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Abstract

Despite being heritable and under selection, traits often do not appear to evolve as

predicted by evolutionary theory. Indeed, conclusive evidence for contemporary

adaptive evolution remains elusive in wild vertebrate populations, and stasis seems to

be the norm. This so-called stasis paradox highlights our inability when it comes to

predicting evolutionary change. This is especially concerning in the context of rapid

anthropogenic environmental changes, and its underlying causes are therefore hotly

debated. Applying a quantitative genetic framework to data from the long-term

monitoring of a wild rodent population, we here show that stasis is an illusion. Indeed,

the population has evolved to become lighter, and this genetic change is an adaptive

response related to climate. Importantly however, both this evolutionary change and

the selective pressures driving it are not apparent on the phenotypic level. We thereby

demonstrate that natural populations can show a rapid and adaptive evolutionary

response in response to novel selective pressures, but that these may easily go

undetected and may not match phenotypic estimates of selection. Hence, evolutionary

stasis is likely to be less common than it appears.
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Introduction

Given the rapid anthropogenic environmental changes experienced by organisms around 1

the world, there is an increasing need for the ability to predict the evolutionary 2

dynamics of wild populations [1]. However, predictive models of evolution have so far 3

largely failed when applied to data from wild populations [2] and conclusive evidence for 4

contemporary adaptive evolution, in particular to climate, remains elusive in wild 5

vertebrate populations [3, 4]. For example, natural and sexual selection almost 6

universally favour larger individuals [5], and body size typically is highly heritable [6, 7]. 7

Nevertheless, while species tend to get larger over geological timescales [8, 9], conclusive 8

evidence for a contemporary evolutionary response to selection remains elusive for wild 9

animal populations—for body size [10] or any other fitness-related quantitative trait for 10

that matter [2, 4]. This mismatch between the predicted and the observed response, also 11

referred to as the ‘stasis paradox’ [2], and our inability to predict the evolutionary 12

dynamics of wild populations in general, is a major concern that is in urgent need of a 13

resolution. 14

Although studies that find a discrepancy between the observed and predicted rate of 15

evolution are plentiful, they typically have two limitations: First, their predictions rely 16

on the breeder’s equation, which assumes that phenotypic selection, quantified as the 17

covariance between a trait and relative fitness, is causal [11]; Second, they typically 18

compare this prediction either to the trend in mean phenotype over time [2], or to 19

flawed estimates of genetic change based on estimated breeding values [12,13] (but 20

see [11,14,15]. Although [15] provided the first example of quantitative trait evolution 21

in a wild vertebrate population, this was in response to size-selective trophee hunting, 22

and so far there are no statistically rigorous examples of an evolutionary response to 23

natural selective pressures, in particular not to climate [4]. Here we apply a 24

comprehensive analytical framework to long-term individual-based data from a wild 25

rodent population, in order to directly quantify selection and evolution of body mass. 26

This allows us to compare the observed genetic change to a range of evolutionary 27

predictions, and to unravel the causes underlying the stasis paradox. 28
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Results and discussion 29

Based on nine years of data on an alpine population of snow voles [16,17] (Chionomys 30

nivalis, Martin 1842), we find that relatively heavy individuals both survive better 31

(p = 0.04) and produce more offspring per year (p = 0.003). This generates strong 32

phenotypic selection favouring heavier individuals (selection differential S = 0.86 g, 33

p < 10−5). In line with other morphological traits [6, 7], variation in body mass has a 34

significant additive genetic component (VA=4.34 g2, 95%CI [2.40;7.36]), which 35

corresponds to a heritability (h2) of 0.21. Similarly, we find significant additive genetic 36

variance in fitness (VA=0.10; 95%CI [0.06;0.19], h2 = 0.06), measured as relative 37

lifetime reproductive success (rLRS). 38

Given the observed selection differential (S) and heritability (h2), the breeder’s 39

equation (R = h2S) predicts an adaptive evolutionary response (R) in body 40

mass [11,18], i.e. an increase in the mean breeding value for body mass over time, of 41

0.22 g/year (Fig 2A UBE). However, after correcting for demographic structure (i.e. sex 42

and age, see Fig. S1), over the past nine years (approximately eight generations), the 43

change in mean body mass is not significant and small at best (0.08 g/y; 95%CI 44

