13037947, b) ZINC09672647, c) ZINC15729866, d) ZINC39795560, e) ZINC12939211, f) 
ZINC09125889, and g) ZINC09276644. 
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Figure 4.  Chemical structures of Type III lead ligand candidates.  Shows the structures for a) 
ZINC55183050, b) ZINC14369395, c) ZINC80660181, d) ZINC12543756, e) ZINC74638808, f) 
ZINC36391898, g) ZINC30012975, h) ZINC12530852, and i) ZINC05348237. 
 

RESULTS AND DISCUSSION 

Reserving FragFEATURE analysis as the final step in lead enrichment 

Shukla et al.’s MD simulations of ANS-bound intermediate Src strongly suggest the existence of this allosteric 

pocket in presence of ANS.  However, these results have not yet been experimentally validated, and there are 

also currently no known ligands that bind this allosteric pocket in a DFG-in conformation of Src.  Therefore, in 

order to maximize the chemical search space of lead allosteric ligands of Src, we chose to screen a ZINC 

library of 13 million known ligands, rather than design a new ligand from fragments.  FragFEATURE can be 

used as the first step of lead enrichment in fragment-based approaches, but this approach would be more 

suitable for protein pockets that have been well-studied such that selection of a starting fragment is decided 

using a wealth of historical information on pocket annotated with ligands.  Even though the approach of 

enhancing kinase selectivity through targeting non-ATP-competitive regions has been gaining more traction in 

recent years, the allosteric region still has not been as intensely pursued as the ATP-competitive region.  

FragFEATURE even returned more fragments for the ATP-competitive region than for the allosteric region in 

MSM targets A and B.  For these reasons, we reserved FragFEATURE as the very last lead enrichment step, 

after whole ligands have been prioritized.  
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Table 3. Type II and III lead ligand candidates with good to excellent binding pose consistency between MSM 
targets A and B.  Shows the ZINC ID number, molecular weight, chemical formula, RMSD between binding poses in 
MSM targets A and B.  

Type II lead ligand candidates 
ZINC ID Molecular Weight (g/mol) Chemical Formula Pose RMSD between targets (Å) 

ZINC13037947 444.6 C22H28N4O4S 2.343 
ZINC09672647 488.6 C23H28N4O6S 1.955 
ZINC15729866 495.6 C25H29N5O4S 2.533 
ZINC39795560 464.5 C24H24N4O4S1 2.203 
ZINC12939211 418.4 C18H18N4O6S 1.677 
ZINC09125889 468.6 C22H24N6O2S2 2.247 
ZINC09276644 429.5 C22H24FN3O3S 2.584 

Type III lead ligand candidates 
ZINC ID Molecular Weight (g/mol) Chemical Formula Pose RMSD between targets (Å) 

ZINC55183050 320.4 C21H23NO2 2.541 
ZINC14369395 382.4 C21H19FN2O4 2.544 
ZINC80660181 347.4 C17H26N6O2 1.214 
ZINC12543756 408.4 C22H21FN4O3 3.347 
ZINC74638808 346.4 C19H26N2O4 1.859 
ZINC36391898 400.5 C25H24N2O3 3.969 
ZINC30012975 424.5 C23H24N2O4S 2.695 
ZINC12530852 493.7 C28H35N3O3S 3.331 
ZINC05348237 379.5 C24H29N1O4 1.359 

 