[-0.02;0.18]; p=0.14). This mismatch between the predicted evolutionary change based 45

on the breeder’s equation and the change observed provides yet another example of the 46

stasis paradox [2]. 47

In an attempt to resolve this paradox, several explanations have been put forward. 48

For example, it has been suggested that the predicted positive genetic trend, i.e. an 49

increase in breeding values, is being masked by an opposing phenotypically plastic 50

response [2, 19]. We therefore directly estimated the additive genetic covariance between 51

mass and fitness, which, based on the Robertson-Price’s equation, provides an unbiased 52

estimate of the rate of genetic change per generation [11,20,21]. The estimate of genetic 53

change in mass is strongly negative and highly significant (pMCMC < 0.001; Fig. 2A 54

GCPE), and when normalized by a mean generation time of 1.2 years, provides a rate of 55

evolutionary change of -0.29 g/year (95%CI [-0.55; -0.07]). Importantly, this amount of 56

change is unlikely to have happened solely through genetic drift (pMCMC < 0.001; Fig. 57

S2) [13], and therefore most likely reflects a response to selection favouring genetically 58

lighter individuals. 59
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This result was confirmed by an independent, less powerful, calculation using best 60

linear unbiased predictors (BLUPs) of breeding values for mass : taking into account 61

the non-independence of BLUPs and sampling variance [12,13], we find that predicted 62

breeding values have declined over the past nine years (-0.07 g/year, pMCMC=0.06; Fig. 63

1B & Fig. 2A TPBV), and this despite the BLUPs approach being potentially 64

biased [12]. 65

As the phenotypic selection differential (σP (m,ω)) is equal to the sum of the additive 66

genetic and environmental covariances between mass and rLRS (σA(m,ω) and σE(m,ω), 67

respectively) [11,20,21], it follows that because σP (m,ω) is positive and σA(m,ω) is 68

negative, the environmental covariance must be large and positive (Fig 2B LRS). In 69

other words, while environmental conditions that make voles heavy (for instance 70

abundance of food or lack of parasites) also make them successful at reproducing and 71

surviving, there is no causal positive relationship between breeding values for mass and 72

fitness. The difference of sign between σA(m,ω) and σE(m,ω) is an extreme violation of 73

an assumption of evolutionary predictions based on the breeder’s equation (i.e. 74

σA(m,ω)/(σA(m,ω) + σE(m,ω)) = h2). This clarifies why our first prediction of evolution 75

was wrong, and demonstrates that phenotypic estimates of selection may provide 76

severely biased predictions of the evolutionary trajectories of wild populations. However, 77

why is evolution taking place in a direction that is opposite to phenotypic selection? 78

The genetic change of mass opposite to direct selection may be the result of indirect 79

selection acting through one or more traits with negative genetic correlations with mass 80

(Fig. 3) [22, 23]. However, the genetic correlations among the three morphological traits 81

for which we have data—body mass (m), body length (b) and tail length (t)—are all 82

positive (estimates and 95%CI: ρm,b = 0.79 [0.06; 0.93]; ρm,t = 0.40 [0.01; 0.66]; 83

ρt,b = 0.56 [−0.04; 0.85]), and the predicted response based on the multivariate breeder’s 84

equation (Fig. 2A MBE) is very similar to that based on its univariate counterpart (Fig. 85

2A UBE), as well as to that based on a multivariate breeder’s equation constraining the 86

correlations to zero (Fig. 2A MBEρ=0). So, although we cannot exclude that selection 87

on other, unmeasured, traits does indirectly shape body mass evolution, there is no 88

evidence for genetic correlations generating the striking mismatch between observed and 89

predicted genetic change. This suggests that the counter-intuitive direction of evolution 90

is really due to selective pressures acting on mass, but given that selection acts on 91
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phenotypes rather than genotypes, which aspect of mass is this? 92

In order to identify which aspect of an individual’s body mass is the subject of 93

negative selection, we computed sex- and age-specific genetic covariances between mass 94

and fitness components, allowing us to identify what fitness component is negatively 95

associated with genes for being heavy. Whereas the genetic covariances between mass 96

and both relative annual reproductive success and adult survival are close to zero in 97

both sexes (Fig. 2B), the genetic covariance between mass and over-winter survival 98

probability is negative in juveniles (-0.98 [-2.44;-0.18] on a logit scale, pMCMC=0.01). 99

Because the genetic correlation between juvenile and adult mass is positive (rA = 0.88; 100

95%CI [0.39;1]) and significantly different from 0 (p=0.004) but not 1 (p=0.35), 101

selection on juvenile mass can shape genetic variance for mass at all ages, and thereby 102

contribute to the observed negative genetic change [24]. While this shows that negative 103

viability selection of juvenile mass is responsible for the genetic change toward smaller 104

individuals, how come survival is higher for heavier phenotypes and lighter genotypes? 105

Juvenile mass covaries positively with both within- and between-year survival 106

(p = 0.009 and p = 1.3 × 10−6, respectively). However, juveniles can only be captured 107

when they first leave their burrow, at an age of approximately three weeks [25] and a 108

weight of 12 to 20 g, and they may continue to be captured until the end of the season, 109

when they can reach weights of up to 50 g. Because of growth, mass measurements are 110

therefore not directly comparable among juveniles. Indeed, at least part of the positive 111

phenotypic selection on juvenile mass is likely to be mediated by age-related variation in 112

both mass and in the probability of survival to the next year [26]. In addition, viability 113

selection introduces non-random missing data, which results in biased estimates of 114

viability selection on mass [26,27]. 115

To obtain an estimate of viability selection that is unbiased by growth and 116

non-random missing data due to mass-dependent mortality occurring after the first 117

capture [26], we used a Bayesian model to simultaneously infer birth dates and growth 118

curves for all juveniles observed at least once, irrespective of when and how often they 119

have been captured. Although we cannot account for viability selection acting before 120

the first capture, this enabled us to quantify viability selection on age-corrected juvenile 121

mass—i.e. asymptotic mass, or the adult mass as estimated from the growth curve—, 122

and thereby compare all individuals at the same developmental stage, irrespective of 123
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their fate. 124

Inferred birth dates revealed that snow fallen during the preceding winter is a major 125

ecological factor constraining the onset of reproduction in spring, with reproduction 126

starting on average 40 days after the snow has melted (SE 4.5, p = 4 × 10−5) (Fig. 4A). 127

As a consequence, juveniles only have a limited amount of time to grow and reach their 128

adult mass before the return of winter. Assuming growth rate and adult mass are 129

uncorrelated, juveniles with a smaller adult mass will on average require less time to 130

complete development. If individuals that have not completed development before the 131

arrival of winter pay a survival cost, for example due to trade-offs between growth and 132

vital physiological processes [28, 29], this generates selection for small size, especially for 133

juveniles born toward the end of the season (Fig. 4D). 134

This suggests that the trait under selection is adult mass, but in juveniles. To test 135

this hypothesis, we quantified the strength of survival selection acting on asymptotic 136

mass in juveniles, which was slightly negative when averaged over all years and the 137

complete reproductive season (pMCMC=0.13), but interacted strongly and significantly 138

with the number of days between birth and the first snowfall of that year 139

(pMCMC=0.008). This implies that individuals born closer to the first snowfall are more 140

strongly selected for a small adult mass, and that the length of the snow-free period in a 141

given year determines the total selection experienced by the population in that year. 142

Interestingly, the length of the snow-free period in the years 2008 to 2014 has been 143

significantly shorter than during the preceding six years (Fig. 4B). Our model estimates 144

that in 2006 and 2007, when the snow-free period was long (Fig. 4B), most juveniles 145

reached their adult mass before the first snowfall, and there was hence no selection on 146

asymptotic mass (β = −0.002, SE= 0.0006, pMCMC=0.47, Fig. 4C; D; S3). However, in 147

all subsequent years, the snow-free period was much shorter, and there was selection for 148

a smaller asymptotic mass (β = −0.10, SE=0.0008, pMCMC=0.009). This suggests that 149

the shortening of the snow-free season, and thereby selection for smaller asymptotic 150

mass, is a novel phenomenon that the population is currently in the process of adapting 151

to. Although model complexity and data availability prohibit disentangling genetic and 152

environmental sources of variation in asymptotic mass among individuals and over time, 153

the cohort born in 2013 had an estimated adult mass that was 1.02 g smaller than the 154

cohort born in 2006 (p=0.049). This decrease is predicted to increase population-level 155
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juvenile survival by 2.5%. 156