 
Figure 5. Type II allosteric inhibitors with strong fragment profiles. Information corresponding to MSM targets A and 
B are depicted in green and purple, respectively.  Color schemes of hydrogen bonding, hydrophobic interactions, aromatic 
interactions, and FragFEATURE microenvironments are shown in the legend. The binding pose of ZINC13037947 in 
MSM target A can be stabilized by hydrogen bonding with Cys277, Phe278, and Phe405, hydrophobic interactions with 
Val281, Phe307, Ala311, Met314, Val323, Leu325, Ile336, Thr338, and Ala403, and an aromatic ring interaction with 
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Lys295.  This ligand’s binding pose in MSM target A is also reinforced by methylaniline, aniline, and benzene, all of 
which physically overlap, and N-methyl methanesulfonamide.  The binding pose of ZINC13037947 in MSM target B is 
supported by benzene, aniline, N-phenylformamide, all of which three physically overlap, dimethylamine, and N-methyl 
methanesulfonamide.  For ZINC09672647, its binding pose in MSM target A could be stabilized by hydrogen bonding 
with Lys295, Thr338, Gln339, Met341, and Gly406 and hydrophobic interactions with Leu273, Val281, Ala293, Lys297, 
Ala311, Leu393, and Phe405.  This ligand’s binding pose in target A is supported by toluene and two physically 
overlapping fragments, methylaniline and aniline.  The binding pose of ZINC09672647 in target B is supported by aniline, 
two overlapping dimethylamine fragments, and toluene. 
 
Characterization of pharmacophoric features and fragment profiles of Type II lead ligands 

Our lead enrichment protocol identified seven Type II lead ligands (ZINC13037947, ZINC09672647, 

ZINC15729866, ZINC39795560, ZINC12939211, ZINC09125889, and ZINC09276644) exhibiting good 

binding pose consistency (RMSD < 4.0 Å) between MSM targets A and B (see Table 4).  As shown in Figures 

3 and S8-S14, the binding poses of these ligands in the two MSM targets could be stabilized by hydrogen 

bonding and hydrophobic interactions with various residues in the ATP-competitive and allosteric pocket of 

Src.  Full descriptions of the Src residues involved in pharmacophoric interactions are provided in Tables S3a-

b.  These seven lead ligand’s poses in MSM targets A and B are further reinforced by FragFEATURE’s 

predicted fragments supporting substructures bound to the ATP-competitive and allosteric pockets of the MSM 

targets (see Table 4). 

 

Evaluation of a ligand’s fragment profile was done based on the number of distinct substructures supported by 

FragFEATURE’s predicted fragments.  Two substructures of a ligand were regarded as distinct in that their 

atoms in the ligand do not overlap.  Accordingly, two predicted fragments that support the same substructure 

of a ligand also physically overlap.  For example, the aniline substructure in ZINC39795560 is supported by 

aniline in MSM target A and two distinct substructures, toluene and benzene, in MSM target B (see Figure 

S11).  ZINC09125889 is not supported by any fragment predictions in MSM target A and only one 

dimethylamine fragment in MSM target B (see Figure S12).  The likelihood that a ligand has three distinct 

substructures supported by fragment predictions is lower than a ligand having only one or two distinct 

substructures supported by fragment predictions.  Consequently, we regard ZINC13037947 as having the 

strongest fragment profile of all seven Type II lead ligands for its highest number of distinct substructures 

supported by FragFEATURE.   

 

As shown in Figures 5 and S8, ZINC13037947 has two and three distinct substructures supported by fragment 

predictions in MSM targets A and B, respectively.  The 4-phenylmorpholine substructure binding the allosteric 

pocket could be stabilized by hydrophobic interactions with Phe307, Ala311, Met314, Val323, Leu325, and 

Ile336 in both MSM targets A and B.  Binding of 4-phenylmorpholine in target A is further reinforced by 

benzene, aniline, and methylaniline; binding of 4-phenylmorpholine in target B is supported by benzene, 

aniline, and N-phenylformamide.  The binding of N,N-dimethylmethanesulfonamide could be stabilized by 

hydrogen bonding with Cys277 and Phe278 in MSM target A and only Phe278 in MSM target B and 
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hydrophobic interactions with Val281 in both targets.  The N,N-dimethylmethanesulfonamide substructure is 

also supported by N-methyl methanesulfonamide in both MSM targets A and B.  Moreover, the 

trimethylamine substructure in MSM target B is also supported by dimethylamine fragments.  In addition to 

having an excellent binding pose consistency of RMSD = 2.34 Å, ZINC13037947 is an excellent candidate of 

a Type II allosteric Src inhibitor. 

 
Table 4. Fragment profiles for Type II lead ligands. Descriptions of fragments and their corresponding microenvironments are 
provided in Table S5.  