On the whole, we have shown that while cases of evolutionary stasis appear to be 157

commonplace, these may be attributable to overly simplistic predictions of evolutionary 158

change based on estimates of phenotypic selection that fail to account for 1) a 159

disproportional environmental covariance between trait and fitness, and 2) non-random 160

missing data whenever viability selection acts during ontogeny. Therefore, the 161

quantification, and most importantly, the prediction of evolution in the wild requires 162

the direct estimation of more complex patterns of inheritance, genetic correlations and 163

selective pressures. 164

Methods 165

Snow vole monitoring. Monitoring of the snow vole population began in 2006 and 166

the present work uses data collected until the fall of 2014. The snow vole monitoring 167

was authorised by the Amt für Lebensmittelsicherheit und Tiergesundheit, Chur, 168

Switzerland. The study site is located at around 2030m above sea level, in the central 169

eastern Alps near Churwalden, Switzerland (46◦48’ N, 9◦34’ E). It consists of scree, 170

interspersed with patches of alpine meadows and surrounded by habitat unsuitable for 171

snow voles: a spruce forest to the West, a cliff to the East and large meadows to the 172

North and South. In accordance with it being considered a rock-dwelling specialist [25], 173

at our study site it is almost never captured outside of the rocky area. Given that it is 174

ecologically fairly isolated, we are able to monitor the whole population. Trapping 175

throughout the whole study area takes place during the snow-free period, between late 176

May and mid-October. One trapping session consists of four trapping nights. Analyses 177

presented here are based on a total of two (in one year), three (in three years) or five (in 178

five years) trapping sessions per season. All newly-captured individuals weighing more 179

than 14 g are marked with a subcutaneous passive transponder (PIT, ISO transponder, 180

Tierchip Dasmann, Tecklenburg). Additionally, an ear tissue sample is taken (maximum 181

2 mm in diameter) using a thumb type punch (Harvard Apparatus) and stored in 100% 182

ethanol at −20◦C. DNA extracted from these samples was genotyped for 18 autosomal 183

microsatellites developed for this population [30], as well as for the Sry locus to confirm 184

the sex of all individuals. Finally, another Y-linked marker as well as a mitochondrial 185
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marker were used check for errors in the inferred pedigree (see below). An identity 186

analysis in CERVUS v.3.0 [31] allowed us to identify animals sampled multiply, either 187

because they lost their PIT, or because at their first capture as a juvenile they were too 188

small to receive a PIT. All the analyses were carried out in R [32]. Specific packages are 189

referenced below. 190

Pedigree inference. Parentage was inferred by simultaneously reconstructing 191

paternity, maternity and sibship using a maximum likelihood model in 192

MasterBayes [33]. Parentage was assigned using a parental pool of all adults present in 193

the examined year and the previous year, assuming polygamy and a uniform genotyping 194

error rate of 0.5% for all 18 loci. As it is known that in rare cases females reach sexual 195

maturity in their year of birth [25], we matched the genotypes of all individuals against 196

the genotypes that can be produced by all possible pairs of males and females. We 197

retrieved the combinations having two or less mismatches (out of 18 loci) and ensured 198

that parental links were not circular and were temporally consistent. This way, we 199

identified eight young females as mothers of animals born in the same year, with a 200

known father but a mother not yet identified. All of these females were relatively heavy 201

(>33 g) at the end of the season and their home-ranges matched those of their putative 202

offspring. Finally, the pedigree was checked using a polymorphic Y-linked locus 203

developed for this population [34], as well as a fragment of the mitochondrial DNA 204

control region, amplified using vole specific primers [35]. There were no inconsistencies 205

between the transmission of these three markers and the reconstructed pedigree. The 206

final pedigree had a maximum depth of 11 generations and a mean of 3.8 generations. It 207

consisted of 987 individuals with 458 full sibship, 3010 half sibship, 764 known 208

maternities and 776 known paternities, so that, excluding the base population, 86% of 209

the total parental links were recovered. 210

Traits. The recapture probability from one trapping session to the next was 211

estimated to be 0.924 (SE 0.012) for adults and 0.814 (SE 0.030) for juveniles using 212

mark-recapture models. Thus, with three trapping session a year, the probability not to 213

trap an individual present in a given year is below 10−3. Not surprisingly, no animal 214

was captured in year y, not captured in y + 1, but captured or found to be a parent of a 215
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juvenile in y + 2 or later. Therefore, capture data almost perfectly matches over-winter 216

survival. However, as is almost always the case in these type of studies, we are unable 217

to separate death from from permanent emigration. Importantly however, as both have 218

the same consequences on the population level, this does not affect our estimates of 219

selection. 220

Annual and lifetime reproductive success (ARS and LRS, respectively) were defined 221

as the number of offspring attributed to an individual in the pedigree, either over a 222

specific year or over its lifetime. 56 individuals born of local parents were not captured 223

in their first year, but only as adult during the next summer, probably because they 224

were born late in the season and we had only few opportunities to catch them. This 225

means that we miss a fraction of the juveniles that are not observed in their first year 226

and die, or emigrate, during the following winter. We acknowledge that as a 227

consequence our measures of ARS and LRS partly conflate adult reproductive success 228

and the viability of those juveniles that were born late in the season, but our measures 229

are the most complete measures of reproductive success available in this system. 230

We used relative LRS (ω) as proxy for fitness [22], where ωi = LRSi

1
Ns,t

∑Ns,t
j=1 LRSj,t

. 231

Here, Ns,t is the number of individuals of same sex as the focal individual i, present in 232

the cohort t, so that 1
Ns,t

∑Ns,t

j=1 LRSj,t is the sex-specific, cohort-specific mean of LRS. 233

The latter is required as the mean LRS differs between males and females due to 234

imperfect sampling [11]. In addition, we used cohort-specific means in order to account 235

for variations in population size. 236

Generation time was defined as the mean age of parents at birth of their 237

offspring [36]. 238

Mass (m) was measured to the nearest gram with a spring scale. Both body length 239

(b), measured from the tip of the nose to the base of the tail, and tail length, measured 240

from the tip to the base of the tail (c), were measured to the closest mm with a calliper 241

while holding the animal by the tail. 242

Selection. Selection differentials were estimated using bivariate linear mixed models, 243

as the individual-level covariance between fitness and mass (corrected for sex, age and 244

cohort). However, while this provides the best estimate of the change in trait mean due 245

to selection [22], because the distribution of fitness is not Gaussian, it cannot be used to 246
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estimate confidence intervals. Hence, the statistical significance of selection was tested 247

using a univariate over-dispersed Poisson generalized linear mixed model (GLMM) in 248

which LRS was modelled as a function of individual standardized mass (corrected for 249

sex, age and cohort). Note that the latter estimates the effect of mass on a transformed 250

scale, and therefore cannot be directly used to quantify an effect of selection on the 251

original scale measured in grams [37]. The significance drawn on the basis of the 252

GLMM was confirmed by non-parametric bootstrapping. 253

Similarly, we tested for the significance of selection through ARS only, using an 254

over-dispersed Poisson GLMM including sex as a fixed effect, and year and individual as 255

random effects. Here, modelling capture probability does not help to model survival 256

because the year-to-year individual recapture probability is virtually 1. Therefore, 257

selection on year-to-year survival was tested for by a binomial GLMM. This model 258

included sex, age and their interaction as fixed effects, and year as a random effect. 259

Quantitative genetic analyses. We used uni- and multivariate animal models to 260

estimate additive genetic variances, covariances and breeding values [18,38,39] with 261

MCMCglmm [40]. All estimations were carried out in a Bayesian framework in order to 262

propagate uncertainty when computing composite statistics such as heritabilities and 263

rates of genetic change [14]. All estimates provided in the text are posterior modes and 264

credibility intervals are highest probability density intervals at the level 95%. All the 265

animal models were run for 1,300,000 iterations with a burnin of 300,000 and a thinning 266

of 1,000, so that the autocorrelations of each parameter chain was less than 0.1. 267