 In MSM target A In MSM target B 

ZINC ID No. distinct 
substructures 
supported by 

fragment 
predictions 

Substructure: 
supporting 
fragment(s) 

Total no. of 
fragment 

predictions 

No. distinct 
substructure
s supported 
by fragment 
predictions 

Substructure: 
supporting 
fragment(s) 

Total no. of 
fragment 

predictions 

ZINC13037947 2 4-phenylmorpholine: 
benzene, aniline, 
methylaniline 

4 3 4-phenylmorpholine: 
benzene, aniline, N-
phenylformamide 

6 

N,N-dimethyl 
methanesulfonamide
: N-methyl 
methanesulfonamide  

N,N-dimethyl 
methanesulfonamide
: N-methyl 
methanesulfonamide 
trimethylamine: 
dimethylamine 

ZINC09672647 2 methylaniline: 
aniline, 
methylaniline 

3 3 methylaniline: 
aniline 

4 

toluene: toluene toluene: toluene 
trimethylamine: 
dimethylamine 

ZINC15729866 2 N-methyl 
methanesulfonamide
: N-methyl 
methanesulfonamide 

2 1 N-methyl 
methanesulfonamide
: N-methyl 
methanesulfonamide 

1 

toluene: toluene 
ZINC39795560 1 aniline: aniline 1 2 toluene: toluene 2 

benzene: benzene 
ZINC12939211 1 benzene: benzene 2 1 mesylaniline: 

benzene, N-methyl 
methanesulfonamide 

2 

ZINC09276644 1 fluorobenzene: 
fluorobenzene 

1 1 fluorobenzene: 
fluorobenzene, N-
methylbenzylamine 

2 

ZINC09125889 0 n/a 0 1 dimethylamine: 
dimethylamine 

1 

 
Another Type II lead ligand with a strong fragment profile is ZINC09672647, which demonstrates an excellent 

binding pose consistency of RMSD = 1.96 Å.  In MSM target A, the methylaniline substructure bound to the 

allosteric pocket is supported by aniline and methylaniline fragments; in MSM target B this substructure is 

only supported by aniline (see Figures 5 and S9).  This methylaniline substructure could also be stabilized by 

hydrophobic interactions with Ala311, Leu325, and Phe405 in MSM target A and hydrophobic interactions 

with Met314, Leu325, and Phe405 in MSM target B.  The toluene substructure bound to the ATP-competitive 

region is supported by toluene in both MSM targets and could also be stabilized by hydrophobic interactions 

with Leu273, Ala293, and Leu393 in both MSM targets.  Two physically overlapping dimethylamine 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 2, 2016. ; https://doi.org/10.1101/038323doi: bioRxiv preprint 

https://doi.org/10.1101/038323
http://creativecommons.org/licenses/by/4.0/


 16

fragments supporting the trimethylamine substructure of ZINC09672647 in MSM target B (see Figure S9).  

Figures 5 and S9 also show that the binding pose of ZINC09672647 could be stabilized by hydrogen bonding 

between the sulfonamide’s oxygen and Met341, as well as hydrogen bonding with Lys295, Phe405, and 

Gly406.  Hydrophobic interactions involving Leu273, Val281, Ala293, Lys297, Ala311, Leu393, and Phe405 

in MSM target A and Leu273, Val281, Leu297, Phe307, Met314, Leu325, Leu393, and Leu407 in MSM target 

B also contribute to the ligand’s binding.  In all, its strong pharmacophoric and fragment profiles deem a 

strong Type II Src lead candidate. 

Table 5. Fragment profiles for Type III lead ligands. Descriptions of fragments and their corresponding microenvironments are 
provided in Table S6. 

 In MSM target A In MSM target B 
ZINC ID No. distinct 

substructur
es 

supported 
by 

fragment 
predictions 

Substructure and 
supporting 
fragment(s) 

Total no. of 
fragment 

predictions 

No. distinct 
substructur

es 
supported 

by fragment 
predictions 

Substructure and 
supporting 
fragment(s) 

Total no. 
of 

fragment 
predictio

ns 

ZINC12530852 2 2,6-dimethylaniline: 
benzene, N-methyl-o-
toluidine, aniline 

4 3 2,6-dimethylaniline: 
benzene, toluene 

5 

N-methyl 
methanesulfonamide: 
N-methyl 
methanesulfonamide 

N-methyl 
methanesulfonamide: 
N-methyl 
methanesulfonamide 
trimethylamine: 
dimethylamine 

ZINC30012975 1 formanilide: benzene, 
N-phenylformamide 

2 2 formanilide: benzene 3 

mesylaniline: aniline, 
N-
methylmethanesulfona
mide 

ZINC55183050 1 benzene: benzene 1 1 benzene: benzene 1 

ZINC14369395 1 4-fluoroanisole: 
benzene, 
fluorobenzene, anisole 

3 1 4-fluoroanisole: 
fluorobenzene 

1 

ZINC36391898 1 benzene: benzene 1 1 benzene: benzene 1 
ZINC05348237 1 2’,6’-

dimethylacetanilide: 
benzene, N-phenyl 
propanamide, aniline 

3 1 2’,6’-
dimethylacetanilide: 
benzene, toluene, N-
methyl-o-toluidine 

3 

ZINC80660181 0 n/a 0 2 N,N’-dimethyl 
methanediamine: 
dimethylamine (2) 

3 

dimethylamine: 
dimethylamine 

ZINC74638808 0 n/a 0 1 dimethylamine: 
dimethylamine 

1 

ZINC12543756 1 N-(2-aminophenyl) 
formamide: aniline, N-
phenyl formamide 

2 0 n/a 0 

 

The fragment profiles of the other five Type II lead ligands are slightly weaker than those of ZINC39795560 

and ZINC09672647 because they have only one or two substructures empirically supported in both or either 

MSM targets A and B, notably, ZINC15729866, ZINC39795560, ZINC12939211, and ZINC09276644 (see 
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Table 4).  Finally, ZINC09125889 has the weakest fragment profile because its binding pose in MSM target A 

lacks fragment validation and only one substructure is supported by FragFEATURE in MSM target B.  

Detailed descriptions of the pharmacophoric and fragment profiles of these five ligands are provided in the 

captions of Figures S10-S14. 

 

Characterization of pharmacophoric features and fragment profiles of Type III lead ligands 

Our multi-stage lead enrichment protocol also identified nine Type III lead ligands (ZINC12530852, 

ZINC30012975, ZINC55183050, ZINC14369395, ZINC36391898, ZINC05348237, ZINC80660181, 

ZINC74638808, ZINC12543756) exhibiting good binding pose consistency (RMSD < 4.0 Å) between MSM 

targets A and B (see Table 5).  As shown in Figures 3 and S15-S23, the binding poses of these ligands in the 

two MSM targets could be stabilized by hydrogen bonding and hydrophobic interactions with residues in the 

allosteric pocket of Src.  Full descriptions of the Src residues involved in pharmacophoric interactions are 

provided in Tables S4a-b.  

Figure 6. Type III allosteric inhibitors with strong fragment profiles. Information corresponding to MSM targets A 
and B are depicted in green and purple, respectively.  The binding pose of ZINC12530852 in MSM target B can be 
stabilized by hydrogen bonding with Phe278, Lys295, Phe405, and Gly406 and hydrophobic interactions with Phe278, 
Ala311, Met314, Val323, Leu325, Ile336, and Thr338.  This ligand’s binding pose in MSM target A is also reinforced by 
benzene, N-methyl-o-toluidine, and aniline, all of which physically overlap, and N-methyl methanesulfonamide.  In target 
B, the binding pose of ZINC12530852 is supported by three physically overlapping fragment predictions, benzene, N-
phenylformamide, and aniline, three overlapping dimethylamine fragments, and N-methyl methanesulfonamide.  For 
ZINC30012975, its binding pose in MSM target A can be stabilized by hydrogen bonding with Phe278, Phe405, and 
Gly406 and hydrophobic interactions with Leu297, Phe307, Ala403, Ala311, Met314, Leu325, Val328, Ile336, Thr338, 
Leu407, Ala408, and Phe424. This ligand’s pose in target A is also supported by N-phenylformamide and benzene, which 
overlap, where as in target B, the binding pose is supported by three physically non-overlapping fragments, aniline, N-
methyl methanesulfonamide, and benzene.  Remaining pharmacophores and supporting fragment predictions for 
ZINC12530852 and ZINC30012975 are shown in Figures S15 and S16, respectively.   
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Based on the aforementioned criteria for the strength of a ligand’s fragment profile, ZINC12530852 has one of 