Convergence was checked graphically and by running each model twice. 268

Univariate models: We first carried out univariate model selection, fitting models 269

without an additive genetic effect, to determine which fixed and random effects to 270

include. Based on AICc [41], and fitting the models by Maximum of Likelihood in 271

lme4 [42], we obtained a model that predicts the mass mi,t of individual i at time t by: 272

age, as a factor (juvenile or adult); sex as a factor; the interaction between age and sex; 273

Julian dates and squared Julian dates, which were centered and divided by their 274

standard errors in order to facilitate convergence; the interaction between age and 275

Julian date; the interaction between sex and Julian date; the three way interaction 276
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between age, sex and Julian dates; a random intercept for individual; and a random 277

intercept for year. The inclusion of year accounts for non-independence of observation 278

within years, while individual accounted for multiple measurements [43]. We then fitted 279

an animal model by adding a random intercept modelling variance associated with 280

mother identity [39], and a random intercept modelling additive genetic variance. 281

Although it was not included in the best models, we kept inbreeding coefficient as a 282

covariate, because leaving it out could bias the later estimation of additive genetic 283

variation [44]. Nevertheless, animal models fitted without this covariate gave 284

indistinguishable estimates. 285

Multivariate models: Univariate animal models can be expanded to multivariate 286

models in order to estimate genetic correlations, genetic gradients and genetic 287

differentials. 288

[m, l, t,ω] ∼ bX +D1a+D2m+D3p+D4y + Ir.

Here X, D1, D2, D3 and D4 are design matrices relating observations to the 289

parameters to estimate, b is a matrix of fixed effects, a, m, p and y are random effects 290

accounting for the variance associated with breeding value, mother, permanent 291

environment and year, respectively. The fixed part of the model matches that used for 292

each trait in univariate models. 293

The most important aspect of this model is that a, the matrix of breeding values, 294

follows a multivariate normal distribution: 295

a ∼MVN (0,A⊗G) (1)

where A is the relatedness matrix between all individuals, and G is the G-matrix, i.e. 296

the additive genetic variance covariance matrix between all traits. 297
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G =



σ2
A(m) σA(m, l) σA(m, t) σA(m,ω)

σA(m, l) σ2
A(l) σA(l, t) σA(l, ω)

σA(m, t) σA(l, t) σ2
A(t) σA(t, ω)

σA(m,ω) σA(l, ω) σA(t, ω) σ2
A(ω)


. (2)

For any trait z, σA(z, ω) is the genetic differential, that is, the rate of evolutionary 298

change according to Price equation [11]. For mass, the genetic differential was also 299

estimated using a bivariate animal model, of mass and fitness, in order to confirm the 300

value of this crucial parameter. For two traits z and y, the genetic correlation is 301

σA(z,y)
σA(z)σA(y) . The vector of selection differentials on the three traits (S) was estimated as 302

the sum of the vectors of covariances between traits and ω in the variance-covariance 303

matrices for a, p and r; which was equivalent to the selection differential computed in 304

the paragraph on selection above. Let G′ be a subset of G excluding the column and 305

the row that contain ω. The vector of selection gradients on the three traits (β) was 306

estimated as (G′ + P ′ +R′)−1S, where P ′ and R′ are the equivalent of G′ for 307

permanent environment effects and for residuals, respectively. 308

The prediction of the multivariate breeders equation is obtained by ∆Z′ = G′β, 309

while the multivariate breeders equation ignoring genetic correlations is obtained by 310

multiplying the G′ matrix by the identity matrix [23]: ∆Z′ = (G′ × I)β. 311

Test of genetic correlations: We used ASReml-R [45, 46] to test the genetic 312

correlation between mass in adults and in juveniles against 1 and 0, by considering them 313

as two separate traits. We first ran an unconstrained model and then reran it with the 314

genetic correlation parameter set to 0.99 (and not exactly to 1 because ASReml cannot 315

invert matrices with perfect correlations), or 0 respectively. The fit of the unconstrained 316

model was then compared to that of the two constrained models using a likelihood ratio 317

test with one degree of freedom [47]. 318

Birth date and growth prediction. Using the Bayesian programming environment 319

JAGS [48], we fitted a multivariate Bayesian model to mass measurements of the 613 320

juveniles with mass data, and to their overwinter survival. The model simultaneously 321

estimated individual growth curves—that is birth dates, individual growth rates and 322
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asymptotic masses of all juveniles—and the effect of asymptotic mass on overwinter 323

survival. The model clustered juveniles from the same mother born in the same year 324

into litters, using a mixture of birth dates depending on litter affiliations (see e.g. [49] 325

for a similar approach), assuming a maximum of five litters per year and assuming that 326

successive litters are at least 20 days apart [25]. The birth weight was assumed not to 327

vary among individuals. Preliminary model selection assuming no differences in 328

asymptotic masses among individuals selected a monomolecular growth model 329

(∆DIC > 80) over Gompertz and logistic models, as defined in [50]. The model 330

accounted for measurement error in mass, assuming that the standard deviation of the 331

errors was that observed in animals measured multiple time on the same day (2.05g). 332

Within the model we performed a logistic regression of year-to-year survival on sex and 333

asymptotic mass, in order to estimate the overall viability selection on asymptotic mass. 334

We ran the full model again, adding time until the first snow fall and its interaction 335

with asymptotic mass in the logistic regression, in order to test for the effect of the 336

length of snow free period on the selection on asymptotic mass. We use the estimates of 337

these two models to predict the survival probability as a function of asymptotic mass for 338

every year, or for groups of years, depending on the distribution of birth dates and on 339

the timing of the first snow fall. Three MCMC chains were run for 6,300,000 iterations, 340

with a burnin of 300,000 and a thinning of 6,000. Convergence was assessed by visual 341

examination of the traces, and by checking that the R̂ < 1.01. Convergence was not 342

achieved for the litter affiliations of 25 individuals as well as for one asymptotic mass, 343

thus generating a bit more uncertainty in the estimations. The fit of the model was 344

assessed using posterior predictive checks on the predictions of individual masses 345

(p=0.46) and survival probabilities (p=0.49). The JAGS code for this model can be 346

found at https://github.com/timotheenivalis/SelRepSel. 347
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Figure 1 Temporal variation in mass and estimated breeding values for mass. (A):
Year-specific mean mass corrected for age, sex and date of measurement, with 95%CI. (B):
Cohort-specific mean estimated breeding value for mass with their 95%CI and the trend in
breeding value with 95%CI.
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Figure 2 Predicted and observed rates of evolutionary change. (A): Rates of evolu-
tionary change predicted by (from left to right) the breeder’s equation in its multivariate form
(MBE), the multivariate breeder’s equation while constraining the genetic correlations to zero
(MBEρ=0), and the univariate breeder’s equation (UBE), followed by the phenotypic trend
(PT), the trend in predicted breeding values (TPBV) and the genetic change estimated by
the Price equation (GCPE). (B): Phenotypic, genetic and environmental selection differential
for total selection (LRS), fertility selection in males (ARS♂) and females (ARS♀), viability
selection in juveniles (φJuv) and in adults (φA). Both panels show posterior modes, with
vertical lines indicating 95%CI.
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Figure 3 Adaptive evolution goes opposite to selection. (A) Both genetic variation
(orange) and environmental variation (green) contribute to mass variation, but their respective
effect on fitness (the redder the fitter) is not equivalent. This pattern leads to (B) a phenotypic
selection for heavier voles, along with (C) a “genetic selection” for lighter genotypes, thus
leading to (D) an evolution towards lighter voles.
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Figure 4 Snow-free season, timing of reproduction and selection for asymptotic mass.
(A): Births (black dots) only occur during the snow free season (snow depth in blue), (B):
which in 2008-2014 has been shorter than in the preceding 8 year. Therefore, (C) despite a
positive phenotypic selection on body mass (blue), asymptotic mass was selectively neutral
in 2006-2007 (brown), and was negatively selected in 2008-2014 (red), as a result of (D) the
selective disappearance of heavy individuals that were born too close to the onset of winter
(blue vertical line) during 2008-2014.
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