the strongest fragment profiles of all nine Type III ligand candidates, given that its number of distinct 

substructures (supported by fragment predictions) is the highest in both targets.  Specifically, for 

ZINC12530852 bound to MSM target A, the 2,6-dimethylaniline substructure bound to the allosteric pocket is 

supported by benzene, N-methyl-o-toluidine, and aniline, all of which physically overlap (see Figures 6 and 

S15).  Binding of 2,6-dimethylaniline could also be stabilized by hydrophobic interactions with Phe307, 

Ala311, Met314, Val323, Leu325, Ile336, Thr338, and Ala403. The sulfonamide substructure bound to the 

region extending towards the A-loop is supported by N-methyl methanesulfonamide and hydrogen bonding 

with Phe278.  These two substructures are also supported in MSM target B: 2,6-dimethylaniline is supported 

by benzene and toluene; N-methyl methanesulfonamide also supports the sulfonamide substructure, in addition 

to hydrogen bonding with Lys295 and Phe278.  Also, two overlapping dimethylamine fragments support the 

trimethylamine substructure in MSM target B.  Overall, its ample pharmacophoric and fragment profiles make 

ZINC12530852 a strong Type III lead candidate. 

 

Another Type III lead ligand with a strong fragment profile is ZINC30012975, which has a formanilide 

substructure to the allosteric pocket and supported by benzene and N-phenylformamide; binding of formanilide 

could also be stabilized by hydrophobic interactions with Met314, Ile336, Thr338, and Ala403 and hydrogen 

bonding with Phe405 and Gly406 (see Figures 6 and S16).  This formanilide substructure is supported by only 

benzene in MSM target B, and mesylaniline substructure is supported by aniline and N-methyl 

methanesulfonamide, along with hydrogen bonding with Phe278 and hydrophobic interactions with Lys295. 

 

Of the seven other Type III lead candidates, four have only one substructure supported by FragFEATURE in 

both MSM targets, namely, ZINC55183050, ZINC14369395, ZINC36391898, and ZINC05348237, and thus 

have fragment profiles slightly weaker than those of ZINC12530852 and ZINC30012975.  ZINC80660181, 

ZINC74638808, and ZINC12543756 have the weakest fragment profiles, as each ligand’s pose is supported by 

FragFEATURE in one but not both MSM targets.  Detailed descriptions of the pharmacophoric and fragment 

profiles of these seven ligands are provided in the captions of Figures S17-S23. 

 

CONCLUSIONS 

We have developed a target and lead enrichment methodology to identify sixteen Type II and III lead ligands 

towards confirming the existence of a potentially druggable allosteric pocket in intermediate Src conformations. 

Specifically, seven Type II and nine Type III lead ligands were identified to have excellent binding pose 

reproducibility and plentiful hydrogen bonding and hydrophobic interactions with Src residues. While these 

results suggest that these sixteen ligands should be pursued in experimental studies, FragFEATURE’s 

fragment predictions strengthened support for Type II ligands ZINC13037947 and ZINC09672647 and Type 
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III ligands ZINC12530852 and ZINC30012975 as candidates with the strongest empirical evidence supporting 

their candidacy to inhibit Src activation.  In all, we have demonstrated how MSM analysis can be used to 

identify statistically significant protein conformations for virtual screens, and show that the FragFEATURE 

knowledgebase can be used to enrich lead ligand candidates following virtual screening, through identifying 

leads with the best fragment profiles. 
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